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Cortical networks exhibit “global oscillations”, in which neural spike
times are entrained to an underlying oscillatory rhythm, but where
individual neurons fire irregularly, on only a fraction of cycles. While
the network dynamics underlying global oscillations have been well
characterised, their function is debated. Here, we show that such
global oscillations are a direct consequence of optimal efficient coding
in spiking networks with synaptic delays. To avoid firing unnecessary
spikes, neurons need to share information about the network state.
Ideally, membrane potentials should be strongly correlated and re-
flect a “prediction error” while the spikes themselves are uncorrelated
and occur rarely. We show that the most efficient representation is
achieved when: (i) spike times are entrained to a global Gamma
rhythm (implying a consistent representation of the error); but (ii)
few neurons fire on each cycle (implying high efficiency), while (iii)
excitation and inhibition are tightly balanced. This suggests that
cortical networks exhibiting such dynamics are tuned to achieve a
maximally efficient population code.

Neural oscillations | Neural coding | Spiking networks

Introduction
Oscillations are a prominent feature of cortical activity. In
sensory areas, one typically observes “global oscillations” in
the gamma-band range (30-80Hz), alongside single neuron re-
sponses that are irregular and sparse [1, 2]. The magnitude
and frequency of gamma-band oscillations are modulated by
changes to the sensory environment (e.g. visual stimulus con-
trast [3]) and behavioural state (e.g. attention [4]) of the
animal. This has led a number of authors to propose that
neural oscillations play a fundamental role in cortical com-
putation [5, 6]. Others argue that oscillations emerge as a
consequence of interactions between populations of inhibitory
and excitatory neurons, and do not perform a direct functional
role in themselves [7].

A prevalent theory of sensory processing, the “efficient cod-
ing hypothesis”, posits that the role of early sensory processing
is to communicate information about the environment using a
minimal number of spikes [8]. This implies that the responses
of individual neurons should be as asynchronous as possible,
so that they do not communicate redundant information [9].
Thus, oscillations are generally seen as a bad thing for efficient
rate coding, as they tend to synchronise neural responses, and
thus, introduce redundancy.

Here we propose that global oscillations are a necessary con-
sequence of efficient rate coding in recurrent neural networks
with synaptic delays.

In general, to avoid communicating redundant information,
neurons driven by common inputs should actively decorrelate
their spike trains. To illustrate this, consider a simple set-up
in which neurons encode a common sensory variable through
their firing rates, with a constant value added to the sensory
reconstruction each time a neuron fires a spike (Fig. 1a).

With a constant input, the reconstruction error is minimized
when the population fires spikes at regular intervals, while no
two neurons fire spikes at the same time (as in Fig 1a, left
panel, in red). To achieve this ideal, however, requires incred-
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Fig. 1. Relationship between synchrony and coding accuracy. (a) Each panel

illustrates the response of 10 neurons. An encoded sensory variable is denoted by a

horizontal blue line. Each spike fired by the network increases the sensory reconstruc-

tion by a fixed amount, before it decays. Greatest accuracy is achieved when the

population fires at regular intervals, but no two neurons fire together (left). Coding

accuracy is reduced when multiple neurons fire together (middle and right panels).

(c) Same as panel a, but where neurons show independent poisson variability. (b)

Reconstruction error (root-mean squared error divided by the mean) for a regular

spiking network shown in panel a, versus the number of synchronous spikes on each

cycle. A horizontal line denotes the performance when neurons fire with independent

Poisson variability. (c) Cartoon illustrating tradeoff between trade-off faced by neural

networks.

ibly fast inhibitory connections, so that each time a neuron
fires a spike it suppresses all other neurons from firing [10].
In reality, inhibitory connections are subject to unavoidable
delays (e.g. synaptic and transmission delays), and thus, can-
not always prevent neurons from firing together. Worse, in the
presence of delays, inhibitory signals, intended to prevent neu-
rons from firing together, can actually have the reverse effect
of synchronising the network, so that many neurons fire to-
gether on each cycle (as in Fig. 1a, middle and right panels).
This is analogous to the so-called ‘hipster effect’ where a group
of individuals strive to look different from each other, but due
to delayed reaction times, end up making similar decisions and
all looking alike [11].

Spiking synchronicity generally has a negative effect on cod-
ing performance. For example, figure 1c shows how, in
the regular spiking network described above, coding error in-
creases with the number of synchronous spikes per cycle (while
firing rate is held constant). It is thus tempting to conclude
that neural networks should do everything possible to avoid
synchronous firing. However, one also observes that a com-
pletely asynchronous network, in which neurons fire with in-
dependent Poisson variability (Fig. 1b), performs far worse
than the regular spiking network, even when multiple neurons
fire together on each cycle (Fig. 1c, horizontal dashed line).

Thus, to perform efficiently, neural networks face a trade-
off (Fig. 1d). On the one hand recurrent connections should
coordinate the activity of different neurons in the network, so
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as to achieve an efficient and accurate population code. On
the other hand, in the presence of synaptic delays, it is im-
portant that these recurrent signals do not overly synchronize
the network, as this will reduce coding performance.

Here, we show that, in a network of leaky integrate-and-
fire neurons (LIF) optimized for efficient coding, this trade-off
is best met when: (i) neural spike trains are entrained to a
global oscillatory rhythm (for a consistent representation of
global information), but (ii) only a small fraction of cells fire
on each oscillation cycle. In this regime, individual neurons
fire irregularly [12], and exhibit weak pairwise correlations [13],
despite the presence of rhythmic population activity. More-
over, excitation and inhibition are tightly balanced on each
oscillation cycle, with inhibition lagging excitation by a few
milliseconds [14, 15]. Thus, ‘global oscillations’ come about
as a direct consequence of efficient rate coding, in a recurrent
network with synaptic delays.

Results
Efficient coding in an idealized recurrent network. It is in-
structive to first consider the behaviour of an idealized net-
work, with instaneous synapses. For this, we consider a model
proposed by Boerlin et al., in which a network of integrate-
and-fire neurons is optimized to efficiently encode a time vary-
ing input. As the model has already been described else-
where [10], we restrict ourselves to outlining the basic princi-
ples, with a mathematical description reserved for the Meth-
ods.

Underlying the model is the idea that downstream neurons
should be able to reconstruct the input to the network by per-
forming a linear summation of its output spike trains. To do
this efficiently (i.e. with as few spikes as possible), the spiking
output of the network is fed-back and subtracted from its orig-
inal input (Fig. 1a). In consequence, the total input to each
neuron is equal to a ‘prediction error’; the difference between
the original input and the network reconstruction. This pre-
diction error is also reflected in neural membrane potentials.
When a neuron’s membrane potential becomes larger than a
constant threshold then it fires a spike; recurrent feedback
then reduces the prediction error encoded by other neurons,
preventing them from firing further redundant spikes.

To illustrate the principles underlying the model, we con-
sider a network of three identical neurons. Figure 2b shows
how spikes fired by the network are ‘read-out’, to obtain a
continuous reconstruction. Each time a neuron fires a spike,
it increases the reconstruction by a fixed amount, decreasing
the difference between the input and the neural reconstruction.
Immediately after, feedback connections alter the membrane
potentials of other neurons, to ensure that they maintain a
consistent representation of the error, and do not fire further
spikes (Fig. 2b, lower panel). As a result, membrane poten-
tials are highly correlated, while spikes are asynchronous.

Figure 2c shows the behaviour of the network in response
to a constant input. To optimally encode a constant input, the
network generates a regular train of spikes (as in the left panel
of Fig. 1a), resulting in a narrow distribution of population
inter-spike intervals (ISIs) (Fig. 2d). Neural membrane po-
tentials, which encode a common prediction error, fluctuate in
synchrony, with a frequency dictated by the population firing
rate (Fig. 2c, lower panel). However, as only one neuron
fires per cycle, the spike trains of individual neurons are irreg-
ular and sparse, resulting in a near-exponential distribution of
single-cell ISIs (Fig. 2e).

Efficient coding with synaptic delays. In real neural networks,
recurrent inhibition is not instantaneous, but subject to synap-

tic and transmission delays. Far from being a biological de-
tail, even very short synaptic delays can profoundly change
the behaviour of the idealized efficient coding network, and
pose fundamental limits on its performance.

To render the idealized model biologically feasible we ex-
tended it in two ways. First, to comply with Dale’s law, we
introduced a population of inhibitory neurons, which medi-
ates recurrent inhibition (Fig. 3a). In our implementation,
excitatory and inhibitory populations both encode separate re-
constructions of the target variable. Inhibitory neurons, which
receive input from excitatory neurons, fire spikes in order to
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Fig. 2. Efficient coding in a recurrent neural network. (a) Schematic of net-

work. Inhibitory recurrent connections are represented by an open circle. Excitatory

feed-forward connections are represented by closed circles. (b) Stimulus (blue) and

neural reconstruction (black) on a single trial. The spikes and membrane potential for

each each cell are shown in seperate rows. Vertical dashed lines illustrate how each

spike alters the neural reconstruction. (c) Same as (b), but with a constant input

(also note the change of temporal scale). (d-e) Distribution of inter-spike intervals

in population (d) and single-cell (e) spike trains.
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Fig. 3. Coding performance of an excitatory/inhibitory network with synaptic de-

lays. (a) Schematic of network connectivity. Excitatory neurons and inhibitory neurons

are shown in black and red, respectively. Connections between different neural pop-

ulations are schematised by lines terminating with solid (excitatory connections) and

open (inhibitory connections) circles. (b) The postsynaptic current (PSC) waveform

used in our simulations. (c) Schematic, illustrating how delays affect the decoding

performance of the network. (d) Normalised mean squared reconstruction error and

(e) population firing rate for (i) an ideal network with instantaneous synapses, (ii)

a network with finite synaptic delays, (iii) independent Poisson units whose firing

rate varies as a fixed function of the feed-forward input. We compare two types of

Poisson model, one with average firing rates that match the recurrent network (‘rate

matched’), and one with firing rates scaled to match the encoding performance of the

recurrent model (‘performance matched’). (f ) Stimulus and neural reconstruction for

the efficient coding network, with synaptic delays. (inset) Excitatory (black) and

inhibitory (red) neural reconstructions, during a short segment from this trial.
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Fig. 4. Effect of varying noise amplitude on network dynamics and coding performance. (a) Root-mean-square (rms) reconstruction error (solid line), plotted alongside

rms difference between excitatory and inhibitory reconstructions (dashed line), versus injected noise amplitude. Horizontal dashed line shows the rms reconstruction error for

a population of Poisson units, with identical firing rates. (b-d) (above) Spiking response of inhibitory (red) and excitatory (black) neurons. (below) Inhibitory (red) and

excitatory (black) neural reconstructions, alongside target stimulus (blue dashed line). Each plot corresponds to a different noise level, indicated by the coloured circles in panel

a. (e) Distribution of single-cell inter-spike intervals in each noise condition. The prediction for a population of Poisson units is shown in black. Note the log-scale. (f ) Power

spectrum of population firing rate, in each noise condition. The power spectrum for a population of Poisson units is shown in black.

predict and cancel the inputs to the excitatory population (see
Methods).

Second, and more importantly, we replaced the instanta-
neous synapses in the idealized model with continuous synap-
tic dynamics, as shown in figure 3b (see Methods). As
stated previously, adding synaptic delays substantially alters
the performance of the network. Without delays, recurrent
inhibition prevents all but one cell from firing per oscillation
cycle, resulting in an optimally efficient code (Fig. 3c, left
panel). With delays however, inhibition cannot always act fast
enough to prevent neurons firing together. As a result, neu-
ral activity quickly becomes synchronised, and the sensory re-
construction is destroyed by large population-wide oscillations
(Fig. 3c, middle panel). To improve performance, one can in-
crease the membrane potential noise and spike threshold, so as
to reduce the chance of neurons firing together (Fig. 3c, right
panel). Too much noise, however, and the firing of different
neurons becomes uncoordinated, and network performance is
diminished (see later).

We compared the performance of the efficient coding net-
work (with excitatory/inhibitory populations and synaptic de-
lays) to: (i) an ‘ideal’ model with no delays and (ii) a ‘rate
model’, consisting of a population of independent Poisson
units whose firing rate varies as a function of the feed-forward
input (see Methods). Figure 3d-e show the average firing
rate and reconstruction error achieved with each model type,
in response to a time varying input. Finite synaptic delays
moderately increased the reconstruction error (Fig. 3d) but
did not substantially change the average firing rate (Fig. 3e).
Despite this increase in coding error, the recurrent network
still performed significantly better than a network of indepen-
dent Poisson units, with matched rates (‘rate matched’ model)
or reconstruction error (‘performance matched’ model).

Figure 3f illustrates the ability of the network to track a
time varying input signal. Zooming in to a 1s period within
the trial (lower inset), one observes rhythmic fluctuations in
the excitatory and inhibitory neural reconstructions. These
fluctuations are essentially the same phenomena as observed
for the ideal network, where the neural reconstruction fluctu-
ated periodically around the target signal following the arrival
of each new spike (Fig. 2). However, with synaptic delays,
several neurons fire together before the arrival of recurrent in-
hibition. As a result, oscillations are slower and larger in mag-
nitude than for the idealised network, where only one neuron
fires on each cycle.

Oscillations and efficient coding. We sought to quantify the
effect of oscillations on coding performance. To do this, we
varied parameters of the model, so as to alter the degree of
network synchrony, while keeping firing rates the same. In
the main text we illustrate the effect of adding white noise
to the membrane potentials (while simultaneously varying the
spike threshold, to maintain constant firing rate; see Meth-
ods). Qualitatively similar results were obtained by altering
other aspects of the network, such as varying the probability
of synaptic failure (Supp. fig. 2) or the ratio of feed-forward
to recurrent inhibition (Supp. fig. 3-4). Further, while for
simplicity we considered the response to a constant input in
the main text, qualitatively similar results were obtained with
a time-varying input (see, for example, Supp. fig. 6).

Increasing the magnitude of the membrane potential noise
desynchronized the network activity, resulting in a reduction
in pairwise voltage correlations (Supp fig. 1a). With in-
creased noise, single neural spike trains also became more ir-
regular, reflected by an increase in the spiking CV (Supp
fig. 1b).

Coding performance, however, varied non-monotonically
with the noise amplitude. The reconstruction error followed
a u-shaped curve, being minimised for a certain intermedi-
ate level of noise (Fig. 4a, solid curve). For this interme-
diate noise level, coding performance was significantly better
than a network of independent Poisson units with matching
firing rate (horizontal dashed line). Interestingly, deviations
between excitation and inhibition followed a similar u-shape
curve, being minimised for the same intermediate noise level
(Fig. 4a, thick dashed curve). Thus, optimal coding was
achieved when the balance between excitatory and inhibition
was the tightest.

We quantified the degree to which population and sin-
gle neuron responses differed from Poisson statistics (Supp
fig 1c). Interestingly, we found that optimal coding perfor-
mance (indicated by blue circles) was achieved when individ-
ual neuron spike trains were effectively Poisson, but where the
population response was non-Poisson. This reflects the fact
that, in the optimal regime, the population response exhibited
global oscillations (and was thus, highly non-Poisson), while
single-cell responses were irregular and sparse (and thus, close
to Poisson).

To understand the effect of varying noise amplitude, we plot-
ted the network responses and neural reconstruction in three
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regimes: with low, intermediate, and high noise (indicated by
green, blue and red circles respectively in Fig. 4a).

With low noise, neural membrane potentials were highly
correlated, leading many neurons to fire together on each os-
cillation cycle (Fig 4b, upper panel). As a result, the neural
reconstruction exhibited large periodic fluctuations about the
encoded input, leading to poor coding performance (Fig. 4b,
lower panel).

On the other extreme, when the injected noise was very
high, the spike trains of different neurons were uncorrelated
(Fig 4d, upper panel). As, in this regime, effectively no infor-
mation was shared between neurons, inhibitory and excitatory
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Fig. 5. Spiking response to a constant input. (a) (top) Neural reconstruc-

tion (solid lines) of a presented constant stimulus (dashed lines), before and after

stimulus onset. Low, medium and high amplitude stimuli are shown in blue, red and

green, respectively. (middle) Population firing rate, for each stimulus amplitude.

(bottom) Spectrogram of population firing rate. (b) The upper panel shows a

raster-gram of excitatory (black) and inhibitory (red) responses, during a 0.6s period

of sustained activity. The lower panel shows the instantaneous firing rates of the exci-

tatory and inhibitory populations. (c) Power spectrum of excitatory population firing

rate during the sustained activity period, for each stimulus amplitude. (d) Average

distribution of single-cell inter-spike intervals, for each stimulus amplitude.

Fig. 6. Voltage responses to a constant input. (a) Data from Yu & Ferster

(Neuron, 2010), showing voltage traces of two V1 cells, in the absence (top), and

presence (bottom) of a visual stimulus. (b) Voltage traces of two cells in the model

in absence (top) and presence (bottom) of a feed-forward input. (c) Average pairwise

cross-correlation between membrane potentials, in spontaneous and evoked condition.

(e) Average coherence spectrum between pairs of voltage traces, in spontaneous and

evoked condition.

reconstructions were decoupled, and coding performance was
similar to a population of independent Poisson units (Fig 4d,
lower panel).

In the intermediate noise regime, for which performance
was optimal, spikes were aligned to rhythmic fluctuations
in the prediction error, but few neurons fired on each cycle
(Fig 4c, upper panel). These dynamics were reflected by a
near-exponential distribution of interspike-intervals (Fig. 4f),
coupled with a narrow peak in the population firing rate spec-
trum (Fig 4e). In this regime, rhythmic fluctuations in the
neural reconstruction were small in magnitude, and there was
a tight coupling between inhibitory and excitatory reconstruc-
tions (Fig. 4c, lower panel).

Oscillatory neural dynamics. We investigated the behaviour of
the network in the optimal regime, shown in figure 4c. Fig-
ure 5a shows the network reconstruction and population fir-
ing rates in response to a low (blue), medium (red) and high
(green) amplitude stimulus. The population firing rate was
characterised by a transient peak following stimulus onset,
followed by decay to a constant value. A spectrogram of the
population firing rate (Fig. 5a, lower panel) reveals the pres-
ence of 30-50Hz oscillations during the period of sustained
activity. Figure 5b plots the spiking response and popula-
tion firing rates during a 600ms period of sustained activity.
Here, one clearly sees correlated rhythmic fluctuations in ex-
citatory (black) and inhibitory (red) activity. The strength of
these oscillations increases with stimulus amplitude (Fig. 5c).
Nevertheless, for all input amplitudes, individual neurons fired
irregularly, with a near-exponential distribution of inter-spike
intervals (Fig. 5d).

We next considered the dynamics of neural membrane po-
tentials. Previously, Yu & Ferster [2] reported that, in area
V1, visual stimulation increases gamma-band correlations be-
tween pairs of neural membrane potentials (Fig. 6a). Qual-
itatively similar results were obtained with our model (Fig.
6b). Increasing the amplitude of the feed-forward input led
to increased correlations between neural membrane potentials
(Fig. 6c), with strongest coherence observed in the gamma-

Fig. 7. Balanced fluctuations in excitatory and inhibitory currents. (a) Data

from Atallah & Scanziani (Neuron, 2009), showing inhibitory (blue) and excitatory

(red) postsynaptic currents. (b) Inhibitory (blue) and excitatory currents (red) in the

model, in response to a constant feed-forward input. Black dots indicate detected

peaks. (b) Distribution of periods between successive peaks in excitation. (c) Ampli-

tude of inhibitory current versus magnitude of excitatory currents on each cycle. (d)

Distribution of time lags between excitatory and inhibitory peaks. (e) Period between

excitatory peaks, versus the peak amplitude on the previous oscillation cycle.
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band range (Fig. 6d). This is because more neurons fire
spikes on each cycle, leading to stronger oscillations.

Several studies have reported a tight balance between inhi-
bition and excitation [14, 15, 16]. Recently, Atallah et al. [14]
reported that inhibitory and excitatory currents are precisely
balanced on individual cycles of an ongoing gamma oscilla-
tion (Fig. 7a). In our model, efficient coding is achieved
by maintaining such a tight balance between inhibitory and
excitatory reconstructions. Thus, inhibitory and excitatory
currents closely track each other (Fig. 7b), with a high cor-
relation between the amplitude of inhibitory and excitatory
currents on each cycle (Fig. 7c). In common with Atallah et
al.’s data, inhibition lags behind excitation by a few millisec-
onds (Fig. 7d). Fluctuations in the amplitude of inhibitory
and excitatory currents instantaneously modulate the oscilla-
tion frequency, with a significant correlation observed between
the peak amplitude on a given oscillation cycle and the period
of the following cycle (Fig. 7e).

Gamma oscillations and behavioural performance. In general,
the optimal network parameters depend on the properties of
the feed-forward sensory input. For example, the higher the
input amplitude, the more noise is required to achieve the opti-
mal level of network synchrony (Fig. 8a). While the network
achieves reasonable coding accuracy for a large range of dif-
ferent inputs, adaptive tuning of the dynamics (for example,
changing the noise level) can be beneficial for a more limited
input range. This would affect the level of population syn-
chrony and thus introduce a correlation between performance
and the strength of Gamma oscillations.

For example, if the task is to detect weak (low amplitude)
inputs, performance would be higher if top down modulations
(such as attention) reduced the level of noise, and thus in-
creased the degree of population synchrony (Fig. 8b) with-
out significantly changing firing rates. We can thus expect
higher detection performance to correlate with stronger level
of Gamma oscillations (Fig 8c). This could account for cer-
tain attention-dependent increases in gamma-power and its
correlation with behavioural performance (see Discussion).

Note that a similar correlation between behavioural per-
formance and Gamma power could arise from purely bottom
up effects. In the presence of input noise causing trial-by-trial
changes in input strength, trials with stronger input amplitude
would result in more detection but also exhibit more Gamma
oscillations. In that case, however, increase in Gamma power
would be associated with a commensurate increase in popula-
tion firing rate.

Discussion
We present a novel hypothesis for the role of neural oscilla-
tions, as a consequence of efficient coding in recurrent neural
networks with noise and synaptic delays. In order to efficiently
code incoming information, neural networks must trade-off
two competing demands. On the one hand, to ensure that
each spike conveys new information, neurons should actively
desynchronise their spike trains. On the other hand, to do this
optimally, neural membrane potentials should encode shared
global information about what has already been coded by the
network, which will tend to synchronise neural activity.

In a network of LIF neurons with dynamics and connectiv-
ity tuned for efficient coding, we found that this trade-off is
best met when neural spike trains are entrained to a global os-
cillatory rhythm (implying a consistent representation of the
prediction error), but where few neurons fire spikes on each
cycle (implying high efficiency). This also corresponds to the
regime in which inhibition and excitation are most tightly bal-
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Fig. 8. Effect of varying the input amplitude. (a) Root-mean-square (rms) recon-

struction error versus injected noise amplitude with three different input amplitudes.

The optimal noise level in each condition is denoted by vertical dashed lines. (b)

Power spectrum of population firing rate, in response to a low amplitude input. The

blue curve corresponds to when the network is optimised for the low amplitude input,

the green curve for when it is optimised for the high amplitude input. (c) Fractional

performance in discriminating between two 100ms input segments, equally spaced

around the low amplitude input. Performance is best in the condition with strongest

oscillations.

anced. Our results provide a functional explanation for why
cortical networks operate in a regime in which: (i) global os-
cillations in population firing rates occur alongside individual
neurons with low, irregular, firing rates [17] (ii) there is a tight
balance between excitation and inhibition [14, 15, 16].

For simplicity, we considered a homogeneous network with
one-dimensional feed-forward input. However, the results
presented here easily generalise to networks with heteroge-
nous connection strengths (Supp. fig 5), as well as net-
works that encode high-dimensional dynamical variables [10]
(Supp. fig 6).

Relation to balanced network models. Previously, Brunel &
colleagues derived the conditions under which a recurrent net-
work of integrate-and-fire neurons with sparse irregular firing
rates exhibits fast global oscillations [17, 18, 19, 20]. This
behaviour is qualitatively similar to the network dynamics ob-
served in our model. However, these previous models differ
in several ways from the model presented here. For example,
they assume sparse connections (and/or weak connectivity),
in which the probability of connections (and/or connection
strengths) scales inversely with the number of neurons. In
contrast, the connections in our network are non-sparse and
finite. Thus, our network achieves a tighter balance between
inhibitory and excitatory currents, and smaller fluctuations
in membrane potentials (they scale as 1/N in the absence of

delays, rather than 1/
√
N).

However, the most important distinction between our work
and previous mean-field models lies in the way the network
is constructed. In our work, the network connectivity and
dynamics are derived from functional principles, in order to
minimise a specific loss function (i.e. the squared difference
between the neural reconstruction and input signal). This
‘top-down’ modeling approach allows us to directly ask ques-
tions about the network dynamics that subserve optimal effi-
cient coding. For example, balanced inhibition and excitation
are not imposed in our model, but rather, required for effi-
cient coding. Further, while previous models showed mecha-
nistically how fast oscillations can emerge in a network with
slow irregular firing rates [17], our work goes further, showing
that these dynamics are in fact required for optimal efficient
coding.

Finally, it is important to realise that, while efficient coding
in a recurrent network leads to global oscillations, the reverse
is not true: just because a network oscillates, does not mean
that it is performing efficiently. To demonstrate this point,
we repeated our simulations in a network with heterogeneous
read-out weights (Supp. fig 5). Both the coding performance
and spiking dynamics of this network were indistinguishable
from the homogeneous network described in the main text.
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In contrast, when we randomised the recurrent connection
strengths (while keeping the total input to each neuron the
same), the coding performance of the network was greatly re-
duced, despite the fact that the network dynamics and firing
rate power spectrum were virtually unchanged.

The coherence between excitatory and inhibitory current
oscillations (i.e. the level of balance) is a much more reliable
signature of efficient coding than global population synchrony.
While population synchrony can occur in globally balanced
network as well, only networks with intracellular detailed bal-
ance between excitatory and inhibitory currents achieve high
coding performance (Supp. fig. 5b & d).

Relation to previous efficient coding models. Previous work
on efficient coding has mostly concentrated on using informa-
tion theory to ask what information ‘should’ be represented
by sensory systems [9]. Recently, however, researchers have
begun to ask, mechanistically, how neural networks should be
setup in order to operate as efficiently as possible [10, 21, 22].
This approach can provide certain insights not obtainable from
information theory alone.

For example, information theory suggests that the most effi-
cient spiking representation is one in which the spike trains of
different neurons are statistically independent, and thus, there
are no oscillations. In practice however, neural networks must
operate in the face of biological constraints, such as synaptic
delays and noise. Considering these constraints changes our
conclusions. Specifically, contrary to what one would expect
from a purely information theoretical analysis, we find that
oscillations emerge as a consequence of neurons performing as
efficiently as possible given synaptic delays, and should not be
removed at all cost.

Relation to previous predictive spiking models.Previously,
Boerlin et al. described how a population of spiking neurons
can efficiently encode a dynamic input variable [10, 21, 22, 23].
In this work, we showed that a recurrent population of
integrate-and-fire neurons with dynamics and connectivity
tuned for efficient coding maintains a balance between excita-
tion and inhibition, exhibits Poisson-like spike statistics [10],
and is highly robust against perturbations such as neuronal
cell death. However, we did not previously demonstrate a re-
lation between efficient coding and neural oscillations. The
main reason for this is that we always considered an idealised
network, with instantaneous synapses. In this idealised net-
work, only one cell fires at a time. As a result, oscillations
are generally extremely weak and fast (with frequency equal
to the population firing rate), and thus, completely washed
out in a large network with added noise and/or heterogenous
read-out weights. In contrast, in a network with finite synap-
tic delays, more than one neuron may fire per oscillation cy-
cle, before the arrival of inhibition. As a result, oscillations
are generally much stronger, even with significant added noise
and heterogenous read-out weights (Supp. fig. 4).

Attentional modulation.Directing attention to a particular
stimulus feature/location has been shown to increase the
gamma-band synchronisation of visual neurons that respond
to the attended feature/location [4]. Fig. 8b-c illustrates how
such an effect could come about. Here, we show that atten-
tional modulations that increase the strength of gamma-band
oscillations will serve to increase perceptual discrimination of
low contrast stimuli. Such attentional modulation could be
achieved in a number of different ways, for example, by de-

creasing noise fluctuations, or modulating the effective gain of
feed-forward or recurrent connections [24, 25].

In general, the way in which attention should modulate
the network dynamics will depend on the stimulus statistics
and task-setup. Future work, that considered higher dimen-
sional sensory inputs (as well as competing ‘distractor’ stim-
uli), could allow us to investigate this question further.

The benefits of noise. With low noise, neural membrane po-
tentials are highly correlated (Fig. 4a), and inhibition is not
able to prevent multiple neurons firing together. To avoid this,
we needed to add noise to neural membrane potentials (while
simultaneously increasing spiking thresholds). With the right
level of noise, fewer neurons fired on each oscillation cycle,
resulting in increased coding performance. Too much noise,
however, led to inconsistent information being encoded by
different neurons, decreasing coding performance (Fig. 4c).
This phenomena, where noise fluctuations increase the sig-
nal processing performance of a system, is often referred to as
‘stochastic resonance’ [26, 27], and has been observed in multi-
ple sensory systems, including cat visual neurons [28, 29]. Pre-
viously however, stochastic resonance has usually been seen as
a method to amplify sub-threshold sensory signals that would
not normally drive neurons to spike. Here, in contrast, noise
desynchronises neurons that receive similar recurrent inputs,
increasing the coding efficiency of the population.

Alternative functional roles for oscillations. Neural oscillations
have been hypothesised to fulfill a number of different func-
tional roles, including feature binding [30], gating communica-
tion between different neural assemblies [31, 32, 33], encoding
feed-forward and feed-back prediction errors [34, 35, 36] and
facilitating ‘phase codes’ in which information is communi-
cated via the timing of spikes relative to the ongoing oscillation
cycle [37].

Many of these theories propose new ways in which oscilla-
tions encode incoming sensory information. In contrast, in our
work network oscillations do not directly code for anything,
but rather, are predicted as a consequence of efficient rate
coding, an idea whose origins go back more than 50 years [8].

Materials and Methods
Efficient spiking network. We consider a dynamical variable that evolves in time

according to:

τ
∂x (t)

∂t
= −x (t) + c (t) , [ 1 ]

where c (t) is a time-varying external input or command variable, and τ is a fixed

time constant. Our goal is to build a network of N neurons that take c (t) as input,

and reproduce the trajectory of x (t). Specifically, we want to be able to read an

estimate x̂ (t) ≈ x (t) of the dynamical variable from the network’s spike trains

o (t) = (o1 (t) , o2 (t) , . . . , oN (t)). These output spike trains are given by

oi (t) =
∑
k δ
(
t− tki

)
, where tki is the time of the kth spike in neuron i.

We first assume that the estimate, x̂ (t), can be read out by a weighted leaky

integration of spike trains:

τ
∂x̂ (t)

∂t
= −x̂ (t) +

∑
i

wioi (t) , [ 2 ]

where wi is a constant read-out weight associated with the ith neuron.

We next assume that the network minimises the distance between x (t) and x̂ (t)
by optimising over spike times tki . The network minimises the loss function,

E (t) = (x (t)− x̂ (t))2 + α
∑
i

r (t) + β
∑
i

ri (t)2 . [ 3 ]

The first term in the loss function is the squared distance between the x (t) and

x̂ (t). The second term and third term represent L1 and L2 penalties on the firing
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rate, respectively. α and β are constants that determine the size of the penalty. The

time varying firing rate of the ith neuron is defined to by the differential equation:

τ
∂ri
∂t

= −ri + oi (t) . [ 4 ]

A neuron fires a spike at time t if it can reduce the instantaneous error E (t)
(i.e. when E(t|neuron i spikes) < E(t|neuron i doesn’t spike)).

This results in a spiking rule:

Vi (t) > Ti [ 5 ]

where,

Vi (t) = wi (x (t)− x̂ (t))− βri [ 6 ]

Ti =
1

2

(
w2
i + α+ β

)
. [ 7 ]

Since Vi (t) is a time-varying variable, whereas Ti is a constant, we identify the for-

mer with the ith neuron’s membrane potential Vi (t), and the latter with its firing

threshold Ti.

To obtain the network dynamics, we take the derivative of each neuron’s membrane

potential to obtain:

τ
∂Vi (t)

∂t
= −Vi (t)+wic (t)−wi

∑
k

wkok (t)−βoi (t)+σνi (t) .

[ 8 ]
where νi (t) corresponds to a white ‘background noise’, with unit variance (added

for biological realism). Thus, the resultant dynamics are equivalent to a recurrent

network of leaky integrate-and-fire (LIF) neurons, with leak, −V (t), feed-forward

input,wic (t), recurrent input,−wi
∑
k wkok (t), and self-inhibition (or reset),

−βoi (t).

Balanced network of inhibitory and excitatory neurons. To construct a network

that respects Dale’s law, we introduce a population of inhibitory neurons, that tracks

the estimate encoded by the excitatory neurons, and provides recurrent feedback. For

simplicity, we consider a network in which all read-out weights are positive. In our

framework, this results in a particularly simple network architecture, in which a single

population of excitatory neurons is recurrently connected to a population of inhibitory

neurons (Figure 3a). For further discussion of different network architectures, see [10].

We first introduce a population of inhibitory neurons, that receive input from ex-

citatory cells. The objective of the inhibitory population is to minimise the squared

distance between excitatory and inhibitory neural reconstructions (x̂E , and x̂I , re-

spectively), by optimising over spike times tki . Thus, an inhibitory neuron spikes when

it can reduce the loss function:

E (t) = (x̂I (t)− x̂E (t))2 + αI
∑
i

rIi (t) + βI
∑
i

rIi (t)2 . [ 9 ]

Following the same prescription as before, we obtain the following dynamics for the

inhibitory neurons:

τ
∂V Ii
∂t

= −V Ii (t) + wIi
∑
k

wEk o
E
k (t)

−wIi
∑
k

wIko
I
k (t)− βIoIk + σνIi (t) . [ 10 ]

Thus, inhibitory neurons receive input from excitatory neurons (2nd term), and recur-

rent inhibition from other inhibitory neurons (3rd term).

Now, as the inhibitory reconstruction tracks the excitatory reconstruction, we can

replace x̂E with x̂I , in the excitatory loss function, to obtain:

E (t) = (x (t)− x̂I (t))2 + αE
∑
i

r (t) + βE
∑
i

r (t)2 . [ 11 ]

Following the same prescription once again, we obtain the following dynamics for the

excitatory neurons:

τ
∂V Ei
∂t

= −V Ei (t) + wEi c (t)

−wEi
∑
k

wIko
I
k (t)− βEoEk + σνEi (t) . [ 12 ]

Thus, excitatory neurons receive excitatory feed-forward input (2nd term) and recur-

rent inhibitory input (3rd term).

Synaptic dynamics. To account for transmission delays and continuous synaptic

dynamics we assume that each spike generates a continuous current input to other

neurons, with dynamics described by the synaptic waveform, h
(
t− tli

)
. The shape

of this waveform is given by:

h (t) =

{
1

τd−τr

[
exp

(
−(t−τtr)

τd

)
− exp

(
−(t−τtr)

τr

)]
if t > τtr

0 if t > τtr
[ 13 ]

where τr is the synaptic rise time, τd is the decay time and τtr is the transmission

delay. The normalisation constant, τd−τr , ensures that
∫∞
τtr

h (t) dt = 1. This

profile is plotted in figure 3b, with τr = 1ms, τd = 3ms and τtr = 1ms.

To incorporate continuous synaptic currents into the model, we alter equations 10

and 12, by replacing each of the recurrent spiking inputs (ok (t)) by the convolution

of the spiking input and current waveform (h (t) ? ok (t)← ok (t)).

Simulation parameters. For the simulations shown in figures 2, we considered a

toy network of 3 neurons with equal read-out weights, wi = 1. The L1 spike cost

was α = 0 and the L2 spike cost was set to β = 0.04. The read-out time constant

was set to τ = 0.1s. The magnitude of injected membrane potential noise was set

to σ = 0.02. In each case, network dynamics were computed from equation 8.

For the simulations shown in figures 3-8, we considered a larger network of 50

excitatory neurons, and 50 inhibitory neurons. All neurons had equal read-out weights,

equal to γ0 = 1.2mV1/2
. The L1 spike cost was set to 0. The L2 spike cost

was set to β = 8.5mV. If we assume a spike threshold of -55mV, this corresponds

to a resting potential of -60mV (Vrest = Vthresh − 1
2

(
L1 + L2 + γ2

0

)
), a

reset of -65mV (Vreset = Vthresh − L2 − γ2
0 ), and post-synaptic potentials

of 1.45mV (VPSP = γ2
0 ; see [10] for details of scaling to biological parameters).

The magnitude of injected membrane potential noise was set to σ = 13.5mV.

Network dynamics were computed from equations 10 and 12 (with the exception that

recurrent inputs were convolved with the synaptic current waveform, h (t), described

in equation 13).

Algorithm. Simulations were run using Runga-Kutta method, with discrete time

steps of 0.5ms. For the ‘ideal’ network (i.e. with instantaneous synapses) only one

neuron (with highest membrane potential) was allowed to fire a spike within each bin.

Changing the temporal discretisation did not qualitatively alter our results.

Stimulus details. In figure 2b, the encoded variable, x, was obtained by low-pass

filtering white noise with a 1st-order Butterworth filter, with cut-off frequency of 4Hz.

After filtering, x, is rescaled to have mean of 3, and standard deviation of 1. In figure
2c the encoded variable is constant, x = 4. In figure 3, the encoded variable is

obtained by low-pass filtering a white-noise input in the same way as for figure 2b, this

time with a cut-off frequency of 2Hz. After filtering, x, is rescaled to have non-zero

mean of 50, and standard deviation of 10. In figure 4, the ’low’, ’medium’ and ’high’

amplitude inputs are x = 36, 48, and 60, respectively. In figure 5 the encoded

variable, x, is initially equal to 10, before increasing to a constant value of 30, 40,

or 50 (blue, red and green plots respectively). In figure 5b-d and figures 6-7, the

encoded variable was held constant at x = 50.

Poisson model. In figure 3d-e, we compare the efficient coding model to a rate

model, in which neural firing rates vary as a function of the feed-forward input, c (t).

To obtain firing rates, we computed the average firing rate of neurons in the recurrent

model, for different values of the feed-forward input. This gave us empirical firing

rates: r = f (c). Spiking responses were obtained by drawing from a Poisson

distribution, with this firing rate. Later, we multiplied the firing rates by a constant

factor, such that the mean-squared error was the same for the Poisson model and the

efficient coding model.

Varying the noise. For the simulations shown in figure 4, we multiplied varied the

injected membrane potential noise for all neurons by a constant factor. In general,

varying the noise amplitude changes neural firing rates, leading to systematic estima-

tion biases. To compensate for this, we adjusted the L2 spike cost for the inhibitory

and excitatory neurons, so as to maintain zero estimation bias (or equivalently, to keep

firing rates constant). For each noise level, we ran an initial simulation, modifying
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excitatory and inhibitory costs, βE and βI , in real time (via a stochastic gradient de-

scent algorithm), until both the excitatory and inhibitory estimation biases converged

to zero.

Population firing rates. To plot the population firing rate (Fig. 5a & b), we

low-pass filtered neural spike trains using a first order Butterworth filter (with cut-off

frequency of 5.5Hz, and 66Hz, for panels b and d, respectively), before averaging over

neurons.

Spectral analysis. The spectrogram of the population firing rate, shown in fig-
ure 5a (lower panel), was computed using a short-time Fourier-transform, with a

Hamming time window of 60ms (Matlab’s ‘spectrogram function’). Finally, the in-

stantaneous power spectrum was low-pass filtered with a first-order Butterworth filter,

with cut-off frequency 3Hz. The power spectrum of the population firing rate and

neural membrane potentials was computed using the multi-taper method (using Mat-

lab’s ‘pmtm’ function), with bandwidth chosen empirically to achieve a spectrum that

varied smoothly with frequency.

Excitatory and inhibitory currents. To plot the currents shown in Fig. 7b, we

divided the total excitatory and inhibitory input to each cell by a presumed membrane

resistance of Rm = 5MΩ (changing this value rescales the y-axis). We then

defined peaks in excitatory and inhibitory currents as local maxima in the currents,

separated by a drop an 80% drop in the current magnitude. Further, we only included

peaks in inhibitory and excitatory currents that occurred within 15ms of each other.

Discrimination threshold. For the simulation shown in figure 8, we considered

the performance of the network in discriminating between two 0.1s long stimulus seg-

ments, with equally spaced around the ‘low’ amplitude input (x = 48). From signal

detection theory, a subject’s probability of selecting between two stimuli is given by:

Pcorrect(x1, x2) = 1
2
erfc

(
1
2
D(x1, x2)

)
, where erfc(x) is the cumulative

error function, and D(x1, x2) is the normalized distance (or d-prime) between the

distribution of estimates: D(x1, x2) = µ(x2)−µ(x1)√
1
2
σ2(s1)+σ2(s2)

. These quantities

can be directly computed from the network output.
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