
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Available online at www.sciencedirect.com

Journal of Functional Analysis 263 (2012) 1887–1893

www.elsevier.com/locate/jfa

A restricted shift completeness problem ✩

Anton Baranov a, Yurii Belov b,∗, Alexander Borichev c

a Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia

c Laboratoire d’Analyse, Topologie, Probabilités, Aix-Marseille Université, Marseille, France

Received 7 May 2012; accepted 17 June 2012

Available online 30 July 2012

Communicated by G. Schechtman

Abstract

We solve a problem about the orthogonal complement of the space spanned by restricted shifts of func-
tions in L2[0,1] posed by M. Carlsson and C. Sundberg.
© 2012 Elsevier Inc. All rights reserved.
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Recently, Marcus Carlsson and Carl Sundberg posed the following problem. Let f ∈ L2[0,1].
Consider the Fourier transform

f̂ (λ) =
1∫

0

f (x)eiλx dx

of f and assume that the zeros of the entire function f̂ are simple. Put Λ = {λ: f̂ (−λ̄) = 0}.
Suppose that conv(suppf ) = [0,1/2], and put
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Af = ClosL2[0,1] Lin{τtf : 0 � t � 1/2},

where τtf (x) = f (x − t). It is clear that {eiλx}λ∈Λ ⊥ Af in L2[0,1]. The problem by Carlsson
and Sundberg is whether the family

{
eiλx

}
λ∈Λ

∪ {τtf }0�t�1/2

is complete in L2[0,1]. In this article we solve (a slightly more general form of) this problem.
Our solution involves two components: a non-harmonic Fourier analysis in the Paley–Wiener
space developed recently in [1], and sharp density results of Beurling–Malliavin type from [4,5].

Theorem 1. Let 0 < a < 1, f ∈ L2[0,1], and let conv(suppf ) = [0, a]. Denote Λ =
{(λk, nk): f̂ (s)(−λ̄k) = 0, 0 � s < nk} (i.e. Λ is the zero divisor of f̂ (−z̄)). Then the family

{
xseiλkx

}
(λk,nk)∈Λ,0�s<nk

∪ {τtf }0�t�1−a

is complete in L2[0,1].

Proof. We apply the Fourier transform and a simple rescaling to reduce our problem to the fol-
lowing one. Let F belong to the Paley–Wiener space PWπa (the Fourier image of L2[−πa,πa]),
and let Λ = {(λk, nk)} be the zero divisor of F . Then the family

{
F(z)eitz

}
|t |�π(1−a)

∪ {
Ks

λ

}
(λk,nk)∈Λ,0�s<nk

(1)

is complete in PWπ . Here, K0
λ(z) = Kλ(z) = sin[π(z−λ)]

π(z−λ)
is the reproducing kernel of the space

PWπ , and

Ks
λ =

(
d

dλ

)s

Kλ

reproduce the s-th derivatives:

〈
f,Ks

λ

〉
PWπ

= f (s)(λ), f ∈ PWπ, λ ∈ C, s � 0.

It is easy to show that for every β ∈ R, the functions

F(z)
sin[π(1 − a)(z − β)]
z − β − n(1 − a)−1

, n ∈ Z,

belong to the closed linear span of {F(z)eitz}|t |�π(1−a) in PWπ . We set G(z) = F(z) sin[π(1 −
a)(z − β)], and fix β in such a way that G has only simple zeros. Denote Λ′ = {β + n

1−a
}n∈Z.

It remains to verify that the family

{
G(z)

z − λ

}
λ∈Λ′

∪ {
Ks

λk

}
(λk,nk)∈Λ,0�s<nk

is complete in PWπ .
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Assume the converse. Then there exists h ∈PWπ \ {0} such that

(
G(z)

z − λ
,h

)
= 0, λ ∈ Λ′, (2)

(
h,Ks

λ

) = 0, (λk, nk) ∈ Λ, 0 � s < nk. (3)

For 0 � γ < 1, we expand h with respect to the orthogonal basis Kn+γ :

h =
∑
n∈Z

ān,γ Kn+γ , {an,γ } ∈ �2.

Then (2)–(3) can be rewritten as

∑
n∈Z

an,γ G(n + γ )

n + γ − λ
= 0, λ ∈ Λ′,

∑
n∈Z

ān,γ (−1)n

(n + γ − λk)s
= 0, (λk, nk) ∈ Λ, 0 < s � nk.

Changing γ if necessary we can assume that an,γ �= 0, G(n + γ ) �= 0, n ∈ Z. Therefore there
exist entire functions Sγ and Tγ such that

∑
n∈Z

an,γ G(n + γ )

n + γ − z
= Tγ (z) sin[π(1 − a)(z − β)]

sin[π(z − γ )] , (4)

∑
n∈Z

ān,γ (−1)n

n + γ − z
= Sγ (z)F (z)

sin[π(z − γ )] = h(z)

sin[π(z − γ )] . (5)

Since h = FSγ does not depend on γ , we write in what follows S = Sγ .
Put Vγ = STγ . Comparing the residues in Eqs. (4)–(5) at the points n+γ , n ∈ Z, we conclude

that

Vγ (n + γ ) = (−1)n|an,γ |2, n ∈ Z. (6)

By construction, Vγ is of at most exponential type π . Therefore, we have the representation

Vγ (z) = Qγ (z) + sin
[
π(z − γ )

]
Rγ (z), (7)

where

Qγ (z) = sinπ(z − γ )
∑
n∈Z

|an,γ |2
z − n − γ

,

and Rγ is a function of zero exponential type. Thus, the conjugate indicator diagram of Vγ

is [−π,π], and hence, the conjugate indicator diagrams of Tγ and S are [−πa,πa] and
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[−π(1 − a),π(1 − a)] correspondingly. Therefore, each of the functions V ∗
γ /Vγ , T ∗

γ /Tγ , and

S∗/S is a ratio of two Blaschke products. Here we use the notation H ∗(z) = H(z̄).
It follows from (5) that

S(z)F (z)

sin[π(z − γ )] · S∗(z)
S(z)

=
∑
n∈Z

ān,γ (−1)n

n + γ − z
· S∗(n + γ )

S(n + γ )
+ H(z)

for some entire function H . Since FS∗ ∈ PWπ , we conclude that H is of zero exponential type
and tends to 0 along the imaginary axis. Thus, H = 0.

We set b̄n,γ = ān,γ
S∗(n+γ )
S(n+γ )

, and obtain

∑
n∈Z

b̄n,γ (−1)n

n + γ − z
= S∗(z)F (z)

sinπ(z − γ )
.

Analogously, using the fact that the function z �→ Tγ (z) sin[π(1 − a)(z − β)] belongs to PWπ

and the fact that STγ is real on Z + γ , we deduce from (4) that

∑
n∈Z

bn,γ G(n + γ )

n + γ − z
= T ∗

γ (z) sin[π(1 − a)(z − β)]
sin[π(z − γ )] .

Thus, the function

g =
∑
n∈Z

b̄nKn+γ

is orthogonal to the system (1), whence the elements h + g, ih − ig are also orthogonal to (1),
and correspond to the pairs (S +S∗, Tγ +T ∗

γ ), (iS − iS∗,−iTγ + iT ∗
γ ). Therefore, from now on

we assume that S, Tγ , and hence, Vγ are real on the real line.
Now it follows from (6) that the function Vγ has at least one zero in every interval (n + γ,

n + 1 + γ ), n ∈ Z. By (7), the zeros of Vγ coincide with the zeros of the function

Rγ (λ) +
∑
n∈Z

|an,γ |2
λ − n − γ

. (8)

Next we fix γ ∈ [0,1) and a sufficiently small δ > 0 for which there exist two subsets Σ,Σ1
of the zero set Z(S) of the function S with the following properties:

• Σ has exactly one point in those intervals [n + γ,n + 1 + γ ] where Z(S) ∩ [n + γ,n + 1 +
γ ) �= ∅, and

dist(x,Z + γ ) >
δ

1 + x2
, x ∈ Σ;

• Σ1 has positive upper density, and dist(x,Z + γ ) > δ, x ∈ Σ1.
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From now on, we use the notations R = Rγ , an = an,γ , V = Vγ , T = Tγ . We need to consider
three cases. If R is a nonzero polynomial, then the zeros of the function (8) approach Z + γ and
we obtain a contradiction to the existence of Σ1. If R = 0, then [1, Proposition 3.1] implies that
the density of Σ1 is zero. Finally, if R is not a polynomial, we can divide it by (z − z1)(z − z2),
where z1 and z2 are two arbitrary zeros of R, z1, z2 /∈ Σ , to get a function R1 of zero exponential
type which is bounded on Σ .

Next, we obtain some information on Σ . For a discrete set X = {xn} ⊂ R we consider its
counting function nX(t) = card{n: xn ∈ [0, t)}, t � 0, and nX(t) = − card{n: xn ∈ (−t,0)},
t < 0. If f is an entire function and X is the set of its real zeros (counted according to multi-
plicities), then there exists a branch of the argument of f on the real axis, which is of the form
argf (t) = πnX(t)+ψ(t), where ψ is a smooth function. Such choice of the argument is unique
up to an additive constant and in what follows we always assume that the argument is chosen to
be of this form.

We use the (easy to show) fact that for every function f ∈ PWπ with the conjugate indicator
diagram [−π,π] and all zeros in C+, one has

argf = πx + ũ + c, (9)

where u ∈ L1((1 + x2)−1 dx), c ∈ R. Here ũ denotes the conjugate function (the Hilbert trans-
form) of u,

ũ(x) = 1

π
v.p.

∫
R

(
1

x − t
+ t

t2 + 1

)
u(t) dt.

It follows from (4)–(5) that FV ∈PWπa+π . Now let us replace all zeros λ of the functions h,
F , S, T , and V in C− by λ̄. Since the Paley–Wiener space is closed under division by Blaschke
products, we still have for the new functions h, F , S, T , and V (which we denote by the same
letters) that h ∈PWπ and FV ∈PWπa+π . Recall that the function V has at least one zero in each
of the intervals (n+ γ,n+ 1 + γ ), n ∈ Z. Let us consider its representation V = V0H , where the
zeros of V0 are simple, interlacing with Z+ γ and V0|Σ = 0. It is clear that argV0 = πx +O(1).
Since, by (9),

arg(FV ) = πax + πx + ũ + c,

we conclude that

arg(FH) = πax + ũ + O(1).

Consider the equality h = FHS/H and note that

arg

(
S

H

)
= πnΣ − α,

where α is some nondecreasing function on R. This follows from the fact that S/H vanishes
only on a subset of the real axis which contains Σ and S∗H

SH ∗ is a Blaschke product. Applying the
representation (9) to h, we conclude that

πnΣ(x) = π(1 − a)x + ũ + v + α, (10)

where u ∈ L1((1 + x2)−1 dx), v ∈ L∞(R), and α is nondecreasing.
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Summing up, we have an entire function R1 of zero exponential type which is not a polyno-
mial, and which is bounded on a set Σ ⊂ R satisfying (10).

To deduce a contradiction from this, we use some information on the classical Polya problem
and on the second Beurling–Malliavin theorem. We say that a sequence X = {xn} ⊂ R is a Polya
sequence if any entire function of zero exponential type which is bounded on X is a constant. We
say that a disjoint sequence of intervals {In} on the real line is a long sequence of intervals if

∑
n

|In|2
1 + dist2(0, In)

= +∞.

A complete solution of the Polya problem was obtained by Mishko Mitkovski and Alexei
Poltoratski [5]. In particular,1 a separated sequence X ⊂ R is not a Polya sequence if and only if
there exists a long sequence of intervals {In} such that

card(X ∩ In)

|In| → 0.

Applying this result to our R and Σ (formally speaking, Σ is not a separated sequence but
by construction it is a union of two separated sequences which are interlacing), we find a long
system of intervals {In} such that

card(Σ ∩ In)

|In| → 0.

Given I = [a, b], denote I− = [a, (2a + b)/3], I+ = [(a + 2b)/3, b],

∗
I = inf

I+
[
π(1 − a)x − πnΣ(x) + v

] − sup
I−

[
π(1 − a)x − πnΣ(x) + v

]
.

Now, for a long system of intervals {In} and for some c > 0 we have

∗
In

� c|In|.

Next we use a version of the second Beurling–Malliavin theorem given by Nikolai Makarov
and Alexei Poltoratski in [4, Theorem 5.9]. This theorem (or rather its proof) gives that if the
function π(1 − a)x − πnΣ(x) + v may be represented as −α − ũ for α and u as above, then
there is no such long family of intervals. This contradiction completes the proof. �
Remark 2. It is easy to see that in the limit case a = 1 the statement analogous to Theorem 1
is not true: there exists f ∈ L2[0,1] such that conv(suppf ) = [0,1], f̂ has only simple zeros
which form a set Λ ⊂ R, and the family

{
e−iλx

}
λ∈Λ

∪ {f }

1 The “only if” part of this statement is implicitly contained in the results of Louis de Branges in the 1960s:
[2, Theorem XI], [3, Theorems 66, 67]; see also [5, Remark, p. 1068].
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is not complete in L2[0,1]. Rescaling the problem to the interval [−π,π], it suffices to find a
function G in PWπ which is of the form G(z) = sinπz

S(z)
, where G is some zero genus product with

sufficiently sparse zeros, and define f by f̂ = G. E.g., one may take as S the canonical product
with zeros 2n, n � 1, or S(z) = (z + 1)

√
z sin(π

√
z ). It is easy to show that in the latter case f

does not have an L2 derivative.
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