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A Selection Principle for Functions of a Real Variable2
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Abstract. – We present a new sufficient condition (which turns out to be almost nec-
essary) in terms of the modulus of variation in order for a given sequence of real
valued functions, defined on a closed interval, to contain a pointwise convergent
subsequence whose limit is a bounded function with simple discontinuities. We
show that many Helly type selection theorems, having to do with uniform bound-
edness of generalized variations, are consequences of our result.

1. – Introduction and preliminaries

In 1912 E. Helly ([11]) proved the following celebrated selection theorem:

Theorem A. A uniformly bounded sequence of nondecreasing functions on
a closed interval contains a pointwise convergent subsequence.

There are several consequences and variants of this theorem for functions
of bounded generalized variation. In order to present them (see Theorem B
below), let us recall some of the notions of bounded generalized variation.

Let ϕ : R+ = [0,∞) → R+ be a convex function such that ϕ(u) = 0 if and
only if u = 0; it follows that ϕ is continuous and increasing on R+ and admits
the continuous inverse ϕ−1.
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czeslaw@mail.ru

This author was supported by Russian Foundation for Basic Research, Grant 03-01-00473.
2This article was presented at the Eleventh Meeting on Real Analysis and Measure Theory

held in Ischia during July 12–16, 2004.



a selection principle 2

A function f : [a, b]→ R is said to be of bounded ϕ-variation on the closed
interval [a, b] in the sense of N. Wiener ([19]) and L. C. Young ([20]) (see also
[14]) provided its total ϕ-variation defined by

Vϕ(f)=sup
{ m∑
i=1

ϕ
(
|f(xi)−f(xi−1)|

)
: m ∈ N, a≤x0<x1<. . .<xm−1<xm≤b

}
is finite; in this case we write f ∈ BVϕ[a, b].

If in this definition ϕ(u) = u, the value Vϕ(f) is the usual C. Jordan varia-
tion ([13]), which will be written as V (f); in this case we also write BV[a, b] in
place of BVϕ[a, b].

It is well known ([14]) that if limu→+0 ϕ(u)/u = 0, then BV[a, b] is a proper
subset of BVϕ[a, b].

Let Λ = {λi}∞i=1 be a nondecreasing sequence of positive numbers such that
the series

∑∞
i=1 1/λi diverges.

A function f : [a, b] → R is said to be of Λ-bounded variation on [a, b] in
the sense of D. Waterman ([17]), and we write f ∈ BVΛ[a, b], if the following
quantity, called the total Λ-variation of f , is finite:

VΛ(f) = sup
m∑
i=1

|f(bi)− f(ai)|
λi

,

where the supremum is taken over all m ∈ N and all non-ordered collections of
non-overlapping intervals [ak, bk] ⊂ [a, b], k = 1, . . . ,m.

It is well known ([18]) that if Λ is an unbounded sequence, then BV[a, b] is
a proper subset of BVΛ[a, b].

Now, let BV∗[a, b] denote one of the spaces BV[a, b], BVϕ[a, b] or BVΛ[a, b],
where the corresponding total variation is denoted by V∗(·). The following
theorem is originally due to E. Helly ([11]) if V∗ = V , and it is due to J. Musielak
and W. Orlicz ([14]) if ∗ = ϕ and D. Waterman ([18]) if ∗ = Λ:

Theorem B. A uniformly bounded sequence {fj} of real valued functions
on [a, b], satisfying the condition supj∈N V∗(fj) <∞, contains a pointwise con-
vergent subsequence whose pointwise limit is a function belonging to BV∗[a, b].

It is the aim of this work to remove the condition supj∈N V∗(fj) < ∞ of
the uniform boundedness of variations of any kind from Theorems A and B (see
Theorem 1 in Section 2). In order to do it, we need a definition.

Given n ∈ N, f : [a, b]→ R and ? 6= E ⊂ [a, b], we set

ν(n, f, E) = sup
n∑
i=1

|f(bi)− f(ai)|,

where the supremum is taken over all points a1, . . . , an, b1, . . . , bn ∈ E such that
a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn. If E = [a, b] (i.e., E is the domain of f),
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ν(n, f, [a, b]) will be written as ν(n, f). The sequence {ν(n, f, E)}∞n=1 is called
the modulus of variation of f on the set E in the sense of Z. Chanturiya ([3]).
Note at once (cf. Lemma 1(d), (a) in Section 3) that the modulus of variation is
a nondecreasing sequence, for which the limit limn→∞ ν(n, f, E)/n ∈ R+ always
exists (provided the function f is bounded on the set E).

In order to get a better feeling of the notion of modulus of variation, let
us take a look at how it behaves on some well known classes of functions: the
following relations are valid for all n ∈ N (for their proofs and appropriate
references see the Appendix in Section 7):

if f : [a, b]→ R is monotone, then ν(n, f) = |f(b)− f(a)|; (1)

if f ∈ BV[a, b], then ν(n, f) ≤ V (f) = sup
n∈N

ν(n, f); (2)

if f ∈ BVϕ[a, b], then ν(n, f) ≤ nϕ−1
( 1
n

)
max{1, Vϕ(f)}; (3)

if f ∈ BVΛ[a, b], then ν(n, f) ≤ n
( n∑
i=1

1
λi

)−1

VΛ(f); (4)

if f : [a, b]→ R is continuous, then ν(n, f) ≤ C nω
(b− a

n
, f
)
, (5)

where C > 0 is an absolute constant (independent of f) and ω(u, f) is the
modulus of continuity of f on [a, b], i.e., if 0 < u ≤ b− a, then

ω(u, f) ≡ ω(u, f, [a, b]) = sup
{
|f(x)− f(y)| : x, y ∈ [a, b], |x− y| ≤ u

}
,

and ω(0, f) = limu→+0 ω(u, f) = 0.
From the right hand sides of (1)–(5) one can clearly see that the condition

limn→∞ ν(n, f)/n = 0 enters into the picture. As an illustration, we note that
this condition characterizes functions with simple discontinuities (i.e., those that
have finite limits from the left and from the right at each point of [a, b]) as the
following Chanturiya’s result shows ([3, Theorem 5]):

Theorem C. A function f : [a, b]→ R has left and right finite limits at all
points of [a, b] if and only if limn→∞ ν(n, f)/n = 0.

As a consequence of (1)–(4) and Theorem C, we get the well known property
that functions from classes (1)–(4) have only simple discontinuities ([3, 5, 6, 13,
14, 18, 19, 20]).

Our paper is organized as follows. In Section 2 we present our main results:
Theorems 1 and 2. The properties of the modulus of variation needed for our
purposes are considered in Section 3. In Section 4 a generalization of Theorem C
is given and in Section 5 the main results of the paper are proved. Finally, in
Section 6 we show that Helly type selection theorems due to M. Schramm ([16])
and P. C. Bhakta ([2]) are consequences of our Theorem 1.
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2. – Main results

Our first main result is the following pointwise selection principle:

Theorem 1. Let {fj} be a uniformly bounded sequence of real valued func-
tions on [a, b] such that

lim
n→∞

( 1
n

lim sup
j→∞

ν(n, fj)
)

= 0. (6)

Then it contains a subsequence which converges pointwise on [a, b] to a bounded
function f : [a, b]→ R satisfying limn→∞ ν(n, f)/n = 0.

This theorem will be proved in Section 5. Now two remarks are in order.

Remark 1. In Theorem 1 conditions of Theorem C may not be satisfied
for all functions fj , but they always hold for the pointwise limit function f (see
Remark 5(c) in Section 5).

Remark 2. Selection theorems A and B (and some others — see Section 6)
follow from our Theorem 1: one should take into account (1)–(5) and the follow-
ing well known property of generalized variations V∗(·) considered above: if a se-
quence fj : [a, b]→ R converges pointwise to f , then V∗(f) ≤ lim infj→∞ V∗(fj).

Condition (6) is the best possible for the extraction of a regular pointwise
convergent subsequence (that is, convergent to a function f satisfying conditions
of Theorem C) in the following sense: although it is not necessary for the
pointwise convergence (see Remark 5 in Section 5), it is necessary for the uniform
convergence and it is “almost” necessary for the pointwise convergence. This
can be seen from the following Theorem 2, our second main result, which will
be proved in Section 5:

Theorem 2. (a) If a sequence {fj} of real valued functions on [a, b] con-
verges uniformly to a function f such that limn→∞ ν(n, f)/n = 0, then

lim
n→∞

( 1
n

lim
j→∞

ν(n, fj)
)

= 0.

(b) If {fj} is a sequence of measurable real valued functions on [a, b] which
converges pointwise (or almost everywhere) to a function f : [a, b] → R satis-
fying the condition limn→∞ ν(n, f)/n = 0, then for each ε > 0 there exists a
measurable set E = E(ε) ⊂ [a, b] with (Lebesgue) measure ≤ ε such that

lim
n→∞

( 1
n

lim
j→∞

ν(n, fj , [a, b] \ E)
)

= 0.
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3. – Auxiliary lemma

In order to prove Theorems 1 and 2 and Theorem 3 from Section 4, we need
a lemma expressing the main properties of the modulus of variation.

Lemma 1. Given f : [a, b]→ R, ? 6= E ⊂ [a, b] and n ∈ N, we have:

(a) ν(n+ 1, f, E)/(n+ 1) ≤ ν(n, f, E)/n;
(b) if a sequence of functions fj : E → R converges pointwise on E to f as

j →∞, then ν(n, f, E) ≤ lim infj→∞ ν(n, fj , E);
(c) ν(n, g, E) ≤ ν(n, f, E) + 2n supx∈E |f(x)− g(x)| if g : E → R;
(d) |f(y)−f(x)|+ν(n, f, E∩ [a, x]) ≤ ν(n+1, f, E∩ [a, y]) if x, y ∈ E, x ≤ y;
(e) ν(n, f, E′) ≤ ν(n, f, E) whenever ? 6= E′ ⊂ E ⊂ [a, b].

Proof. (a) is equivalent to the inequality

ν(n+ 1, f, E) ≤ ν(n, f, E) +
ν(n+ 1, f, E)

n+ 1
, (7)

and so, following [4, Lemma], we prove (7). By the definition of ν(n+ 1, f, E),
given ε > 0 there exist ai, bi ∈ E (depending on ε in general), i = 1, . . . , n+ 1,
such that a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ an+1 ≤ bn+1 and

n+1∑
i=1

|f(bi)− f(ai)| ≤ ν(n+ 1, f, E) ≤ ε+
n+1∑
i=1

|f(bi)− f(ai)|.

Let d0 denote the minimal term in the sum on the left hand side. We have
d0 ≤ ν(n + 1, f, E)/(n + 1). On the other hand, the right hand side of these
inequalities implies ν(n + 1, f, E) ≤ ε + ν(n, f, E) + d0, which gives (7) due to
the arbitrariness of ε > 0.

(b) Given points a1 ≤ b1 ≤ . . . ≤ an ≤ bn from E and j ∈ N, the definition
of ν(n, fj , E) implies

n∑
i=1

|fj(bi)− fj(ai)| ≤ ν(n, fj , E).

Passing to the limit inferior as j →∞ in this inequality and taking into account
the pointwise convergence of fj to f , we get:

n∑
i=1

|f(bi)− f(ai)| ≤ lim inf
j→∞

ν(n, fj , E).

It remains to take the supremum over all ai, bi, i = 1, . . . , n, as above.
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(c) For points a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn from E, we have:

n∑
i=1

|g(bi)− g(ai)| ≤
n∑
i=1

|g(bi)− f(bi)|+
n∑
i=1

|f(bi)− f(ai)|+
n∑
i=1

|f(ai)− g(ai)|

≤ n sup
x∈E
|g(x)− f(x)|+ ν(n, f, E) + n sup

x∈E
|f(x)− g(x)|,

and it suffices to take the supremum over all a1, . . . , an, b1, . . . , bn.
(d) and (e) are straightforward consequences of the definition of the modulus

of variation.

4. – Functions with simple discontinuities

Let S be a fixed dense subset of [a, b]. We denote by U(S) the set of
all functions f : [a, b] → R such that for every point x ∈ (a, b] the left limit
f|S(x−) = limS3y→x−0 f(y) and for every x ∈ [a, b) the right limit f|S(x+) =
limS3y→x+0 f(y) exist and are finite, where as usual the symbol f|S denotes the
restriction of f to the set S. The set U(S) is called Jeffery’s class ([12]).

We have the following characterization of the class U(S) in terms of the
modulus of variation and at the same time a generalization of Theorem C:

Theorem 3. U(S) =
{
f : [a, b]→ R ∣∣ lim

n→∞
ν(n, f, S)/n = 0

}
.

Proof. Inclusion “⊃”. Let f : [a, b] → R be such that ν(n, f, S)/n → 0
as n → ∞. For n ∈ N and s ∈ S we set νn(s) = ν(n, f, S ∩ [a, s]). By
Lemma 1(e), the function νn : S → R+ is nondecreasing; it is also bounded:
in fact, there exists n0 ∈ N such that ν(n, f, S) ≤ n for all n ≥ n0, and so,
by virtue of Lemma 1(e), (d), νn(s) ≤ ν(n, f, S) ≤ max{n0, n} for all n ∈ N
and s ∈ S. It follows that the limit νn|S(x−) exists at each a < x ≤ b. We
will show that f|S(x−) exists as well (the existence of f|S(x+) for a ≤ x < b is
treated similarly). Given a ≤ s ≤ t < x with s, t ∈ S, by Lemma 1(d), (7) and
Lemma 1(e), we have:

|f(t)− f(s)| ≤ ν(n+ 1, f, S ∩ [a, t])− ν(n, f, S ∩ [a, s])

≤ ν(n, f, S ∩ [a, t]) +
ν(n+ 1, f, S ∩ [a, t])

n+ 1
− ν(n, f, S ∩ [a, s])

≤ νn(t) +
ν(n+ 1, f, S)

n+ 1
− νn(s)

≤ |νn(t)− νn|S(x−)|+ ν(n+ 1, f, S)
n+ 1

+ |νn|S(x−)− νn(s)|.

Let ε > 0 be arbitrary. Choose n = n(ε) ∈ N such that

ν(n+ 1, f, S)
n+ 1

≤ ε.
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Let δ = δ(ε) ∈ (0, x− a) satisfy the property:

|νn(y)− νn|S(x−)| ≤ ε for all y ∈ S ∩ [x− δ, x).

Then for all s, t ∈ S∩[x−δ, x) we have from the above calculation: |f(t)−f(s)| ≤
3ε, and so, the Cauchy criterion of the existence of the limit f|S(x−) is satisfied.

Inclusion “⊂”. Given f ∈ U(S), by virtue of the existence of one-sided
limits f|S(x−) at each x ∈ (a, b] and f|S(x+) at each x ∈ [a, b), there exists
a sequence {fj} of step functions on [a, b] such that fj |S converges uniformly
on S to f|S as j → ∞. The construction of {fj} is similar (with obvious
suitable changes) to the one given in the necessity part in [9, (7.6.1)]. We
recall only that fj is said to be a step function on [a, b] if for some partition
a = c0 < c1 < . . . < cm−1 < cm = b of [a, b] the function fj takes a constant
value on each open interval (ci−1, ci), i = 1, . . . ,m.

Clearly, each step function fj is in BV[a, b], and so, limn→∞ ν(n, fj)/n =
0 according to (2). By Lemma 1(e), ν(n, fj , S) ≤ ν(n, fj), which implies
limn→∞ ν(n, fj , S)/n = 0. Applying Lemma 1(c), we get:

ν(n, f, S)
n

≤ ν(n, fj , S)
n

+ 2 sup
x∈S
|fj(x)− f(x)|, n, j ∈ N.

Given ε > 0, choose j = j(ε) ∈ N such that supx∈S |fj(x)− f(x)| ≤ ε and then
choose n0 = n0(ε) ∈ N such that ν(n, fj , S)/n ≤ ε for all n ≥ n0. It follows
that ν(n, f, S)/n ≤ 3ε for all n ≥ n0. Q. E. D.

5. – Proofs of Theorems 1 and 2

Proof of Theorem 1. We set µ(n) = lim supj→∞ ν(n, fj), n ∈ N. Con-
dition (6) implies that µ(n) is finite for all n ∈ N: in fact, there exists n0 ∈ N
such that lim supj→∞ ν(n, fj) ≤ n whenever n ≥ n0, and Lemma 1(d) with
E = [a, b] and x = y = b yields

lim sup
j→∞

ν(n, fj) ≤ lim sup
j→∞

ν(n0, fj) ≤ n0 if 1 ≤ n ≤ n0.

Step 1. There is a subsequence {f◦j } of our original sequence fj such that

γ(n) = lim
j→∞

ν(n, f◦j ) exists and γ(n) ≤ µ(n) for all n ∈ N. (8)

In fact, from the definition of µ(1) we find a subsequence {f1
j } of {fj}

such that ν(1, f1
j ) → µ(1) as j → ∞. We set γ(1) = µ(1) and γ(2) =

lim supj→∞ ν(2, f1
j ). Since γ(2) ≤ µ(2), we choose a subsequence {f2

j } of
{f1
j } such that ν(2, f2

j ) → γ(2) as j → ∞. Given n ∈ N, n ≥ 3, and
the subsequence {fn−1

j } of {fj}, we set γ(n) = lim supj→∞ ν(n, fn−1
j ) and,
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noting that γ(n) ≤ µ(n), we pick a subsequence {fnj } of {fn−1
j } such that

ν(n, fnj )→ γ(n) as j →∞. Then the diagonal sequence {f jj }∞j=1, which we de-
note by {f◦j }, satisfies conditions (8) (note that f◦j with j ≥ n is a subsequence
of fn1 , f

n
2 , . . . , f

n
j , . . .).

Step 2. There exists a subsequence {f∗j } of the sequence {f◦j } from (8) and
for each n ∈ N there exists a nondecreasing function νn : [a, b]→ R+ such that

lim
j→∞

ν(n, f∗j , [a, x]) = νn(x) for all n ∈ N and x ∈ [a, b]. (9)

First, we note that, given n ∈ N, for each j ∈ N the function x 7→
ν(n, f◦j , [a, x]) is nondecreasing on [a, b] by Lemma 1(e), and according to (8)
supj∈N ν(n, f◦j ) ≤ C(n) for some constant C(n) ≥ 0.

The sequence of nondecreasing functions x 7→ ν(1, f◦j , [a, x]), j ∈ N, is
uniformly bounded on [a, b] by C(1) (see Lemma 1(e)), and so, by Helly’s Theo-
rem A, the sequence {f◦j } contains a subsequence {f◦1j } such that ν(1, f◦1j , [a, x])
tends to ν1(x) as j →∞ for all x ∈ [a, b], where ν1 : [a, b]→ [0, C(1)] is a nonde-
creasing function. Applying Helly’s Theorem A one more time to the sequence of
functions x 7→ ν(2, f◦1j , [a, x]), j ∈ N, we find a subsequence {f◦2j } of {f◦1j } and
a nondecreasing function ν2 : [a, b]→ [0, C(2)] such that ν(2, f◦2j , [a, x])→ ν2(x)
as j → ∞ for all x ∈ [a, b]. Inductively, if n ≥ 3 and the subsequence {f◦n−1

j }
of {f◦j } is already constructed, we apply Helly’s Theorem A to the sequence
of nondecreasing functions x 7→ ν(n, f◦n−1

j , [a, x]), j ∈ N, which is uniformly
bounded on [a, b] by C(n): there exist a subsequence {f◦nj } of {f◦n−1

j } and a
nondecreasing function νn : [a, b]→ [0, C(n)] such that ν(n, f◦nj , [a, x])→ νn(x)
as j → ∞ for all x ∈ [a, b]. It follows that the diagonal sequence {f◦jj }∞j=1,
which we denote by {f∗j }, satisfies conditions (9) and (8).

Step 3. For each n ∈ N the function νn from step 2 is monotone, and so,
the set Qn ⊂ [a, b] of its points of discontinuity is at most countable. Setting
S = ([a, b] ∩ Q) ∪

⋃∞
n=1Qn, where Q is the set of all rationals, we have: S is a

countable dense subset of [a, b] such that

νn is continuous on [a, b] \ S for all n ∈ N. (10)

Since the sequence {f∗j } is uniformly bounded on [a, b] and S ⊂ [a, b] is count-
able, we may assume with no loss of generality (by again applying the standard
diagonal process and passing to a subsequence of {f∗j } if necessary) that, for all
s ∈ S, f∗j (s) converges to a point f(s) as j →∞.

We are going to show that for any t ∈ [a, b] \ S the sequence {f∗j (t)} also
converges. Let ε > 0 be arbitrary. Since, by (6), µ(n)/n → 0 as n → ∞, there
is a number n = n(ε) ∈ N, depending on ε, such that

µ(n+ 1)
n+ 1

≤ ε. (11)
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The first condition in (8) implies the existence of a number J0 = J0(ε) ∈ N,
depending on ε, such that

ν(n+ 1, f∗j ) ≤ γ(n+ 1) + ε for all j ≥ J0. (12)

By the density of S in [a, b] and (10), there is a point s = s(ε, t) ∈ S, depending
on ε and t, such that

|νn(t)− νn(s)| ≤ ε. (13)

From (9) we find a number J1 = J1(ε, t) ∈ N, depending on ε and t, with the
property that if j ≥ J1, then

|ν(n, f∗j , [a, t])− νn(t)| ≤ ε and |ν(n, f∗j , [a, s])− νn(s)| ≤ ε. (14)

Suppose s < t (the case when t < s is treated similarly). Applying successively
inequalities of Lemma 1(d), (7), (13) and (14), and then Lemma 1(e), (12), (8)
and (11), we have for all j ≥ max{J0, J1}:

|f∗j (t)− f∗j (s)| ≤ ν(n+ 1, f∗j , [a, t])− ν(n, f∗j , [a, s])

≤ ν(n+ 1, f∗j , [a, t])− ν(n, f∗j , [a, t])

+ |ν(n, f∗j , [a, t])− νn(t)|
+ |νn(t)− νn(s)|
+ |νn(s)− ν(n, f∗j , [a, s])|

≤
ν(n+ 1, f∗j , [a, t])

n+ 1
+ 3ε

≤
ν(n+ 1, f∗j )

n+ 1
+ 3ε ≤ 5ε. (15)

Being convergent, the sequence {f∗j (s)} is Cauchy, and so, there is a number
J2 = J2(ε) ∈ N, depending on ε, such that

|f∗j (s)− f∗k (s)| ≤ ε for all j ≥ J2 and k ≥ J2. (16)

The number J = max{J0, J1, J2} depends only on ε and, by virtue of (15) and
(16), for all j ≥ J and k ≥ J we have:

|f∗j (t)− f∗k (t)| ≤ |f∗j (t)− f∗j (s)|+ |f∗j (s)− f∗k (s)|+ |f∗k (s)− f∗k (t)| ≤ 11ε.

Thus, {f∗j (t)} is a Cauchy sequence, and so, it is convergent as j → ∞ to a
point denoted by f(t). Since the point t ∈ [a, b] \ S is arbitrary, taking into
account the arguments at the beginning of step 3, we have:

lim
j→∞

f∗j (x) = f(x) for all x ∈ [a, b].
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Applying Lemma 1(b) we conclude that, given n ∈ N,

ν(n, f) ≤ lim inf
j→∞

ν(n, f∗j ) ≤ lim sup
j→∞

ν(n, fj) = µ(n).

In particular, (6) implies limn→∞ ν(n, f)/n = 0, and condition ν(1, f) ≤ µ(1)
means that the function f : [a, b]→ R defined above is bounded.

A number of remarks/comments on Theorem 1 are in order.

Remark 3. (a) The condition of the uniform boundedness of the sequence
{fj} in Theorem 1 cannot be significantly lightened: we may suppose only that
|fj(x0)| ≤ C0 at some point x0 ∈ [a, b] for some constant C0 ≥ 0 and all j ∈ N,
but, in view of (6), this will imply the uniform boundedness of the sequence
{fj}. In fact, since µ(1) is finite, we have ν(1, fj) ≤ C1 for some number C1 ≥ 0
and all j ∈ N, and so, for all x ∈ [a, b] and j ∈ N we find

|fj(x)| ≤ |fj(x0)|+ |fj(x)− fj(x0)| ≤ C0 + ν(1, fj) ≤ C0 + C1.

Moreover, we cannot do without the condition of the uniform boundedness of
{fj} in Theorem 1: if fj : [0, 1]→ R is defined by fj(x) = j for all x ∈ [0, 1] and
j ∈ N, then ν(n, fj) = 0 for all n, j ∈ N, and so, limj→∞ ν(n, fj) = 0, implying
condition (6), but no subsequence of {fj} is convergent.

(b) Since the sequence {fj} in Theorem 1 is uniformly bounded, say, |fj(x)| ≤
C for all x ∈ [a, b], j ∈ N, and some C ≥ 0, it is straightforward that
supj∈N ν(n, fj) ≤ 2Cn, and so, µ(n) is finite for all n ∈ N. In the proof of
Theorem 1 we have chosen to deduce the finiteness of µ(n) via the condition
(6) in order to include condition |fj(x0)| ≤ C0 from Remark 3(a) as a virtual
generalization.

(c) The outer limit limn→∞ in condition (6) is quite natural, since, by virtue
of Lemma 1(a), the sequences { 1

nν(n, fj)}∞n=1 and { 1
n lim supj→∞ ν(n, fj)}∞n=1

are nonincreasing (and bounded from below).

Remark 4. (a) Theorem 1 is false without condition (6). Let α : N → R
be a bounded sequence with lim infj→∞ |α(j)| > 0 and fj : [0, 2π]→ R be given
by fj(x) = α(j)| sin(jx)|, x ∈ [0, 2π], j ∈ N. The modulus of variation ν(n, fj)
is equal to

ν(n, fj) =
{
n|α(j)| if 1 ≤ n < 4j,
4j|α(j)| if n ≥ 4j,

n, j ∈ N, (17)

(where we note that V (fj) = 4j|α(j)|), and so,

lim
n→∞

( 1
n

lim sup
j→∞

ν(n, fj)
)

= lim sup
j→∞

|α(j)| > 0.

At the same time no subsequence of fj is convergent everywhere on [0, 2π].
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(b) On the other hand, if α(j)→ 0 and j|α(j)| → ∞ as j →∞, the classical
Helly Theorem B (with V∗ = V ) is inapplicable whereas Theorem 1 successfully
applies. This shows that Helly’s principles having to do with uniform bounded-
ness of variations rely on the second line in (17) expressing the total variation
of fj , which is too rough. In Theorem 1 we make use of the first line in (17),
which is more precise (see also Remark 5(c) below).

(c) Let fj : [0, 1] → R be given by fj(x) = 0 if 0 ≤ x < 1 and fj(1) = j.
We have: ν(n, fj) = j, condition (6) is not satisfied, and no subsequence of
{fj(1)}∞j=1 converges.

Remark 5. (a) Condition (6) in Theorem 1 is not necessary. Define the
sequence fj : [0, 1]→ R by fj(x) = gj(x) if 0 ≤ x ≤ 1/j and fj(x) = 1 if 1/j ≤
x ≤ 1, where gj : [0, 1]→ R is given by gj(x) = 1 if j!x is integer and gj(x) = 0
otherwise. Clearly, gj converges pointwise on [0, 1] to the characteristic function
1Q of the rationals Q, while fj converges pointwise to the constant function
f(x) ≡ 1. Since for given n, j ∈ N we have ν(n, fj) = n if n < 2 · (j − 1)! and
ν(n, fj) = V (fj) = 2 · (j − 1)! if n ≥ 2 · (j − 1)!, then limj→∞ ν(n, fj) = n, and
so, condition (6) is not satisfied.

(b) Another example of this type can be given as follows. Define fj :
[0, 2π] → R by fj(x) = | sin(j2x)| if 0 ≤ x ≤ 2π/j and fj(x) = 0 if 2π/j ≤
x ≤ 2π. Then fj converges pointwise to f(x) ≡ 0, while ν(n, fj) is expressed
by (17) with α(j) ≡ 1, and so, (6) does not hold.

(c) Let fj : [0, 1]→ R be defined by fj = 1Q/j, where 1Q is the restriction to
[0, 1] of the characteristic function of the rationals. Clearly, V∗(fj) = ∞ for all
j ∈ N with any interpretation of the generalized variation V∗ as exposed above,
so Theorem B cannot be applied. On the other hand, ν(n, fj) = n/j, and so,
condition (6) is satisfied.

Proof of Theorem 2. (a) By Lemma 1(c), given n, j ∈ N, we get:

ν(n, fj) ≤ ν(n, f) + 2n sup
x∈[a,b]

|f(x)− fj(x)|,

which, by virtue of the uniform convergence of fj to f , implies

lim sup
j→∞

ν(n, fj) ≤ ν(n, f) for all n ∈ N.

By Lemma 1(b), ν(n, f) ≤ lim infj→∞ ν(n, fj), and so, the limit limj→∞ ν(n, fj)
exists and is equal to ν(n, f). It remains to take into account that ν(n, f)/n→ 0
as n→∞.

(b) By Egorov’s Theorem and our assumptions, given ε > 0 there exists a
measurable set E ⊂ [a, b] (depending on ε in general) with measure not exceed-
ing ε such that fj converges to f uniformly on [a, b] \ E as j → ∞. By the
(analogous) arguments as in (a), we have:

lim
j→∞

ν(n, fj , [a, b] \ E) = ν(n, f, [a, b] \ E), n ∈ N. (18)
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Since ν(n, f, [a, b] \ E) ≤ ν(n, f) by Lemma 1(e) and ν(n, f)/n → 0 as n → ∞
by the assumption, our assertion follows now from (18).

Remark 6. Theorem 2(a) is false if we replace the uniform convergence of
fj to f by the pointwise convergence — see Remark 5(a), (b) above.

6. – Helly’s principle for more general generalized variations

Here we treat Helly type selection principles of more general nature than
exposed above and show that they are consequences of our Theorem 1.

6.1. Let us recall the notion of Φ-bounded variation introduced by Schramm
in [16]. Let Φ = {ϕi}∞i=1 be a sequence of ϕ-functions, i.e., each ϕi : R+ → R+

is continuous, nondecreasing, unbounded, and ϕi(u) = 0 if and only if u = 0. In
what follows we will do without the convexity of each ϕi, assumed in [16], which
will also give some generalization of Schramm’s result. The sequence Φ is said
to be a Φ-sequence if the following two conditions hold:

ϕi+1(u) ≤ ϕi(u) for all i ∈ N and u ∈ R+ (19)

and
∞∑
i=1

ϕi(u) = +∞ for all u > 0. (20)

A function f : [a, b]→ R is said to be of Φ-bounded variation on [a, b] in the
sense of M. Schramm, in symbols f ∈ BVΦ[a, b], if its total Φ-variation defined
by

VΦ(f) = sup
m∑
i=1

ϕi

(
|f(bi)− f(ai)|

)
is finite, the supremum being taken over all m ∈ N and all non-ordered collec-
tions of non-overlapping intervals [ak, bk] ⊂ [a, b], k = 1, . . . ,m.

Note that the spaces BV[a, b], BVϕ[a, b] and BVΛ[a, b] alluded to above
correspond to Φ-sequences Φ = {ϕi}∞i=1 with ϕi(u) = u, ϕi(u) = ϕ(u) and
ϕi(u) = u/λi, respectively, where i ∈ N and u ∈ R+.

An analogue of the Helly selection theorem presented in [16, Theorem 2.8]
is exactly Theorem B from Section 1, where ∗ = Φ is a given Φ-sequence. Let us
show that for the sequence {fj} from Theorem B, for which C = supj∈N VΦ(fj)
is finite, condition (6) is fulfilled.

Given n ∈ N, let a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b be arbitrary.
By the definition of VΦ, for j ∈ N and any permutation σ : {1, . . . , n} →
{1, . . . , n} we have:

n∑
i=1

ϕi

(∣∣fj(bσ(i))− fj(aσ(i))
∣∣) ≤ VΦ(fj) ≤ C,
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and so, the definition of ν(n, fj) implies:

sup
j∈N

ν(n, fj) ≤ sup
n∑
i=1

ui , (21)

where the supremum is taken over all {ui}ni=1 ⊂ R+ such that
n∑
i=1

ϕi
(
uσ(i)

)
≤ C for all permutations σ of the set {1, . . . , n}. (22)

Let ξ(n) designate the right hand side in (21). We claim that ξ(n)/n → 0 as
n→∞, and so, (6) is satisfied. In fact, given ε > 0, by virtue of (20), set

N0 = N0(ε) = min
{
N ∈ N

∣∣∣∣ N∑
i=1

ϕi

(ε
2

)
> C

}
.

Let n ∈ N, n ≥ N0, and {ui}ni=1 ⊂ R+ be arbitrary numbers satisfying condition
(22). We set I1(n) = {1 ≤ i ≤ n | ui ≤ ε/2} and I2(n) = {1 ≤ i ≤ n |
ui > ε/2}, and let |I1(n)| and |I2(n)| denote the number of elements in I1(n)
and I2(n), respectively. Conditions (19) and (22) imply ϕ1(ui) ≤ C, and so,
ui ≤ ϕ−1

1 (C) ≡ sup{u ∈ R+ | ϕ1(u) ≤ C} for all i ∈ {1, . . . , n}. Also, (22) yields
|I2(n)| < N0; indeed, if |I2(n)| ≥ N0, say, I2(n) = {ik}K0

k=1 with N0 ≤ K0 ≤ n
and ik ∈ {1, . . . , n} for k = 1, . . . ,K0, then we define the permutation σ :
{1, . . . , n} → {1, . . . , n} as follows: σ(k) = ik if k ∈ {1, . . . ,K0} and arbitrarily
for K0 < k ≤ n, so that

n∑
i=1

ϕi(uσ(i)) ≥
∑

k∈I2(n)

ϕk(uσ(k)) ≥
N0∑
k=1

ϕk(uik) ≥
N0∑
k=1

ϕk

(ε
2

)
> C,

which contradicts (22). Thus, |I2(n)| < N0. Now, we have:
n∑
i=1

ui =
∑

i∈I1(n)

ui +
∑

i∈I2(n)

ui ≤ |I1(n)| · ε
2

+ |I2(n)| · ϕ−1
1 (C)

≤ n · ε
2

+N0 · ϕ−1
1 (C) for all n ≥ N0.

Thanks to the arbitrariness of {ui}ni=1 having property (22), the last esti-
mate means that ξ(n)/n ≤ (ε/2) + N0ϕ

−1
1 (C)/n for all n ≥ N0, and so,

limn→∞ ξ(n)/n = 0.
Thus, according to Theorem 1 a subsequence of {fj}, again denoted by {fj},

converges pointwise on [a, b] to a function f : [a, b]→ R. We have to show that
f ∈ BVΦ[a, b]. Let [ak, bk] ⊂ [a, b], k = 1, . . . ,m, be an arbitrary collection of
non-overlapping intervals. Since

m∑
i=1

ϕi

(
|fj(bi)− fj(ai)|

)
≤ VΦ(fj) for all j ∈ N,



a selection principle 14

then passing to the limit inferior as j →∞ and taking into account the pointwise
convergence of fj to f , we get:

m∑
i=1

ϕi

(
|f(bi)− f(ai)|

)
≤ lim inf

j→∞
VΦ(fj).

Thus, VΦ(f) ≤ lim infj→∞ VΦ(fj) ≤ C, and so, f ∈ BVΦ[a, b].

Remark 7. The assumption “ϕi(u) = 0 if and only if u = 0” is significant
for the validity of Musielak-Orlicz’s and Schramm’s selection principles. In fact,
let ϕi = ϕ for all i ∈ N, where ϕ(u) = 0 if 0 ≤ u ≤ 2 and ϕ(u) = u− 2 if u ≥ 2.
For the sequence fj(x) = sin(jx), 0 ≤ x ≤ 2π, j ∈ N, we have supj∈N VΦ(fj) = 0,
but {fj} does not contain a subsequence convergent everywhere on [0, 2π].

Remark 8. The main results of this work (Lemma 1, Theorems 1–3 and
Section 6.1) are also valid for functions defined on an arbitrary nonempty subset
of R and taking values from a metric space; see [8] for the appropriate setting.

6.2. Let S be a dense subset of [a, b] and U(S) be Jeffery’s class from
Section 4. Given f ∈ U(S), we set S(f) = {x ∈ S | f|S(x−) = f(x) = f|S(x+)}.
The set S \ S(f) is at most countable (cf. [2, Lemma 2.1]).

Let ? 6= E ⊂ [a, b], α = inf E and β = supE. A function f ∈ U(S) is said
to be of bounded variation on E relative to S in the sense of R. Jeffery [12] (see
also P. Bhakta [2]), which is written as f ∈ BVS(E), if the total variation of f
on E relative to S given by

VS(f ;E) = sup
{
|f|S(x0−)− f(α)|+

m∑
i=1

|f|S(xi−)− f|S(xi−1+)|

+ |f(β)− f|S(xm+)|
}

is finite, where the supremum is taken over all m ∈ N and all {xi}mi=0 ⊂ E such
that α < x0 < x1 < . . . < xm−1 < xm < β. It is known ([2]) that BV[a, b] is a
proper subset of BVS([a, b]).

The following variant of Helly’s selection principle is due to P. C. Bhakta
([2, Theorem 3.4]):

Theorem D. Let S be a dense, measurable subset of [a, b] of full measure.
Suppose a sequence of functions {fj} ⊂ U(S) is such that there is a posi-
tive constant C, for which VS(fj ; [a, b]) ≤ C, |fj(a)| ≤ C, |fj(b)| ≤ C and
|fj |S(x±)| ≤ C for all j ∈ N and a < x < b. Then {fj} contains a subsequence
which converges almost everywhere on [a, b] to a function from BV[a, b].
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We show that Theorem D is a consequence of Theorem 1. The set S0 =⋂∞
j=1 S(fj) is of full measure on [a, b] because S \S0 is at most countable. Given

j ∈ N, the Jordan variation of fj on S0, denoted by V (fj , S0), is estimated by

V (fj , S0) ≤ VS(fj ;S0) ≤ VS(fj ; [a, b]) ≤ C,

and so,
sup
j∈N

ν(n, fj , S0) ≤ sup
j∈N

V (fj , S0) ≤ C;

also, |fj(x)| = |fj |S(x±)| ≤ C for all x ∈ S0 and j ∈ N. By Theorem 1
and Remark 8, a subsequence of {fj} converges pointwise on S0 to a function
f : S0 → R of bounded Jordan variation: V (f, S0) < ∞. Following [7, p. 10,
below (2.4)] we extend f to a function f̃ : [a, b]→ R such that V (f̃) = V (f, S0).
Then the extracted subsequence converges almost everywhere on [a, b] to the
extension f̃ ∈ BV[a, b].

Remark 9. Recall that a sequence {fj} of real valued functions on [a, b]
is said to be equicontinuous if for each ε > 0 there exists u0(ε) > 0 such that
|fj(x) − fj(y)| ≤ ε for all x, y ∈ [a, b], |x − y| ≤ u0(ε), and all j ∈ N; in other
words, limu→+0 supj∈N ω(u, fj) = 0, where ω(·, fj) is the modulus of continuity
of fj . This definition, estimate (5) and Theorem 1 give the well known Ascoli’s
Theorem: A uniformly bounded equicontinuous sequence of real valued functions
{fj} on [a, b] contains a pointwise convergent subsequence.

Remark 10. Pointwise selection principles of different kind, also not having
to do with uniform boundedness of variations and basing on the notion of the
oscillation, are contained in the works of K. Schrader [15] and L. Di Piazza and
C. Maniscalco [10]. These principles are valid only for real valued functions
(cf. Remark 8) and the pointwise limit function of the extracted subsequence
may be highly irregular, e.g., may have no simple discontinuities. At present a
complete relationship between these principles and Theorem 1 (or its extensions
[8]) is not known to the author, and further investigation is needed to clarify
this relationship.

7. – Appendix: proofs of estimates (1)–(5)

Proof of (1) and (2). Let f ∈ BV[a, b]. Clearly, ν(n, f) ≤ V (f) for all
n ∈ N, and so, supn∈N ν(n, f) ≤ V (f). On the other hand, if a = x0 < x1 <
. . . < xn−1 < xn = b for any given n ∈ N, we have:

n∑
i=1

|f(xi)− f(xi−1)| ≤ ν(n, f) ≤ sup
n∈N

ν(n, f),
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which gives V (f) ≤ supn∈N ν(n, f), and so, (2) follows. Now, if f is monotone,
then for all n ∈ N we have:

|f(b)− f(a)| = ν(1, f) ≤ ν(n, f) ≤ V (f) = |f(b)− f(a)|,

which proves (1).

Proof of (3) (cf. [3, Theorem 3]). Given f ∈ BVϕ[a, b], we set M =
max{1, Vϕ(f)}. If n ∈ N and a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ b, then
by virtue of the convexity of ϕ, we have:

ϕ

(
1
Mn

n∑
i=1

|f(bi)− f(ai)|
)
≤ 1
M

ϕ

(
1
n

n∑
i=1

|f(bi)− f(ai)|
)

≤ 1
Mn

n∑
i=1

ϕ
(
|f(bi)− f(ai)|

)
≤ 1
Mn

Vϕ(f) ≤ 1
n
,

and so,
∑n
i=1 |f(bi)− f(ai)| ≤Mnϕ−1(1/n), which implies (3).

Proof of (4) (cf. [1]). If f ∈ BVΛ[a, b], n ∈ N, a ≤ a1 < b1 ≤ a2 <
b2 ≤ . . . ≤ an < bn ≤ b and σ : {1, . . . , n} → {1, . . . , n} is a permutation, we
have

∑n
i=1 |f(bi) − f(ai)|/λσ(i) ≤ VΛ(f). Substituting into this inequality the

n permutations σ = σk, k = 0, 1, . . . , n − 1, defined by σk(i) = n − k + i if
1 ≤ i ≤ k and σk(i) = i − k if k + 1 ≤ i ≤ n, and summing the n resulting
inequalities, we get( n∑

i=1

1
λi

)
·
( n∑
i=1

|f(bi)− f(ai)|
)
≤ nVΛ(f),

from which the inequality (4) follows.

Proof of (5) (cf. [4, Theorem 1]). Let g : [0, 2π] → R be a continuous
function defined by

g(τ) = f
(
a+ τ

b− a
2π

)
, 0 ≤ τ ≤ 2π.

By inequality (3) from [4], there exists an absolute constant C > 0 such that
the following estimate holds:

ν(n, g, [0, 2π]) ≤ C nω
( 1
n
, g, [0, 2π]

)
, n ∈ N.

Since ν(n, g, [0, 2π]) = ν(n, f) for all n ∈ N and

ω(u, g, [0, 2π]) = ω
(b− a

2π
u, f

)
, 0 ≤ u ≤ 2π,

we have:
ν(n, f) ≤ C nω

(b− a
2π
· 1
n
, f
)
≤ C nω

(b− a
n

, f
)
.
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