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1. Introduction

The moduli space of stable bundles on the projective space P3 is an important object of investigation in algebraicgeometry. Especially important subclass of stable bundles is constituted by the so-called mathematical instanton
bundles. By definition a mathematical instanton on P3 is a stable vector bundle E of rank 2 with c1(E) = 0 and withthe property that

H1(P3, E(−2)) = 0,
known as the instantonic condition. The second Chern class c2(E) is known as the charge, or the topological charge ofthe instanton E .Originally, instanton bundles appeared in the seminal work of Atiyah–Drinfeld–Hitchin–Manin [1] as a way to describeYang–Mills instantons on a four-sphere S4 which play an important role in Yang–Mills gauge theory. Since then
∗ E-mail: akuznet@mi.ras.ru
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they attracted a lot of attention, especially the questions like smoothness and connectedness of their moduli space anddifferent approaches to their construction were considered. Also a number of generalizations of instantons appeared, suchas instantons on higher-dimensional projective spaces [19, 24] (in particular symplectic instantons) and noncommutativeinstantons [12].The goal of this paper is to introduce another (in a way more direct) generalization of instantons. Instead of going tohigher dimensions, or into the noncommutative world, we suggest just to replace P3 with another Fano threefold. Indoing so we note that the line bundle OP3 (−2) appearing in the instantonic condition is nothing but the square rootof the canonical bundle, so as soon as we have a Fano threefold with canonical class being a square we can considerinstantons on it. This attracts our attention to Fano threefolds of index 2.Here we should also mention an independent paper of Daniele Faenzi [7], which also discusses a generalization ofinstanton bundles to Fano threefolds, especially to those with trivial third Betti number. In particular, the results obtainedin loc. cit. for the Fano threefold of index 2 and degree 5 and 4 are very close to the results in the present paper.Recall that the index of a Fano manifold is the maximal integer dividing its canonical class. By Fano–Iskovskikh–Mukaiclassification the index of a Fano threefold is bounded by 4, with P3 being the only index 4 variety and the quadric
Q3 the only index 3 variety. Among the Fano threefolds of index 2 the most important are those with Picard number 1.Given such a threefold Y we denote by OY (1) the ample generator of the Picard group. Then the canonical bundle of Yis OY (−2) and OY (−1) is its square root. So, we have the following
Definition 1.1 ([13]).Let Y be a Fano threefold of index 2. An instanton bundle on Y is a stable vector bundle E of rank 2 with c1(E) = 0such that

H1(Y , E(−1)) = 0. (1)The integer c2(E) is called the (topological) charge of the instanton E .
The goal of this paper is to show that instantons on Fano threefolds of index 2 share many properties of usual instantons.So, their investigation, interesting by itself, may be helpful for further study of instantons on P3. To be more precise wewill concentrate on the following two issues: the monadic construction and the Grauert–Mülich Theorem.Recall that every instanton of charge n on P3 can be represented as the cohomology in the middle term of a self-dualthree-term complex

OP3 (−1)n → O2n+2
P3 → OP3 (1)n

(known as a monad). The reason for this is a relatively simple structure of the bounded derived category Db(P3) ofcoherent sheaves on P3. This category is known to have many full exceptional collections, the most convenient forour question is the collection (OP3 (−1),OP3 ,OP3 (1),OP3 (2)). The instantonic condition implies (by stability and Serreduality) that any instanton lies in the right orthogonal to OP3 (2), which is the subcategory of Db(P3) generated by
OP3 (−1), OP3 , and OP3 (1). Decomposing the instanton with respect to this collection gives the monad.Of course, generic Fano threefold does not have a full exceptional collection, so the above description cannot workverbatim. However, a certain part of it works. To be more precise, each Fano threefold Y of index 2 has an exceptionalcollection (OY ,OY (1)) (not full), which gives rise to a semiorthogonal decomposition

Db(Y ) = 〈BY ,OY ,OY (1)〉,
where triangulated category BY , defined as the orthogonal BY = 〈OY ,OY (1)〉⊥, is called the nontrivial component of
Db(Y ) and discussed in [15]. Now, if E is an instanton of charge n on Y then analogously to the case of P3 theinstantonic condition implies that E is right orthogonal to OY (1), hence it is contained in the subcategory 〈BY ,OY 〉 of
Db(Y ). Decomposing E with respect to this semiorthogonal decomposition we can see that the component with respectto OY is just On−2

Y , while the component in BY is a very special vector bundle Ẽ of rank n which is called the acyclic
extension of the instanton E . The decomposition itself takes the form of a short exact sequence

0→ E → Ẽ → On−2
Y → 0,
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which is an analogue of the monad. Moreover, the bundle Ẽ itself should be considered as an analogue of the Kronecker
module, see e.g. [18], associated to the instanton. We show that Ẽ has many nice properties, in particular it is self-dual with respect to a certain antiautoequivalence of the category BY , which generalizes usual symmetry property ofKronecker modules. Moreover, we show that one can easily reconstruct the instanton from its acyclic extension.Another approach to construction and classification of instantons is based on investigation of the behavior of the re-striction of an instanton to lines. In the case of P3 this behavior is described by the classical Grauert–Mülich Theoremsaying that if E is an instanton of charge n then• for generic line L ⊂ P3 one has E�L ∼= OL⊕OL;

• the lines L ⊂ P3 for which the restriction EL is nontrivial (jumping lines) are parameterized by a degree n divisor
DE in the Grassmannian Gr(2, 4) of lines;

• the divisor comes with a coherent sheaf (which is locally free of rank 1 at points corresponding to lines L suchthat E�L = OL(1)⊕OL(−1)), and the instanton can be reconstructed from the divisor and the associated sheaf.
We aim to prove the same for Fano threefolds of index 2. Of course, in this case we should look at the Hilbert scheme oflines on Y (which is traditionally called the Fano scheme of lines) F (Y ) which is a certain surface naturally associatedto the threefold Y . It is not clear whether the analogue of the first part of the Grauert–Mülich Theorem is true in thiscase, however the second definitely holds. We show that as soon as the generic line on Y is not a jumping line foran instanton E of charge n, the scheme of jumping lines is a curve DE on F (Y ) which is homologous to nDL, where
DL is the curve on F (Y ) parameterizing lines intersecting a given line L. Moreover, we show that the curve DE comesequipped with a coherent sheaf LE (locally free of rank 1 at the points corresponding to 1-jumping lines) and discussthe question of reconstructing E from the pair (DE ,LE ).The general study of instantons outlined above is illustrated by a more detailed description of what goes on for Fanothreefolds of index 2 and degree 5 and 4 respectively.In case of degree 5 there is only one such threefold Y5, it can be constructed as a linear section of codimension 3 ofthe Grassmannian Gr(2, 5) embedded into the Plücker space P(Λ2k5). Such linear section is given by the correspondingthree-dimensional space of skew-forms in terms of which one can describe the geometry (and the derived category)of Y5. In particular, the nontrivial part BY5 of the derived category of Y5 is generated by an exceptional pair of vectorbundles [20] which gives a description of the acyclic extension Ẽ of an instanton in terms of representations of theKronecker quiver with three arrows (which is a complete analogue of the Kronecker module describing instantons on P3),and instanton itself is described as the cohomology of a self-dual monad

Un → O4n+2
Y5 → (U∗)n,

where U is just the restriction of the tautological rank 2 vector bundle from the Grassmannian Gr(2, 5). On the otherhand, the Fano scheme of lines on Y5 is identified with P2 and we show that the Kronecker module above can bethought of as a net of quadrics parameterized by this P2. In these terms the curve DE of jumping lines of an instanton
E gets identified with the degeneration curve of the net of quadrics and the associated sheaf LE with (the twist of) thecorresponding theta-characteristic on DE . The usual procedure of reconstructing the net of quadrics from the associatedtheta-characteristic shows that the instanton E can be reconstructed from the pair (DE ,LE ) in this case.In the case of degree 4 we also have a nice interpretation. Each Fano threefold Y4 of index 2 and degree 4 is anintersection of two quadrics in P5. In the pencil of quadrics passing through Y4 there are six degenerate quadrics. Weconsider the double covering C of P1 (parameterizing quadrics in the pencil) ramified in these six points. The curve Chas genus 2 and it is well known that BY

∼= Db(C ) in this case, see [5] or [14]. Let τ be the hyperelliptic involution of C .We show that the acyclic extension Ẽ of an instanton E of charge n on Y4 corresponds under the above equivalenceto a semistable vector bundle F on C of rank n such that τ∗F ∼= F ∗ which has a special behavior with respect tothe Raynaud’s bundle on C . Moreover, the Fano scheme of lines on Y4 is isomorphic (noncanonically) to the abeliansurface Pic0C and we show that the curve DE coincides with the theta-divisor on Pic0C associated with the bundle F .In particular, we show that in this case one can reconstruct the instanton E from the pair (DE ,LE ).
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The paper is organized as follows. In Section 2 we collect the preliminary material required for the rest of the paper. Inparticular we discuss Fano threefolds of index 2 and their derived categories. Section 3 is the central part of the paperwhere we develop the general theory of instantons. In particular, we introduce the acyclic extension of an instantonand discuss the curve of its jumping lines. In Section 4 we consider in detail the case of degree 5 Fano threefolds, andSection 5 deals with the degree 4 case. Finally, in Section 6 we outline possible approaches to instantons on Fanothreefolds of index 2 and degrees 3, 2, and 1.
2. Preliminaries

We work over an algebraically closed field k of characteristic 0.
2.1. Stable sheaves

Let F be a coherent sheaf on a smooth projective variety X of dimension n. Assume a polarization (i.e. an ample divisor
H on X ) is chosen. Then the slope of F is defined as

µH (F ) = c1(F ) · Hn−1/r(F ).
A sheaf F is called Mumford-semistable, or µ-semistable if for each subsheaf G ⊂ F with r(G) < r(F ) one has
µH (G) ≤ µH (F ). If the last inequality is strict for all such G then one says that F is stable.Analogously, F is called Gieseker-semistable if for each subsheaf G ⊂ F with r(G) < r(F ) one has

χ(X,G(tH))/r(G) ≤ χ(X, F (tH))/r(F ) for t � 0.
Here χ(X,−) stands for the Euler characteristic of a sheaf. By Riemann–Roch χ(X, F (tH))/r(F ) is a polynomial ofdegree n with the coefficient at tn independent of F and the coefficient at tn−1 proportional to µH (F ). Thus eachMumford-stable sheaf is Gieseker-stable, and each Gieseker-semistable sheaf is Mumford-semistable.Note also that rescaling of H does not affect the (semi)stability of coherent sheaves. Thus if Neron–Severi group of Xis isomorphic to Z one can forget about the choice of polarization. Moreover, in this case one can consider c1(F ) just asan integer and the slope µ(F ) = c1(F )/r(F ) as a rational number. We are going to use this convention throughout thepaper.Note also that if the Picard group of X is Z then a twisting of a sheaf F by a line bundle results in shifting the slope of
F by the integer equal to the class of this line bundle in PicX . In particular, there is a unique twist such that the slope
µ(F ) is contained the interval −1 < µ(F ) ≤ 0. This twist is called the normalized form of F and is denoted by Fnorm.The following criterion is very useful for verification of stability.
Lemma 2.1 ([9]).
Assume that the Picard group of X is Z and its ample generator OX (1) has global sections. Let F be a vector bundle
of rank r on X such that for each 1 ≤ k ≤ r − 1 the vector bundle (ΛkF )norm has no global sections. Then F is stable.

We will refer to Lemma 2.1 as Hoppe’s criterion.
2.2. Fano threefolds of index 2
A Fano variety is a smooth projective variety Y with the anticanonical class −KY ample. The index of a Fano variety Yis the maximal integer dividing the canonical class. We refer to [11] for a detailed introduction into the modern theoryof Fano varieties.
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It is well known that for a Fano variety of dimension m the index does not exceed m+ 1, see [8, 11]. Moreover, there isonly one Fano m-fold of index m+ 1, which is the projective space Pm, and only one Fano m-fold of index m, which isthe quadric Qm ⊂ Pm+1. In case of threefolds, thus we have P3 of index 4 and Q3 of index 3, as well as Fano threefoldsof index 2 and 1. All of them are classified in [11]. In this paper we restrict the attention to Fano threefolds of index 2and the Picard group of rank 1. There are five families of those, classified by the degree of the ample generator of thePicard group:
degree 5 Y5 = Gr(2, 5) ∩ P6 ⊂ P9 (a linear section of the Grassmannian);
degree 4 Y4 = Q1 ∩ Q2 ⊂ P5 (an intersection of two 4-dimensional quadrics);
degree 3 Y3 ⊂ P4 (a cubic threefold);
degree 2 Y2 → P3 (a quartic double solid);
degree 1 Y1 99K P2 (a hypersurface of degree 6 in the weighted projective space P(1, 1, 1, 2, 3)).
From now on we denote by Y any Fano threefold of index 2. We will indicate the degree by a lower index, for example
Y5 will stand for the degree 5 threefold. Since the Picard number of Y is 1, it follows that

H2(Y ,Z) = H4(Y ,Z) = H6(Y ,Z) = Z,

(generated by the class of a hyperplane section, the class of a line, and the class of a point) so the Chern classes ofvector bundles can be thought of as integers. The ample generator of the Picard group is denoted by OY (1), so we have
ωY ∼= OY (−2).

2.3. The Fano scheme of lines

The Hilbert scheme of lines on Y is a surface which we denote by F (Y ) and it is called traditionally the Fano scheme
of lines on Y . By definition, if W ∗ = Γ(Y ,OY (1)) then F (Y ) is a subscheme in Gr(2,W ) consisting of all lines in P(W )which lie in (the closure of) the image of Y via the (rational) map given by the line bundle OY (1).For a line L ⊂ Y we denote by DL ⊂ F (Y ) the curve parameterizing lines intersecting L and its class in the group
A1(F (Y )) of 1-cycles on F (Y ) modulo rational equivalence (which we denote by ∼).Let Z denote the universal family of lines. It is a codimension 2 subscheme in Y ×F (Y ), its fibers over F (Y ) are mappedonto lines in Y . Thus we have a diagram

Z
q

��

p

!!
Y F (Y ).

Lemma 2.2.
If a Fano threefold Y of index 2 is generic in its deformation class then the map q in the above diagram is flat and finite.

Proof. In case of degree d = 5 and d = 4 it is easy to see that the map q is finite and flat for any Yd. Indeed,if there is a point on Yd with infinite number of lines on Yd passing through this point then these lines sweep in Yd asurface of degree less than d which is impossible by the Lefschetz Theorem. On the other hand, for d ≤ 3 one can verifythe claim by a parameter counting.
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Remark 2.3.Although for generic Y the map q is flat and finite, both may fail for special 3-folds Y . For example, consider the cubic3-fold in P4 = P(x0, . . . , x4) with equation x20x1 + x31 + x32 + x33 + x34 = 0. It is easy to check that it is smooth. Howeverthe lines passing through the point (1 :0 :0 :0 :0) are parameterized by the elliptic curve x0 = x1 = x32 + x33 + x34 = 0, sothe fiber of q over this point is not finite.
On the other hand, the map p : Z → F (Y ) is always flat and smooth. In fact, it is a projectivization of the restriction to
F (Y ) of the tautological bundle of Gr(2,W ). We denote this rank 2 bundle on F (Y ) by M . We will need to identify thefirst Chern class of M .
Lemma 2.4.
We have c1(M) = −dDL.

Proof. For simplicity assume that OY (1) is generated by global sections, i.e. the map Y 99K P(W ) is regular. Takea subspace W ′ ⊂ W of codimension 2. Then c1(M∗) is represented by all lines L ⊂ P(W ) which intersect P(W ′). Inthe other words it is the set of lines on Y which pass through Y ∩ P(W ′). But Y ∩ P(W ′) is a linear section of Y ofcodimension 2, so its class is c1(OY (1))2 which is rationally equivalent to dL, where L is a line on Y . Hence the requiredset of lines is rationally equivalent to d times the set of lines intersecting L, that is to dDL.
Corollary 2.5.
We have ωZ/F (Y ) ∼= p∗OF (Y )(dDL)⊗q∗OY (−2) and ωZ/(Y×F (Y )) ∼= p∗OF (Y )(dDL).
Proof. Since Z = PF (Y )(M) we have ωZ/F (Y ) ∼= p∗ detM∗⊗OZ/F (Y )(−2). The second formula follows immediately from
ωZ/(Y×F (Y )) ∼= ωZ/F (Y ) ⊗ q∗ω−1

Y since ωY ∼= OY (−2) and OZ/F (Y )(1) = q∗OY (1).
2.4. Derived categories

For an algebraic variety X we denote by Db(X ) the bounded derived category of coherent sheaves on X . It is a k-lineartriangulated category. The shift functor in any triangulated category T is denoted by [1]. We denote Extp(F,G) =Hom(F,G[p]) and Ext•(F,G) = ⊕p∈Z Extp(F,G)[−p]. One says that a triangulated category T is Ext-finite if Ext•(F,G)is a finite dimensional graded vector space for all F,G ∈ T. The derived category Db(X ) is Ext-finite if X is smoothand proper.
Definition 2.6 ([4, 5]).A semiorthogonal decomposition of a triangulated category T is a sequence of full triangulated subcategories A1, . . . ,Amin T such that HomT(Ai,Aj ) = 0 for i > j and for every object T ∈ T there exists a chain of morphisms

0 = Tm → Tm−1 → . . . → T1 → T0 = T

such that the cone of the morphism Tk → Tk−1 is contained in Ak for each k = 1, 2, . . . , m.
A semiorthogonal decomposition with components A1, . . . ,Am is denoted T = 〈A1, . . . ,Am〉. The easiest way to producea semiorthogonal decomposition is by using exceptional objects or collections.
Definition 2.7 ([3]).An object F ∈ T is called exceptional if Ext•(F, F ) = k. A collection of exceptional objects (F1, . . . , Fm) is called
exceptional if Extp(Fl, Fk ) = 0 for all l > k and all p ∈ Z.
The minimal triangulated subcategory of T containing an exceptional object F is equivalent to the derived category ofk-vector spaces. It is denoted by 〈F〉, or sometimes just by F .

1203

Author c
opy



Instanton bundles on Fano threefolds

Lemma 2.8 ([5]).
If T is an Ext-finite triangulated category then any exceptional collection F1, . . . , Fm in T induces a semiorthogonal
decomposition

T = 〈A, F1, . . . , Fm〉
where A = 〈F1, . . . , Fm〉⊥ = {F ∈ T : Ext•(Fk , F ) = 0, 1 ≤ k ≤ m}.
This construction can be efficiently applied to Fano varieties. Recall that by Kodaira vanishing any line bundle on aFano variety is exceptional. Moreover, if X is a Fano variety of index r then the sequence OX ,OX (1), . . . ,OX (r − 1) isexceptional. In particular, for Fano threefolds of index 2 we have an exceptional pair OY ,OY (1). By Lemma 2.8 it extendsto a semiorthogonal decomposition

Db(Y ) = 〈BY ,OY ,OY (1)〉, BY = 〈OY ,OY (1)〉⊥. (2)
The category BY is called the nontrivial component of Db(Y ). Some of its properties are discussed in [15].For each exceptional object E ∈ T one can define the so-called mutation functors as follows. For each object F ∈ Tconsider the canonical evaluation map Ext•(E, F )⊗E → F . Its cone is denoted by LE (F ) and is called the left mutation
of F through E . By definition we have a distinguished triangle

Ext•(E, F )⊗E → F → LE (F ). (3)
The right mutation of F through E is defined dually, by using the coevaluation map and the distinguished triangle

RE (F ) → F → Ext•(F, E)∗⊗E.
The following fact is well known.
Lemma 2.9 ([4]).
The left and right mutations through E vanish on the subcategory 〈E〉 and induce mutually inverse equivalences

⊥E
LE // E⊥.
RE

oo

3. Instanton bundles

Let Y be a Fano threefold of index 2. Recall that by definition an instanton of charge n on Y is a stable vector bundle
E of rank 2 with c1(E) = 0, c2(E) = n, enjoying the instantonic condition (1), which we rewrite for convenience as

H1(Y , E(−1)) = 0.
3.1. Cohomology groups

No wonder that the condition (1) has very similar consequences as the classical instanton condition on P3. For example,the cohomology table of E has the same shape.

1204

Author c
opy



A. Kuznetsov

Lemma 3.1 ([13]).
Let E be an instanton bundle of charge n on a Fano threefold of index 2 and degree d. Then the cohomology table of
E has the following shape:

t . . . −3 −2 −1 0 1 . . .
h3(E(t)) . . . ∗ 0 0 0 0 . . .
h2(E(t)) . . . ∗ n − 2 0 0 0 . . .
h1(E(t)) . . . 0 0 0 n − 2 ∗ . . .
h0(E(t)) . . . 0 0 0 0 ∗ . . .

In particular,

H0(E(t)) = 0 for t ≤ 0,
H1(E(t)) = 0 for t ≤ −1,
H2(E(t)) = 0 for t ≥ −1,
H3(E(t)) = 0 for t ≥ −2.

Proof. First note that H0(E(t)) = 0 for t ≤ 0 by stability of E . Further, by the Serre duality,
H3(E(t))∗ = H0(E∗(−t − 2)) = H0(E(−t − 2)) = 0

for t ≥ −2. Also by the Serre duality we have H2(E(−1))∗ = H1(E∗(−1)) = H1(E(−1)) = 0. Finally, consider theKoszul complex 0 → O(−3) → O(−2)3 → O(−1)3 → O → OZ → 0,given by a triple of global sections of O(1) with Z a zero-dimensional subscheme of Y of length d (note thatdimH0(Yd,O(1)) = d + 2 ≥ 3, so we can always find a triple of sections). Note that E⊗OZ is an artinian sheaf,in particular H>0(E⊗OZ ) = 0. On the other hand, looking at the hypercohomology spectral sequence of the aboveKoszul complex tensored with E we see that H2(E) cannot be killed by anything (since H2(E(−1)) = H3(E(−2)) = 0),hence if H2(E) 6= 0 it should contribute nontrivially into H2(E⊗OZ ) = 0. Thus H2(E) = 0. Twisting additionally by
O(t) with t ≥ 0 and using the same argument we prove inductively that H2(E(t)) = 0 for all t ≥ 0. Then by the Serreduality we have H1(E(−2−t)) = 0. This explains all zeros in the table. Applying Riemann–Roch one can easily deducethat dimH1(E) = dimH2(E(−2)) = n − 2.
Corollary 3.2.
The charge of an instanton bundle is greater or equal than 2.

The instanton bundles of charge 2 are called the minimal instantons. They are particularly interesting. For examplethey have the following vanishing property.
Corollary 3.3.
If E is a minimal instanton then H i(E(t)) = 0 for all i and −2 ≤ t ≤ 0.

Remark 3.4.The possible values of dimH0(E(1)) = dimH3(E(−3)) and dimH1(E(1)) = dimH2(E(−3)) are hard to find. There is asimple restriction dimH0(E(1))− dimH1(E(1)) = 2d − 2n+ 4which is given by Riemann–Roch. Moreover, probably one can show that
dimH0(E(1)) ≤ 2d, dimH1(E(1)) ≤ 2n − 4.

For this it is enough to check that for generic linear section C of Y of codimension 2 (which is an elliptic curve) onehas H0(C,E�C ) = 0. In this case it would be easy to deduce for minimal instantons the equalities H•(E(1)) = k2d,
H•(E(−3)) = k2d[−3].
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3.2. The acyclic extension

As we have seen in Lemma 3.1, each instanton E enjoys the vanishing
H•(Y , E(−1)) = 0.

One can easily produce from E another bundle which has a stronger vanishing.
Lemma 3.5.
For each instanton bundle E there exists a unique short exact sequence

0 → E λE−→ Ẽ → On−2
Y → 0 (4)

such that Ẽ is acyclic, i.e.
H•(Y , Ẽ) = 0.

Indeed, it is clear that Ẽ is nothing but the universal extension of H1(Y , E)⊗OY by E . Another way to describe Ẽ isby saying that
Ẽ = LOY E,the left mutation of E through OY . Indeed, the definition of the left mutation (3) in this case literally coincides with exactsequence (4). The bundle Ẽ will be referred to as the acyclic extension of the instanton E . Recall the semiorthogonaldecomposition (2) of Db(Y ). We have the following

Lemma 3.6.
The acyclic extension of an instanton of charge E is a simple µ-semistable vector bundle Ẽ on Y with

r(Ẽ) = n, c1(Ẽ) = 0, c2(Ẽ) = n, c3(Ẽ) = 0, H•(Ẽ) = H•(Ẽ(−1)) = 0.
In particular, Ẽ ∈ BY . Moreover,

h0(Ẽ∗) = h1(Ẽ∗) = n − 2, h2(Ẽ∗) = h3(Ẽ∗) = 0.
Proof. Chern classes and cohomology of Ẽ are computed immediately using the defining sequence (4). To computethe cohomology of Ẽ(−1) we twist (4) by −1, and to compute the cohomology of Ẽ∗ we dualize (4) and use self-dualityof E .To check that Ẽ is simple we first show that Hom(E, Ẽ) = k (by applying Hom(E,−) to (4) and noting that E itself issimple and Hom(E,OY ) = H0(Y , E) = 0). Then applying Hom(−, Ẽ) to (4) we see that Ẽ is simple. Finally, to establish
µ-semistability of Ẽ we note that Ẽ is an extension of two µ-semistable sheaves of the same slope.
3.3. The antiautoequivalence

Recall that any instanton, being a rank 2 bundle with trivial determinant, is self-dual. This self-duality translates tothe following property of the acyclic extension. Consider the following antiautoequivalence of the category O⊥Y ⊂ Db(Y ).First, note that the duality functor
F 7→ RHom (F,OY )gives an antiequivalence of the category O⊥Y onto the category ⊥OY . Composing it with the left mutation functor LOwith respect to OY , and using Lemma 2.9 we conclude that

D: O⊥Y → O⊥Y , F 7→ LO(RHom (F,OY ))
is an antiautoequivalence of O⊥Y . Moreover, it is easy to see that D is involutive.
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Lemma 3.7.
We have a functorial isomorphism δ : D2 ∼−→ id.

Proof. Indeed, for each F we have a canonical distinguished triangle
RHom(F,OY )⊗OY → RHom (F,OY ) → D(F ).

Dualizing it we obtain a triangle
RHom (D(F ),OY ) → F → RHom(F,OY )∗⊗OY .

Since LO(OY ) = 0, the application of exact functor LO gives a functorial isomorphism D2(F ) ∼= LO(F ). But if F ∈ O⊥Ythen LO(F ) = F .
Moreover, the antiautoequivalence D preserves the subcategory BY .
Proposition 3.8.
The category BY is preserved by the antiautoequivalence D.

Proof. Assume that F ∈ BY = 〈OY ,OY (1)〉⊥. Then we have RHom (F,OY ) ∈ ⊥〈OY (−1),OY 〉 and so D(F ) =
LO(RHom (F,OY )) ∈ ⊥OY (−1)∩O⊥Y . But since ωY ∼= OY (−2), it follows from the Serre duality that ⊥OY (−1) = OY (1)⊥,so we see that D(F ) ∈ O⊥Y ∩ OY (1)⊥ = 〈OY ,OY (1)〉⊥ = BY .
3.4. The self-duality of acyclic extensions

Now we can state the self-duality property of Ẽ .
Proposition 3.9.
If Ẽ is the acyclic extension of an instanton then there is a canonical isomorphism φ : D(Ẽ) → Ẽ. Moreover, the
isomorphism φ is skew-symmetric, that is the diagram

D(Ẽ)
D(φ)
||

−φ

  D2(Ẽ) δẼ // Ẽ

commutes.

Proof. Applying RHom (−,OY ) to (4) and denoting by σ : E∗ → E the canonical isomorphism we obtain an exactsequence 0 → On−2
Y → RHom (Ẽ,OY ) σλTE−−→ E → 0.

Combining it with (4) we obtain a long exact sequence
0 → On−2

Y → RHom (Ẽ,OY ) λE σλTE−−−−→ Ẽ → On−2
Y → 0.

Since LO(OY ) = 0, we see that
φ = LO(λEσλTE ) : D(Ẽ)→ LO(Ẽ) = Ẽ
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is an isomorphism. Let us show that φ is skew-symmetric. For this note that the above arguments give the followingcommutative diagram. RHom (Ẽ,OY )
λE σλTE

''

// D(Ẽ)
φ

wwẼDualizing it we obtain
Ẽ RHom (D(Ẽ),OY )oo

RHom (Ẽ,OY )λE σT λTE

hh

φT

66

and applying LO we obtain
Ẽ D2(Ẽ)oo

D(Ẽ)LO(λE σT λTE )
cc

D(φ)
;;

Now it remains to note that the arrow in the top row is δẼ and, since σT = −σ , the left arrow is −φ.
3.5. Reconstruction of the instanton

It turns out that any vector bundle F satisfying properties of both Lemma 3.6 and Proposition 3.9 is the acyclic extensionof appropriate instanton.
Theorem 3.10.
Assume that F is a vector bundle on Y with

r(F ) = n, c1(F ) = 0, c2(F ) = n, c3(F ) = 0, H•(F ) = H•(F (−1)) = 0, D(F ) ∼= F.

Then H i(Y , F ∗) = 0 unless i = 0, 1 and h0(F ∗) = h1(F ∗) ≤ n − 2. Moreover, if h0(F ∗) = n − 2 then there is a unique
instanton E of charge n such that F ∼= Ẽ .

Remark 3.11.It is easy to see that the conditions H•(F ) = H•(F (−1)) = 0 together with c1(F ) = 0 imply c2(F ) = r(F ) and c3(F ) = 0.Indeed, it follows easily from the description of the numerical Grothendieck group of the category BY , see [15].
Proof. Let us write down the condition D(F ) ∼= F explicitly. Since F is a vector bundle, we have RHom (F,OY ) ∼= F ∗.Hence D(F ) = Cone (H•(Y , F ∗)⊗OY → F ∗). Writing down the long exact sequence of sheaf cohomology we obtain along exact sequence 0 → H0(Y , F ∗)⊗OY → F ∗ → F → H1(Y , F ∗)⊗OY → 0as well as the vanishing of H i(Y , F ∗) for i 6= 0, 1. Note that by Riemann–Roch the Euler characteristic of F ∗ is zero,hence h0(F ∗) = h1(F ∗). Denoting this integer by h we can rewrite the above sequence as

0→ Oh
Y → F ∗ → F → Oh

Y → 0.
Let E be the image of the map F ∗ → F . Note that E is locally free (as a kernel of an epimorphism of vector bundles).Moreover, c1(E) = 0 and c2(E) = n, hence r(E) ≥ 2. Thus h = n − r(E) ≤ n − 2.Finally, if h = n − 2 then E has rank 2, is locally free, and c1(E) = 0, c2(E) = n. Moreover, it is stable since
H0(Y , E) = Coker (H0(Y , F ∗)→ H0(Y , F ∗)) = 0, and H1(Y , E(−1)) = 0 since both F (−1) and OY (−1) are acyclic.
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3.6. Ideals of lines

Recall that a line on a Fano threefold Y is a rational curve on Y of degree 1.
Proposition 3.12.
For any Fano threefold Y of index 2 and any line L ⊂ Y the ideal sheaf IL is contained in BY . Moreover, it is fixed
by D: D(IL) ∼= IL.

Proof. From the exact sequence 0→ IL → OY → OL → 0it follows easily that H•(Y , IL) = H•(Y , IL(−1)) = 0, so IL ∈ BY . Further, applying RHom (−,OY ) and taking into accountthat RHom (OL,OY ) ∼= OL[−2],by the Grothendieck duality (since ωL/Y = ωL⊗ω−1
Y �L = OL(−2)⊗OL(2) = OL), we obtain a triangle

OY → RHom (IL,OY ) → OL[−1]. (5)
Since LO(OY ) = 0 we conclude that

D(IL) = LO(RHom (IL,OY )) = LO(OL[−1]) = Cone (OY [−1]→ OL[−1]) = IL,

hence the claim.
Remark 3.13.In fact one can show that the isomorphism D(IL) ∼= IL is skew-symmetric in the sense of Proposition 3.9. However wewill not need this fact, so we skip the proof.
As we will see below the ideals of lines give a connection between the geometric and categorical properties of lines.However, sometimes it is more convenient to use the (twisted and shifted) dual objects. We denote

JL = RHom (IL,OY (−1))[1] ∈ Db(Y ).
Lemma 3.14.
We have a distinguished triangle

OY (−1)[1] → JL → OL(−1). (6)
Moreover, JL ∈ BY .

Proof. The triangle is obtained from (5) by a shift and a twist. Since both OY (−1) and OL(−1) are acyclic, weconclude that JL ∈ O⊥Y . On the other hand,
RHom(OY (1), JL) = RHom(OY (1), RHom (IL,OY (−1)[1])) = RHom(OY (1)⊗IL, OY (−1)[1])= RHom(IL,OY (−2)[1]) ∼= RHom(OY , IL[2])∗ = 0

(we used the Serre duality in the last isomorphism), hence JL ∈ BY .
Remark 3.15.One can check that the object JL is isomorphic to a cone of the unique nontrivial morphism OL(−1)[−1] → OY (−1)[1].Indeed, it is a cone of such a morphism just by (6), and the morphism is nontrivial since otherwise we would have
JL ∼= OY (−1)[1]⊕OL(−1) and thus JL would not be orthogonal to OY (1). Finally, to check that the morphism is uniquewe note that it is obtained by the antiautoequivalence RHom (−,OY (−1)[1]) from the morphism OY → OL. The latermorphism is evidently unique hence the claim.
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3.7. Jumping lines

A line L ⊂ Y is a jumping line for an instanton E if E�L ∼= OL(i)⊕OL(−i) with i > 0. More precisely, we will say in thiscase that L is an i-jumping line. By analogy with the case of instantons on P3 it is very tempting to state the following
Conjecture 3.16.
For any instanton E on Y a generic line is not jumping.

The standard approach [18] to this conjecture does not work because the map from the universal line to Y has disconnectedfibers (as we have seen in Lemma 2.2 the map is finite). We will show in Sections 4 and 5 that this conjecture is relatedto some well-known geometric questions.Assume that E is an instanton such that generic line is not jumping for E . Let DE ⊂ F (Y ) be the subscheme parameteriz-ing jumping lines of E and write i : DE → F (Y ) for the embedding. Also recall the notation introduced in subsection 2.3.The following result is an analogue of the Grauert–Mülich Theorem.
Theorem 3.17.
If E is an instanton on Y of charge n such that generic line is not jumping for E then

DE ∼ nDL.

Further, there is a coherent sheaf LE on DE such that

Rp∗q∗E(−1) ∼= i∗LE [−1].
The sheaf LE is invertible on the open subset of DE parameterizing 1-jumping lines, and has the property

LE
∼= RHom

(
LE ,ODE ((n − d)DL)).

In particular, if E has no 2-jumping lines then LE is a line bundle such that L2
E
∼= ODE ((n − d)DL).

Proof. Consider the object F = Rp∗q∗E(−1) ∈ Db(F (Y )). If x is a point of F (Y ) such that the corresponding line Lxon Y is not a jumping line, then H•(Lx , E(−1)�Lx ) = 0 whence F is supported on the subscheme DE . Further, if Lx is a1-jumping line then H•(Lx , E(−1)�Lx ) = k⊕k[−1], which means that F is a rank 1 sheaf on DE shifted by −1. Thus
DE = −c1(F) = −c1(Rp∗q∗E(−1)).

Note that by Grothendieck–Riemann–Roch the first Chern class of Rp∗q∗(E(−1)) does not depend on E itself, it dependsonly on the Chern character of E . In particular, to compute the rational equivalence class of DE we can replace E byany sheaf with the same Chern character. The most convenient choice is to take
E ′ = Ker(O⊕2

Y →
n⊕
i=1 OLi

)
,

where L1, . . . , Ln is a generic n-tuple of lines. It is clear that Rp∗q∗OY (−1) = 0, hence we have Rp∗q∗E ′(−1) ∼=⊕
Rp∗q∗OLi (−1)[−1]. It remains to check that c1(Rp∗q∗OLi (−1)) = DLi .Indeed, let Li be the line corresponding to a point xi ∈ F (Y ). As Li is generic, we may assume that the map q is flatover Li, so q∗OLi = Oq−1(Li). But it is clear that

q−1(Li) = p−1(xi) ∪ D̃Li ,
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where D̃Li is a section of the map p over DLi (the points of D̃Li are the pairs (y, x) ∈ Y ×F (Y ) such that x ∈ DL and yis the unique point of intersection of the line Lx with Li). Thus we have an exact sequence
0→ GD̃Li

→ q∗OLi → Op−1(xi) → 0,
where GD̃Li

is the sheaf of ideals of the scheme-theoretical intersection p−1(xi) ∩ D̃Li on D̃Li . In particular, it is a sheafof rank 1 on D̃Li . Tensoring the above sequence by q∗OY (−1) and taking into account that Rp∗(Op−1(xi)⊗q∗OY (−1)) =
H•
(
p−1(x),Op−1(x)(−1))⊗Ox = 0 since p−1(x) = P1, we conclude that

Rp∗q∗(OLi (−1)) = Rp∗
(
q∗OLi⊗q∗OY (−1)) = Rp∗

(
GD̃Li
⊗q∗OY (−1)).

Since the restriction of the map p to D̃Li is an isomorphism onto DLi , we conclude that Rp∗q∗(OLi (−1)) is a rank 1 sheafon DLi . Hence its first Chern class indeed equals DLi .For the second claim we have to check that F is a coherent sheaf shifted by −1. Since the map p has relative dimension 1,the object F can have cohomology only in degree 0 and 1. Thus we have to check that the cohomology in degree 0vanishes. Indeed, let F0 denote the cohomology of F in degree 0 and F1 the cohomology in degree 1. Then we have adistinguished triangle
F0 → F → F1[−1].Applying the Grothendieck duality and taking into account that ωZ/F (Y ) = p∗OF (Y )(dDL)⊗q∗OY (−2) by Corollary 2.5,we have

RHom (F,OF (Y )) = RHom
(
Rp∗q∗(E(−1)), OF (Y )) ∼= Rp∗ RHom

(
q∗(E(−1)), p!OF (Y ))

∼= Rp∗
(
q∗(E∗(1))⊗ωZ/F (Y )[1]) ∼= Rp∗

(
q∗(E∗(1))⊗p∗OF (Y )(dDL)⊗q∗OY (−2)[1])

∼= Rp∗(q∗(E(−1)))⊗p∗OF (Y )(dDL)[1] ∼= F(dDL)[1].
On the other hand, applying duality to the distinguished triangle for F we obtain a triangle

RHom
(
F1,OF (Y ))[1] → F(dDL)[1] → RHom

(
F0,OF (Y )).

Note that since both F0 and F1 are supported on a closed subscheme of F (Y ), their derived duals are concentratedin degrees higher than 1. Hence the first and the third term of the triangle are concentrated in nonnegative degrees.It follows that the cohomology of F(dDL)[1] in degree −1, which is nothing but F0(dDL), vanishes. Thus F0 = 0 and
F = F1[−1]. Moreover, since F1 is supported on the curve DE we can write F = i∗LE [−1], this being a definition of thecoherent sheaf LE . We have already seen the sheaf LE is of rank 1 at any point of DE corresponding to a 1-jumpingline.Finally, recall that RHom (F,OF (Y )) ∼= F(dDL)[1]. Substituting here F = i∗LE [−1] and using the Grothendieck dualitywe deduce

i∗LE (dDL) ∼= RHom
(
i∗LE [−1],OF (Y )) ∼= i∗ RHom

(
LE [−1], i!OF (Y ))

∼= i∗ RHom
(
LE , ωDE /F (Y )) ∼= i∗ RHom

(
LE ,ODE (DE )) ∼= i∗ RHom

(
LE ,ODE (nDL))

which gives the required property of LE . Finally, if there are no 2-jumping lines and so LE is a line bundle, this isevidently equivalent to L2
E
∼= ODE ((n − d)DL).

Now we can state the following
Conjecture 3.18.
The curve of jumping lines DE together with the line bundle LE determines the instanton.

Again, the standard reconstruction procedure [18] does not work here since the lines corresponding to points of DE donot sweep Y (they sweep a certain surface), so it is not clear a priori how one could produce the bundle E out of thissurface. We will see however that for Fano threefolds of degree 5 and 4 the conjecture is true.
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3.8. Jumping lines in terms of BY

It turns out that the curve of jumping lines can be described in the intrinsic terms of the category BY . This description willbe useful later. To make a statement recall that for each line L we have defined an object JL = RHom (IL,OY (−1))[1] ∈
Db(Y ). This can be used to construct a universal family of objects JL.Indeed, first note that the universal family of ideal sheaves IL is the ideal sheaf IZ on Y ×F (Y ), where Z is the universalline. Denote the embedding of Z into Y ×F (Y ) by ζ . Now consider

J = RHom
(
IZ , q∗1OY (−1)⊗p∗1OF (Y )(−dDL)[1]),

where p1 and q1 are the projections from Y ×F (Y ) to F (Y ) and Y respectively. Applying the functorRHom (−,q∗1OY (−1)[1]) to the exact sequence 0 → IZ → OY×F (Y ) → OZ → 0 and taking into account the fact thatby the Grothendieck duality we have
RHom

(
OZ , q∗1OY (−1)⊗p∗1OF (Y )(−dDL)[1]) ∼= ζ∗ζ !(q∗1OY (−1)⊗p∗1OF (Y )(−dDL))[1]

∼= ζ∗
(
q∗OY (−1)⊗p∗OF (Y )(−dDL)⊗ωZ/Y×F (Y )[−1]) ∼= ζ∗q∗OY (−1)[−1] ∼= OZ (−1)[−1],

we deduce that J fits into the following distinguished triangle:
q∗1OY (−1)⊗p∗1OF (Y )(−dDL)[1] → J → OZ (−1). (7)

Proposition 3.19.
Let Ẽ be the acyclic extension of an instanton E. A line L on Y is a jumping line for E if and only if Hom(Ẽ, JL) 6= 0.
Moreover, we have

Rp∗q∗E(−1) ∼= Rp1∗ RHom (q∗1Ẽ, J).
In particular, if generic line is not jumping for E then Rp1∗ RHom (q∗1Ẽ, J) ∼= i∗LE [−1].
Proof. First, JL ∈ BY ⊂ O⊥Y , hence Ext•(Ẽ, JL) = Ext•(E, JL). Further,

Ext•(E,OY (−1)) = H•(Y , E∗(−1)) = H•(Y , E(−1)) = 0
by self-duality of E , hence Ext•(E, JL) = Ext•(E,OL(−1)). Finally, using again self-duality of E we see that

Ext•(E,OL(−1)) = H•(Y , E∗⊗OL(−1)) = H•(Y , E ⊗OL(−1)) = H•(L, E�L(−1)).
Combining all this we see that for non-jumping line L we have Ext•(Ẽ, JL) = 0, while for an i-jumping line L we havedim Hom(Ẽ, JL) = dimExt1(Ẽ, JL) = i.For the second statement we apply the functor Rp1∗ RHom (q∗1Ẽ, −) to the triangle (7). Note that

Rp1∗ RHom
(
q∗1Ẽ, q∗1OY (−1)⊗p∗1OF (Y )(−dDL)) ∼= Rp1∗(q∗1Ẽ∗(−1)⊗p∗1OF (Y )(−dDL))

∼= H•(Y , Ẽ∗(−1))⊗OF (Y )(−dDL) = 0
since Ẽ∗ is an extension of E∗ ∼= E by On−2

Y and both bundles are in OY (1)⊥. On the other hand,
Rp1∗ RHom (q∗1Ẽ,OZ (−1)) ∼= Rp∗q∗(Ẽ∗(−1))

Again, since Ẽ∗ is an extension of E by On−2
Y and Rp1∗q∗1(OY (−1)) = 0 by base change we conclude that

Rp1∗q∗1(Ẽ∗(−1)) ∼= Rp∗q∗(E(−1)). Combining all this we deduce the required isomorphism.
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The same trick can be used for the description of the divisor of intersecting lines in F (Y )×F (Y ) and for the curve
DL ⊂ F (Y ) as well.
Lemma 3.20.
Two distinct lines L and L′ intersect if and only if Hom(IL, JL′ ) 6= 0.

Proof. Since Ext•(OY , JL′ ) = 0 we have Ext•(IL, JL) = Ext•−1(OL, JL′ ). Similarly, by the Serre duality we haveExt•(OL,OY (−1)) ∼= Ext•(OY (−1),OL(−2)[3])∗ ∼= H•(L,OL(−1)[3])∗ = 0, whence Ext•(OL, JL′ ) ∼= Ext•(OL,OL′ ). On theother hand, if lines L and L′ do not intersect then this is zero. If they intersect in a point then Exti(OL,OL′ ) = k for i = 1and i = 2. Combining with the above isomorphisms we conclude that
Exti(IL, JL′ ) = {k if L intersects L′ and i = 0, 1,0 otherwise,

which proves the lemma.
4. Instantons on Fano threefolds of degree 5
In this section we consider in detail the case of the Fano threefold Y5 of index 2 and degree 5. We start with a shortreminder on the geometry and derived category of Y5.
4.1. Derived category

Recall that Y5 is a linear section of codimension 3 of Gr (2, 5). Denote by V the vector space of dimension 5 and by
A ⊂ Λ2V ∗ a generic vector subspace of dimension 3 (the group SL(V ) acts with an open orbit on the GrassmannianGr (3,Λ2V ∗) and any A from the open orbit gives the same linear section). Denote also by U the restriction of thetautological rank 2 subbundle from Gr (2, V ) to Y5 and let

U⊥ = Ker (V ∗⊗OY → U∗).
Recall that by [20] the category Db(Y5) is generated by an exceptional collection. For our purposes the most convenientchoice of the collection is

Db(Y5) = 〈U,U⊥,OY5 ,OY5 (1)〉. (8)
It gives the following descriptions of the category BY5 .
Lemma 4.1.
The category BY5 is generated by either of the following two exceptional pairs:

BY5 = 〈U,U⊥〉 = 〈(V /U)(−1),U〉.
Moreover, we have canonical isomorphisms

Ext•(U,U⊥) = Ext•((V /U)(−1),U) = A.
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Proof. The first decomposition follows immediately from the definition of BY5 and (8). To get the second, we apply to
Db(Y5) the antiautoequivalence F 7→ RHom (F,OY5 (−1)). Since (U⊥)∗ = V /U and U∗(−1) ∼= U, we see that it takes (8)to

Db(Y5) = 〈OY5 (−2),OY5 (−1), (V /U)(−1),U〉.
Finally, by the Serre duality we have

BY5 = 〈OY5 ,OY5 (1)〉⊥ = ⊥〈OY5 (−2),OY5 (−1)〉,
which gives the second decomposition of BY5 .For the computation of Ext’s we refer to [20]. Here we will only explain how the evaluation morphism

α : A⊗U→ U⊥

can be described. Consider the map A⊗U → A⊗V ⊗OY5 ev−→ V ∗⊗OY5 , where ev is the evaluation of a 2-form (recallthat A is a subspace in Λ2V ∗) on a vector. Its composition with the projection V ∗⊗OY5 → U∗ vanishes (by definition of
Y5), hence the map itself factors through the subbundle U⊥.
We would like to point out the following two funny consequences of the lemma. First, observe that it follows that theleft mutation of U⊥ through U is (V /U)(−1)[1] and dually, the right mutation of (V /U)(−1) through U is U⊥[−1]. In otherwords, we have the following exact sequence:

0→ (V /U)(−1)→ A⊗U→ U⊥ → 0. (9)
Also note that the antiautoequivalence from the proof of Lemma 4.1 takes the above exact sequence to

0→ (V /U)(−1)→ A∗⊗U→ U⊥ → 0.
Since the sequence is canonical, it follows that there is an isomorphism

A ∼= A∗, (10)
which can be easily shown to be symmetric. From now on for each vector a ∈ A we will denote by a∗ ∈ A∗ the covectorcorresponding to a under isomorphism (10).
4.2. The Fano scheme of lines

It is well known that the Fano scheme of lines on Y5 is P2. We will need the following more precise description.
Lemma 4.2.
We have F (Y5) = P(A). Moreover, for each point a ∈ P(A) we have an exact sequence

0→ U
a−−→ U⊥ → IL → 0, (11)

and a distinguished triangle (V /U)(−1) a−−→ U→ JL. (12)
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Proof. Stability of V /U and U∗ implies that the morphism a : (V /U)(−1) → U has kernel of rank 1. Since it isreflexive, we conclude that it is a line bundle. Again, by stability of V /U and U∗ we know that it has degree −1, sothe kernel is OY5 (−1). Computing the Chern class of the cokernel we see that it is a torsion sheaf of rank 1 on someline L on Y5. Moreover, since the sheaves OY5 (−1), (V /U)(−1) and U are all acyclic, the cokernel is acyclic as well.In particular, it has no 0-dimensional torsion, so it is a line bundle on L, which being acyclic should be isomorphic to
OL(−1). Thus we obtain an exact sequence

0→ OY5 (−1)→ (V /U)(−1) a−→ U→ OL(−1)→ 0.
In other words, we see that the cone of a : (V /U)(−1)→ U is quasi-isomorphic to the (shifted by 1) cone of a morphism
OL(−1) → OY5 (−1)[2] and, as it was explained in Remark 3.15, to justify the triangle (12) it remains to show that thismorphism is nontrivial. Indeed, if the morphism were trivial then the cone would be the direct sum of OY5 (−1)[1] and
OL(−1), which should imply in particular that the surjection U→ OL(−1) splits, which of course is false as U is torsionfree.Now to obtain the first exact triangle it is sufficient to remember that JL = RHom (IL,OY5 (−1))[1] (just by definition).Since RHom (−,OY5 (−1))[1] is an involution, we can apply it to (12). It is easy to see that we get precisely (11).
Remark 4.3.Alternatively, the object JL can be written as the cone of a morphism a⊥⊗U → U⊥, where a⊥ ⊂ A is the orthogonalcomplement of a ∈ A. It follows from Lemma 3.20 that lines L and L′ intersect if and only if the corresponding vectors
a, a′ ∈ A are orthogonal. Thus, the divisor DL is the line on P(A) orthogonal to a with respect to the quadratic form on
A corresponding to the isomorphism (10).
4.3. The action of the antiautoequivalence

Let us describe the antiautoequivalence D. For this it suffices to understand how it acts on the bundles U and U⊥.
Lemma 4.4.
We have D(U) = U⊥[1] and D(U⊥) = U[1]. Moreover, the morphism

D[−1] : A = Hom(U,U⊥) → Hom(D[−1](U⊥),D[−1](U)) = Hom(U,U⊥) = A

is −1.

Proof. Indeed, we have RHom (U,OY5 ) = U∗ and LO(U∗) = Cone (V ∗⊗OY5 → U∗) = U⊥[1]. Similarly,RHom (U⊥,OY5 ) = V /U and LO(V /U) = Cone (V ⊗OY5 → V/U) = U[1].To check the second part take any a ∈ A and the corresponding morphism αa : U → U⊥. By definition αa factors as
U

a−→ A⊗U
α−→ U⊥. Dualizing we obtain the morphism α∗a which factorizes as V /U α∗−→ A∗⊗U∗

a−→ U∗. Note that it alsofactorizes as V /U −a−−→ A⊗ (V /U) α∗−→ U∗. It follows that after the mutation LO (and a shift) we obtain a map U → U⊥which factorizes as U
−a−−→ A⊗U

α−→ U⊥, hence coincides with −αa.
4.4. The monadic description

As Lemma 4.1 shows we have an equivalence
BY5 ∼= Db(QA),where Db(QA) is the derived category of finite dimensional representations of the quiver with 2 vertices and the spaceof arrows from the first vertex to the second given by A,
QA = • A−−→ • .
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The equivalence is given by
Φ5 : Db(QA)→ BY5 , (M•1 ,M•2 , m) 7→ Cone(M•1⊗U

m−−→ M•2⊗U⊥
)
.

The inverse equivalence Φ−15 : BY5 → Db(QA) takes any F ∈ BY5 to the representation (M•1 ,M•2 ) with
M•2 = Ext•(U⊥, F ), M•1 = Ext•(F,U[1])∗.

To get a monadic description of an instanton we just apply Φ−15 to its acyclic extension.
Lemma 4.5.
Let F be a semistable vector bundle of rank n with c1(F ) = 0 such that F ∈ BY5 . Then Ext•(F,U) = kn[−1].
Proof. First, note that U ∼= U∗(−1) (since U has rank 2 and detU ∼= OY5 (−1)), hence we have the following exacttriple 0 → U⊥(−1) → V ∗⊗OY5 (−1) → U→ 0
(this is just the exact triple defining U⊥ twisted by −1). By the Serre duality we have Exti(F,OY5 (−1)) =
H3−i(Y5, F (−1))∗ = 0, so it follows that

Ext•(F,U) ∼= Ext•+1(F,U⊥(−1)). (13)
Now note that µ(U) = −1/2, µ(F ) = 0. Therefore by stability of F and U we have

Hom(F,U) = 0 and Hom(U, F (−2)) = 0.
On the other hand, µ(U⊥(−1)) = −4/3 and µ(F (−2)) = −2, hence by stability of F and U⊥ we have

Hom(U⊥(−1), F (−2)) = 0.
By the Serre duality it follows that Ext3(F,U) = 0 and Ext3(F,U⊥(−1)) = 0. Combining this with (13) we see thatExti(F,U) = 0 unless i = 1. Computing the Euler characteristic with Riemann–Roch (recall that by Remark 3.11 wehave c2(F ) = n and c3(F ) = 0) we conclude that

Ext•(F,U) = kn[−1],
which proves the lemma.
Let H be a fixed vector space of dimension n.
Proposition 4.6.
Let F be a semistable vector bundle of rank n with c1(F ) = 0 such that F ∈ BY5 . Choose an isomorphism H ∼= Ext1(F,U).
If D(F ) ∼= F then there is an exact sequence

0 → H⊗U
γF−→ H∗⊗ U⊥ → F → 0.

If the isomorphism φF : D(F ) → F is skew-symmetric then the morphism γF is given by a symmetric in H tensor in
A⊗H∗⊗H∗ = Hom(H⊗U, H∗⊗U⊥).
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Proof. Consider the universal extension
0→ H⊗U→ F ′ → F → 0. (14)

It follows that Ext•(F ′,U) = 0. On the other hand, Ext•(OY5 , F ′) = Ext•(OY5 (1), F ′) = 0 since this is true both for Fand U. Hence looking at exceptional collection (8) we see that F ′ ∈ 〈U⊥〉, hence F ′ is a direct sum of shifts of U⊥. Onthe other hand, from (14) we see that F ′ is a vector bundle of rank 2n+ n = 3n. Hence F ′ ∼= (U⊥)n. In other words, wehave shown that there is an exact sequence
0 → H⊗U

γF−→ H ′⊗U⊥ → F → 0,
where H ′ is another vector space of dimension n. Now it is time to use the self-duality of F . Applying D and takinginto account Lemma 4.4 we obtain another exact sequence

0 → (H ′)∗⊗U
−γTF−−→ H∗⊗U⊥ → D(F ) → 0.

Both sequences come from a decomposition of an object of the category BY with respect to the exceptional collection(U,U⊥), hence the map φF : D(F ) → F induces a unique isomorphism of these exact sequences, that is a pair ofisomorphisms h : H∗ → H ′, h′ : (H ′)∗ → H such that the following diagram commutes.
0 // (H ′)∗⊗U

−γTF //

h′

��

H∗⊗U⊥ //

h
��

D(F ) //

φF
��

0
0 // H⊗U

γF // H ′⊗U⊥ // F // 0
Applying the duality D once again we obtain yet another commutative diagram.

0 // (H ′)∗⊗U
−γTF //

hT

��

H∗⊗U⊥ //

(h′)T
��

D(F ) //

D(φF )
��

0
0 // H⊗U

γF // H ′⊗U⊥ // F // 0
Since D(φF ) = −φF we conclude that h′ = −hT . Identifying H ′ with H∗ via h we see from the first diagram that
−γF = −γTF , so γTF = γF , that is γF is symmetric.
For each γ ∈ A⊗S2H∗ consider the induced map mγ : H → H∗⊗A. Consider also the composition

γ ′ : H⊗U
mγ⊗idU−−−−−→ H∗⊗A⊗U

idH∗⊗α−−−−−→ H∗⊗U⊥

and
γ̂ : H⊗V mγ⊗idV−−−−→ H∗⊗A⊗V idH∗⊗ ev−−−−→ H∗⊗V ∗.

Theorem 4.7.
Let H be a vector space of dimension n. Denote by Mn(Y5) the set of all γ ∈ A⊗S2H∗ which satisfy the following
conditions:(i) the map γ ′ : H⊗U→ H∗⊗U⊥ is a fiberwise monomorphism of vector bundles,(ii) the rank of the map γ̂ : H⊗V → V ∗⊗H∗ equals 4n+ 2.
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Then the moduli space MIn(Y5) of instantons of charge n on Y5 is the quotient Mn(Y5)/GL(H). In particular, any
instanton of charge n is the cohomology bundle of a monad

0 → H⊗U
γ′−→ H∗⊗U⊥ → C⊗OY5 → 0,

where γ ∈ Mn(Y5) and C = Coker γ̂ ∼= kn−2.
Proof. First, let us construct a map Mn(Y5) → MIn(Y5). Take F = Coker (γ ′ : H⊗U → H∗⊗U⊥). Then F satisfiesthe conditions of Theorem 3.10. Indeed, the only nontrivial thing to check is that h0(F ∗) = n − 2. But from the exactsequence 0→ F ∗ → H⊗ (V /U) γ′−→ H∗⊗U∗ → 0
it follows that H0(Y5, F ∗) is the kernel of the map H⊗V → H∗⊗V ∗ induced by γ ′. It is clear that this map coincideswith γ̂, hence its rank is 4n+2, so the kernel has dimension 5n− (4n+2) = n− 2. So, we deduce that F is the acyclicextension of an instanton E of charge n which is the cohomology of the monad

0→ H⊗U→ H∗⊗U⊥ → On−2
Y5 → 0.

This construction can be performed in families, so we obtain a morphism Mn(Y5)→MIn(Y5). This morphism is surjectiveby Proposition 4.6. So, it remains to check that the fibers are the orbits of GL(H).Indeed, assume that the instantons E1 and E2 constructed from γ1, γ2 ∈ A⊗S2H∗ are isomorphic. In other words, thecohomology bundles of the monads
0 → H⊗U

γ′1−→ H∗⊗U⊥ → On−2
Y5 → 0 and 0 → H⊗U

γ′2−→ H∗⊗U⊥ → On−2
Y5 → 0

are isomorphic. Since the monads come from a decomposition with respect to an exceptional collection, the isomorphismextends to an isomorphism of monads. Thus there are unique isomorphisms f : H → H and g : H∗ → H∗ such that
γ ′2 ◦ f = g ◦ γ ′1. Transposing (and using symmetricity of γi) we obtain γ ′1 ◦ gT = fT ◦ γ ′2. Multiplying with f−T on theleft and g−T on the right we obtain γ ′2 ◦ g−T = f−T ◦ γ ′1. Since f and g are unique it follows that g = f−T , hence
γ ′1 = fT ◦ γ ′2 ◦ f .
One can rewrite slightly the monad as follows. Note that the morphism H∗⊗U⊥ → C⊗OY5 factors as H⊗U⊥ →
H∗⊗V ∗⊗OY5 → C⊗OY5 . Therefore we have the following commutative diagram:

H∗⊗U⊥ // H∗⊗V ∗⊗OY5 //

��

H∗⊗U∗

H⊗U
γ′ // H∗⊗U⊥ // C ⊗OY5

Since the top row is acyclic, it follows that the bottom row is quasi-isomorphic to
0 → H⊗U → K ⊗OY5 → H∗⊗U∗ → 0, (15)

where K = Ker (H∗⊗V ∗ → C ) = Im γ̂. So, we have proved
Proposition 4.8.
Any instanton of charge n on Y5 is the cohomology of a self-dual monad (15) with dimH = n and dimK = 4n+ 2.
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4.5. Instantonic nets of quadrics

Any tensor γ ∈ A⊗S2H∗ can be thought of as a net of quadrics in P(H) parameterized by P(A∗). So, given an instanton
E on Y5 we can consider the corresponding net of quadrics γE .The space of nets of quadrics, A⊗S2H∗, is acted upon by the group GL(H), so one can speak about GIT stability andsemistability of a net of quadrics. Recall that, according to [25], a net γ is unstable if and only if there is a pair ofsubspaces H1, H2 ⊂ H such that• dimH1 + dimH2 > dimH , and

• the map A∗ γ−→ S2H∗ → H∗1⊗H∗2 is zero.
Proposition 4.9.
For any instanton E on Y5 the corresponding net of quadrics γE is semistable.

Proof. Assume that γE is unstable. Let (H1, H2) be the destabilizing pair of subspaces. Consider the subspace
H⊥2 = Ker (H∗ → H∗2 ). Note that the condition dimH1 + dimH2 > dimH is equivalent to

dimH1 > dimH⊥2 .
The second condition says that the image of the map H1⊗A∗ ⊂ H⊗A∗ γE−→ H∗ is contained in H⊥2 . Thus we have acommutative diagram

H1⊗A∗ //

��

H⊥2
��

H⊗A∗
γE // H∗

Consider the map γs : H1⊗U→ H⊥2 ⊗U⊥ induced by the upper line of the above diagram and the induced diagram
0 // H1⊗U //

γs
��

H⊗U //

γE
��

(H/H1)⊗U //

γq
��

0
0 // H⊥2 ⊗U⊥ // H∗⊗U⊥ // H∗2⊗U⊥ // 0

with exact rows. Since the morphism γE is injective by Proposition 4.6 we conclude that γs is injective as well. Moreover,we obtain an exact sequence
0→ Ker γq → Coker γs → Coker γE → Coker γq → 0.

Note that, by semistability of Ẽ ∼= Coker γE , the image of the middle arrow should have nonpositive first Chern class,hence
c1(Coker γs) ≤ c1(Ker γq).

On the other hand, since Ker γs = 0 we have
c1(Coker γs) = − dimH⊥2 + dimH1 > 0,

hence c1(Ker γq) > 0. But Ker γq is a subsheaf in (H/H1)⊗U, and U is stable of negative slope. This contradictionproves the claim.
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4.6. Jumping lines

Again consider the net of quadrics γ ∈ A⊗S2H∗ associated with an instanton E . Assume for a moment that genericquadric in the net is nondegenerate. Then degenerate quadrics form a curve (of degree n) in P(A∗) which we denoteby Dγ . By definition the curve Dγ is the support of the cokernel of the morphism H⊗OP(A∗)(−2) γ−→ H∗⊗OP(A∗)(−1)induced by γ. The cokernel itself is a coherent sheaf (we denote it by θγ ) with the property that
RHom (θγ , ωDγ ) ∼= θγ . (16)

In particular, if the net is regular, the curve Dγ is smooth and θγ is a theta-characteristic, that is a line bundle which isa square root of the canonical class. Moreover, as the defining exact sequence
0 → H⊗ OP(A∗)(−2) γ−→ H∗⊗OP(A∗)(−1) −→ θγ → 0 (17)

shows, this theta-characteristic is nondegenerate, that is
H0(Dγ , θγ ) = 0. (18)

In case of a nonregular net the sheaf θγ is neither locally free nor of rank 1 in general. But still it enjoys theproperties (16) and (18). We will call such sheaves generalized nondegenerate theta-characteristics.Recall that the Fano scheme of lines on Y5 coincides with P(A) which itself is identified with P(A∗), so the curve Dγ canbe thought of as a curve on the Fano scheme of lines. It turns out that it coincides with the curve of jumping lines ofthe instanton Eγ , and the corresponding sheaf LE is obtained from the theta-characteristic θγ by a twist.
Proposition 4.10.
Let E be an instanton on Y5 and γE the corresponding net of quadrics. Then one has a distinguished triangle

Rp∗q∗E(−1) → H⊗OP(A∗)(−3) γE−→ H∗⊗OP(A∗)(−2).
In particular, the generic line is nonjumping for E if and only if the generic quadric in the net γE is nondegenerate.
Furthermore, if these equivalent conditions hold then DE = Dγ and LE = θγ (−1).
Proof. By Lemma 3.19 we know that Rp∗q∗E(−1) ∼= Rp1∗ RHom (q∗1Ẽ, J). On the other hand, one can easily writea relative version of (11), 0 → U� OP(A∗)(−3) → U⊥ � OP(A∗)(−2) → IZ → 0,
which gives a distinguished triangle

(V /U)(−1)� OP(A∗)(−3) → U� OP(A∗)(−2) → J.

Now we combine this triangle with the exact sequence
0 → H⊗U

γE−→ H∗⊗U⊥ → Ẽ → 0.
Note that Ext•(U, (V /U)(−1)) = Ext•(U⊥,U) = 0 by Lemma 4.1, Ext•(U,U) = k since U is exceptional andExt•(U⊥, (V /U)(−1)) = k[−1] by (9). This gives the desired distinguished triangle

Rp1∗ RHom (q∗1Ẽ, J) → H⊗OP(A∗)(−3) γE−→ H∗⊗OP(A∗)(−2).
The rest of the proposition easily follows.
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The above proposition gives the following reinterpretation of Conjecture 3.16 in terms of the associated net of quadrics if γ is an instantonic net of quadrics then generic quadric in the net is nondegenerate. In fact we believe that thisshould follow from the semistability of the net. To be more precise, we have the following
Conjecture 4.11.
If γ is a semistable net of quadrics then the generic quadric is nondegenerate.

Remark 4.12.Analogous statement for pencils of quadrics is very easy to prove by analyzing the possible isomorphism classes of theimages of the map H⊗OP1 (−1) → H∗⊗OP1 given by the pencil. If the image is Oa
P1⊕OP1 (−1)b with a + b < dimHthen taking H1 = Ker (H⊗OP1 (−1) → OP1 (−1)b) and H2 = Coker (Oa

P1 → H∗⊗OP1 )∗ we get a destabilizing pair ofsubspaces.On the other hand, for higher dimensional linear spaces of quadrics the analogous statement is wrong. For example, the5-dimensional space of Plücker equations of Gr (2, 5) consists of degenerate quadrics, but is stable.
We can also use Proposition 4.10 to deduce Conjecture 3.18.
Corollary 4.13.
For Fano threefold of degree 5 Conjecture 3.18 is true.

Proof. By Proposition 4.10 the (generalized) theta-characteristic of the net can be reconstructed from the sheaf LEon DE , so it suffices to recall that the net can be reconstructed from the associated theta-characteristic θ. Indeed, if weconsider θ as a sheaf on the projective plane, then the complex (17) is nothing but the decomposition of θ with respectto the standard exceptional collection (O(−2),O(−1),O) (by nondegeneracy property θ is orthogonal to O, so it does notappear in the decomposition). But the morphism H⊗O(−2) → H∗⊗O(−1) gives back the net. Finally, the net allowsto reconstruct the instanton by Theorem 4.7 (or Proposition 4.8).
5. Instantons on Fano threefolds of degree 4
In this section we concentrate on Fano threefolds of degree 4.
5.1. Derived category

A Fano threefold of degree 4 and index 2 is an intersection of two quadrics in P5. Denote by V a vector space ofdimension 6 and by A a vector space of dimension 2. Then a pair of quadrics gives a map A → S2V ∗, so we have afamily of quadrics in P(V ) parameterized by P(A). There are six degenerate quadrics in this family, giving six specialpoints a1, . . . , a6 ∈ P(A). Let C be the double covering of P(A) ramified in {a1, . . . , a6}. Then C is a curve of genus 2.Denote by π : C → P(A) the double covering and by τ : C → C its hyperelliptic involution. We will need the followingdescription of the category BY4
Theorem 5.1 ([5, 14]).
There is an equivalence BY4 ∼= Db(C ) given by the Fourier–Mukai functor associated with the family of spinor bundles
on the quadrics in the family P(A).
Let us explain the statement. On each smooth quadric in the family P(A) there are two spinor bundles. Restricting themto Y4 we obtain a pair of bundles on Y4 which can be thought of as being associated with two points of C over the pointof P(A) corresponding to the quadric. Similarly, each singular quadric in P(A) is a cone over a 3-dimensional quadricand Y4 does not pass through its vertex. Hence the projection from the vertex gives a map from Y4 onto a 3-dimensional
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quadric and we can pullback its (unique!) spinor bundle to Y4. This gives a bundle associated with the branchingpoint of C → P(A). One can show that all those spinor bundles form a vector bundle S of rank 2 on C ×Y4 and theFourier–Mukai functor ΦS : Db(C )→ Db(Y4) is an equivalence onto BY4 . Note that this defines S only up to a twist bythe pullback of a line bundle on C .Another approach to the relation of C and Y4 and the description of the universal spinor bundle S on C ×Y4 is due toMukai. He showed that Y4 is the moduli space of stable rank 2 vector bundles on C with fixed determinant ξ of odddegree and that S is the universal family for this moduli problem. For our convenience we assume that
deg ξ = 1

(note that a twist by a line bundle of degree k changes the degree of the determinant of a rank 2 bundle by 2k , sothe moduli spaces for all odd degrees are isomorphic and the corresponding universal spinor bundles S differ by thecorresponding twists). This fixes the bundle S unambiguously. In particular, we have
det S = ξ � OY4 (−1).

In fact one can compute also
c2(S) = η + 2LY , η ∈ H1(C )⊗H3(Y4) ⊂ H4(C ×Y4), η2 = 4pCpY ,

where HY , LY , and pY stand for the classes of a hyperplane section, of a line and of a point on Y4, while pC stands forthe class of a point on C . This allows to write down the Grothendieck–Riemann–Roch for the functor Φ = ΦS.
Lemma 5.2.
For any F ∈ Db(C ) we have

ch(Φ(F )) = (2 degF − r(F ))− (degF )HY + r(F )LY + degF3 pY .

Proof. One has ch(S) = 2 + (pC −HY )− pCHY − η + pCLY + 13 pY + 13 pCpY .Since the relative tangent bundle of C ×Y → Y is just the pullback of ω−1
C , its Todd genus equals 1− pC , so

ch(S) td(TC ) = 2− pC −HY − η + pCLY + 13 pY .
Multiplying this by ch(F ) = r(F )+(degF )pC and taking pushforward to Y4 (i.e. taking the coefficient at pC ) one obtainsthe result.
5.2. Lines

The description of the Fano scheme of lines on Y4 is well known. However, for our purposes we will need a descriptionclosely related to our Fourier–Mukai functor. We start with the following
Lemma 5.3.
Let L be a line bundle of degree 0 on C and Sy a stable rank 2 vector bundle on C with det Sy = ξ corresponding to a
point y ∈ Y4. If H0(C,L⊗Sy) 6= 0 then Sy is a nontrivial extension

0→ L−1 → Sy → L⊗ξ → 0. (19)
Vice versa, Ext1(L⊗ξ,L−1) = k2 and each nontrivial extension of L⊗ξ with L−1 is a stable rank 2 bundle on C with
determinant ξ.
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Proof. Assume that H0(C,L⊗Sy) 6= 0. Then we have a map L−1 → Sy. If this map is not injective at a point x ∈ Cthen the map factors through L−1(x) which is impossible by stability of Sy (since degL−1(x) = 1). So, the map L−1 → Syis an embedding of vector bundles. Hence the quotient is a line bundle which has to be isomorphic to det Sy⊗L ∼= L⊗ξ .The extension is nontrivial since Sy is simple.Vice versa, note that Ext•(L⊗ξ,L−1) = H•(C,L−2⊗ξ−1). Since deg(L−2⊗ξ−1) = −1, there are no global sections andby Riemann–Roch the first cohomology has dimension 2. Now take any nontrivial extension
0→ L−1 → E→ L⊗ξ → 0.

Evidently detE = ξ , so let us check that E is stable. If not then there should be a line bundle L′ of degree 1 such thatHom(L′,E) 6= 0. Applying Hom(L′, −) to the above exact sequence we obtain
0 → Hom(L′,L−1) → Hom(L′,E) → Hom(L′,L⊗ξ) → Ext1(L′,L−1) → . . .

Since degL′ = 1 and degL−1 = 0 the first term is zero. Further, since deg(L⊗ξ) = 1 the third term is nontrivial onlyif L′ = L⊗ξ . In the latter case the map from the third term to the fourth term is the map k → Ext1(L⊗ξ,L−1) givenby the class of the extension, so if the extension is nontrivial the map is injective and we have Hom(L′,E) = 0 in anycase.
Also we will need the following simple observation.
Lemma 5.4.
For any line bundle L on a curve of genus 2 one has L⊗τ∗L ∼= ωdegL

C . In particular, if degL = 0 then L∗ ∼= τ(L).
Proof. First take L ∼= OC (x) for some point x ∈ C . Then τ∗L ∼= OC (τ(x)) and L⊗τ∗L ∼= OC (x + τ(x)). But x + τ(x)is the preimage of a point under the projection C → P1, hence the corresponding line bundle is the canonical class. Thisproves the formula for L = OC (x). After that the general case follows since any line bundle is a (multiplicative) linearcombination of line bundles OC (x), and both sides of the formula are (multiplicatively) linear in L.
The set of points y ∈ Y4 for which the bundle Sy fits into exact triple (19) is a curve isomorphic to
P
(Ext1(L⊗ξ,L−1)) = P1. We denote this curve by

LL ⊂ Y4.
Below we will show that it is a line on Y4. Recall that with each line L ⊂ Y4 we associate two objects, the ideal sheaf
IL ∈ BY4 and the object JL = RHom (IL,OY4 (−1))[1] ∈ BY4 as well.
Lemma 5.5.
There are isomorphisms φ0 : F (Y4) ∼−→ Pic0C and φ1 : F (Y4) ∼−→ Pic1C given by

φ0(L) = Φ−1(IL[−1]), φ1(L) = Φ−1(JL).
Moreover, the diagram

F (Y4)
φ0

vv

φ1
((Pic0C L 7→ L∗⊗ωC ⊗ξ−1
// Pic1C

is commutative.
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Proof. Let F = Φ−1(IL[−1]), so that Φ(F) = IL[−1]. Then for each point x ∈ C we have
Ext•(F,Ox ) ∼= Ext•(Φ(F),Φ(Ox )) ∼= Ext•(IL[−1], Sx ) ∼= Ext•(OL[−2], Sx )

(the last isomorphism follows from the exact sequence 0→ IL → OY4 → OL → 0 since we have Sx ∈ BY4 ). Note that Sxis a vector bundle of rank 2 and degree −1, and its dual is globally generated. Hence (Sx )�L = OL⊕OL(−1), thereforeExt•(OL, Sx ) = k[−2]. We conclude that Ext•(F,Ox ) ∼= k for all x ∈ C , hence F ∼= L where L is a line bundle. Since
c1(IL[−1]) = 0 we deduce from Lemma 5.2 that degL = 0, that is L ∈ Pic0C .Vice versa, let L ∈ Pic0C . Since Φ(L) is the derived pushforward of a vector bundle p∗1L⊗S on C ×Y4 along theprojection C ×Y4 → Y4, its cohomology sheaves a priori sit in degrees 0 and 1. We denote those by H0 and H1respectively. Note that we have

H•(Lj∗yΦ(L)) ∼= H•(C,L⊗Sy),where jy : Spec k→ Y4 is the embedding of the point y. By Lemma 5.3 we have
H0(C,L⊗Sy) = {k if y ∈ LL,0 if y 6∈ LL, H1(C,L⊗Sy) = {k2 if y ∈ LL,k if y 6∈ LL.

On the other hand, we have a spectral sequence
Lt j∗yHs → Hs−t(Lj∗yΦ(L))

which can be rewritten as a long exact sequence
0 → L2j∗yH1 → L0j∗yH0 → H0(C,L⊗Sy) → L1j∗yH1 → 0,

and isomorphisms
L0j∗yH1 = H1(C,L⊗Sy), Lt j∗yH0 = Lt+2j∗yH1 for t ≥ 1.

It follows that for generic y ∈ Y4 we have L•j∗yH0 = 0, hence the support of H0 is a proper subvariety of Y4. On theother hand, H0 = R0p2∗(p∗1L⊗S) is torsion free, hence H0 = 0. Thus the above formulas say that
L0j∗yH1 = H1(C,L⊗Sy), L1j∗yH1 = H0(C,L⊗Sy), L≥2j∗yH1 = 0.

In other words, the sheaf H1 is locally free of rank 1 on Y4 \ LL and has a singularity along a curve LL. Note that itfollows that H1 is torsion free. Indeed, if H1 had a torsion, its support would lie in LL, hence would have codimensionat least 2, hence L2ij∗yH1 would be nonzero for any point y in the support of the torsion subsheaf, while we know thatit is zero.Thus we know that H1 is a torsion free sheaf of rank 1. Moreover, by Lemma 5.2 its Chern character equals
ch(H1) = −ch(Φ(L)) = 1− LY4 .

In particular, c1(H1) = 0, hence H1 is the sheaf of ideals of a subscheme Z , H1 ∼= IZ , where Z is a subschemeset-theoretically supported on LL and such that
ch(OZ ) = LY4 .

It follows that Z is a line, but possibly with a non-reduced structure at some points. However, if Z had a non-reducedstructure at a point y, then OZ would have a subsheaf supported at this point and then L3j∗yOZ 6= 0, hence L2j∗yIZ 6= 0which is a contradiction. Thus Z is a line, hence LL is a line and Φ(L) = ILL [−1].
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This proves that Φ induces an isomorphism of Pic0C with F (Y4) considered as the moduli space of sheaves ofideals of lines, hence φ0 is an isomorphism of F (Y4) onto Pic0C . To relate F (Y4) with Pic1C we recall that
JL = RHom (IL[−1],OY4 (−1)), hence
JL = RHom (Φ(L),OY4 (−1)) = RHom

(
RpY∗(S⊗p∗CL), OY4 (−1)) ∼= RpY∗ RHom

(
S⊗p∗CL, p!

YOY4 (−1))
∼= RpY∗ RHom

(
S⊗p∗CL, p∗CωC⊗p∗YOY4 (−1)[1]) ∼= RpY∗

(
S∗⊗p∗C (L∗⊗ωC )⊗p∗YOY4 (−1)[1]),

where pY and pC are the projections of C ×Y4 onto the factors Y4 and C respectively. Note also that
S∗⊗p∗Cξ ⊗p∗YOY4 (−1) ∼= S since S is a vector bundle of rank 2 with determinant equal to ξ � OY4 (−1). Hence weconclude that

JL ∼= RpY∗
(
S⊗p∗C (L∗⊗ωC⊗ξ−1)[1]) = Φ(L∗⊗ωC⊗ξ−1)[1]

which gives the commutativity of the diagram. Since both the left and the bottom arrows in the diagram are isomorphisms,we conclude that the right arrow is an isomorphism as well.
Lemma 5.6.
Assume L = φ0(L) and let DL ⊂ F (Y4) be the curve parameterizing lines which intersect L. Then φ1(DL) ⊂ Pic1C is
a translate of the theta-divisor by L.

Proof. Recall that for any lines L, L′ on Y4 we can write IL = Φ(L)[1], JL′ = Φ(L′)[1], where L = φ0(L) ∈ Pic0C ,
L′ = φ1(L′) ∈ Pic1C . So,

Hom(IL, JL′ ) = Hom(Φ(L),Φ(L′)) = Hom(L,L′) = H0(L−1⊗L′).
Since L−1⊗L′ is a line bundle of degree 1, it has a global section if and only if it is isomorphic to the line bundle OC (x)for some point x ∈ C , that is if L′ ∼= L(x). Thus by Lemma 3.20 we have φ1(DL) = {L′ ∈ Pic1C : Hom(IL, JL′ ) 6= 0} isthe theta-divisor translated by L.
5.3. The action of the antiautoequivalence

We also can identify the action of the antiautoequivalence D on Db(C ).
Proposition 5.7.
We have D(F) ∼= τ∗F∗[2].
Proof. Since C is a variety of general type, we know by [6] that any antiautoequivalence of Db(C ) is a composition ofthe usual dualization with a shift, a twist, and an automorphism. First, let us check how D acts on the structure sheavesof points, that is, in terms of BY , on spinor bundles Sx . First, note that H•(Y , S∗x ) = k4, the induced map O⊕4

Y → S∗xis surjective and its kernel is Sτ(x) (this can be checked on the corresponding quadric). Thus D(Sx ) ∼= Sτ(x)[1]. In otherwords, D(Ox ) ∼= Oτ(x)[1]. Since RHom (Ox ,OC ) ∼= Ox [−1], we see that the shift part is [2] and the automorphism part isgiven by τ . To identify the twist part we apply D to a line bundle L of degree zero. Since Φ(L) ∼= IL[−1] for some line
L on Y and since D(IL) ∼= IL by Proposition 3.12, we conclude that

D(Φ(L)) ∼= IL[1] ∼= Φ(L[2]).
Since τ∗L ∼= L∗ by Lemma 5.4, the claim follows.
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5.4. Description of instantons

Now to get a description of the moduli space of instantons we will need to know Φ!(OY ). It turns out that (up to a shift)it is a very interesting vector bundle on C , the so-called second Raynaud bundle [23]. By definition this is the (shift ofthe) Fourier–Mukai transform of the bundle OPicC (−2Θ) with the kernel given by the Poincaré bundle. Note that thetheta divisor on PicC is defined only up to a translation, accordingly the second Raynaud bundle is defined up to atwist by a line bundle of degree 0 (so it would be more precise to speak about the Raynaud class of bundles). We willneed the following important property of the Raynaud class of bundles.
Lemma 5.8 ([22]).
Let R be a semistable vector bundle of rank 4 and of degree 4 on a curve C of genus 2. If for any line bundle L of
degree 0 on C we have Hom(L,R) 6= 0, then R is a second Raynaud bundle.

This property can be used to identify the object Φ!(OY4 ).
Lemma 5.9.
We have Φ!(OY ) ∼= R[1], where R is a second Raynaud bundle on C.

Proof. We have Ext•(Ox ,Φ!(OY )) = Ext•(Φ(Ox ),OY ) = Ext•(Sx ,OY ) = H•(Y , S∗x ) ∼= k4. It follows that Φ!(OY ) ∼= R[1],where R is a vector bundle of rank 4. Further, we have
Ext•(L,R) ∼= Ext•(L,Φ!(OY [−1])) ∼= Ext•(Φ(L),OY [−1]) ∼= Ext•(IL[−1],OY [−1]) = k⊕k[−1].

It follows from Riemann–Roch that the degree of R is 4. Also it follows that the main property of Raynaud bundles istrue for the bundle R. So it only remains to check that R is semistable.First consider Φ(R) = Φ(Φ!(OY4 ))[−1]. Note that by definition of the mutation functor we have a distinguished triangle
Φ(Φ!(OY4 )) → OY4 → LBY4 (OY4 ).

On the other hand, since we have a semiorthogonal decomposition Db(Y4) = 〈BY4 ,OY4 ,OY4 (1)〉 we know that LBY4 (OY4 ) ∼=
S(ROY4 (1)(OY4 )), where S is the Serre functor. Since Ext•(OY4 ,OY4 (1)) = V ∗ we deduce that ROY4 (1)(OY4 ) ∼= TP(V )�Y4 [−1],the shift of the tangent bundle to P(V ) restricted to Y4. Hence LBY4 (OY4 ) ∼= TP(V )�Y4 (−2)[2]. Thus the above triangleshows that Φ(Φ!(OY4 )) has two cohomology sheaves, OY4 in degree 0 and TP(V )�Y4 (−2) in degree −1.Assume that 0 → F → R → G → 0 is a destabilizing exact sequence of vector bundles with F stable. Applying thefunctor Φ we get a distinguished triangle Φ(F )→ Φ(R)→ Φ(G)
which gives a long exact sequence of cohomology sheaves

0 → H0(Φ(F )) → TP(V )�Y4 (−2) → H0(Φ(G)) → H1(Φ(F )) → OY4 → H1(Φ(G)) → 0 (20)
(note that since dimC = 1 the functor Φ applied to a sheaf can have cohomology sheaves only in degrees 0 and 1).Now since r(R) = 4 and degR = 4 we have either• r(F ) = 1 and degF ≥ 2, or

• r(F ) = 2 and degF ≥ 3, or

• r(F ) = 3 and degF ≥ 4.
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Consider the first two cases. Note that the slope of F is greater or equal than 3/2 in these cases. Note also that forany y ∈ Y4 we have by the Serre duality
H1(C, Sy⊗F ) ∼= Hom(F, S∗y⊗ωC )∗.

The second bundle here has slope 2 − 1/2 = 3/2 and F in the first two cases has slope which is not smaller. Henceby stability of F and Sy the above space is zero unless F ∼= S∗y⊗ωC . Since the above is possible only for one y, weconclude that H1(Φ(F )) is either 0, or is the structure sheaf of a point. In any case its rank and c1 is zero. Thus therank and c1 of the sheaf H0(Φ(F )) coincide with those of Φ(F ) and so by the Grothendieck–Riemann–Roch formula,Lemma 5.2, we have
µ(H0(Φ(F ))) = − degF2 degF − r(F ) .Under our assumptions on F this is greater than −4/5, the slope of TP(V )�Y4 (−2). This contradicts the stability of thelatter bundle (which can be easily shown by using Hoppe’s criterion, see Lemma 2.1) excluding the first two cases.In the last case we have r(G) = 1, degG ≤ 0. Such G can be embedded into appropriate line bundle L of degree 0,hence H0(Φ(G)) ⊂ H0(Φ(L)) which was shown to be zero (see the proof of Lemma 5.5). Thus by Lemma 5.2 we have

r(H1(Φ(G))) = −r(Φ(G)) = 1− 2 degG.
Since degG ≤ 0, this is greater than or equal 1. On the other hand, it follows from (20) that H1(Φ(G)) is a quotientof OY4 . This is possible only if degG = 0, so G = L ∈ Pic0C . Then as we know Φ(L) = IL[−1] with L a line. Since ILis not a quotient of OY4 we get a final contradiction.
Now we are ready to give a description of instantons on Y4.
Theorem 5.10.
Let R be a second Raynaud bundle. The moduli space of instantons MIn(Y4) is isomorphic to the moduli space of simple
vector bundles F on C of rank n and degree 0 such that

F∗ ∼= τ∗F, (21)
H0(C,F⊗Sy) = 0 for all y ∈ Y4, (22)dim Hom(F,R) = dimExt1(F,R) = n − 2. (23)

Proof. For each instanton E consider its acyclic extension Ẽ . Then, as we know, Ẽ = Φ(F)[−1] for some F ∈ Db(C ).We are going to show that F is a vector bundle. Indeed, since Φ: Db(C )→ BY4 is an equivalence we have F = Φ∗(Ẽ [−1]).Since Φ∗(OY4 ) = 0 we have Φ∗(Ẽ) = Φ∗(E), so finally
F = Φ∗(E)[−1].

Further, it is easy to check that the functor Φ∗ is also a Fourier–Mukai transform with the kernel S∗⊗q∗OY4 (−2)[3]. Thusthe fiber of the object F at a point x ∈ C is given by
Fx = H•+2(Y4, S∗x⊗E(−2)),

so our goal is to show only that H2 is nontrivial. First, we note that
H0(Y4, S∗x⊗E(−2)) = Hom(Sx , E(−2)) = 0
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by stability of Sx and E . Similarly, using the Serre duality we deduce that
H3(Y4, S∗x⊗E(−2)) = H0(Y4, Sx⊗E)∗ = Hom(E, Sx )∗ = 0

again by stability of E and Sx . Finally, we note that for any x ∈ C one has a short exact sequence
0→ S∗x → OY4 (1)4 → S∗τ(x)(1)→ 0

(this is the restriction of the standard exact sequence of spinor bundles from a 4-dimensional quadric). Since
H•(Y4, E(−1)) = 0 we conclude that

H1(Y4, S∗x⊗E(−2)) = H0(Y4, S∗x (1)⊗E(−2)) = Hom(Sx (1), E) = 0
again by stability of E and Sx . Thus indeed we have only H2, so F is a vector bundle.Since Φ(F) ∼= Ẽ [1], using Lemma 5.2 we see that r(F) = n and degF = 0. Moreover, since Φ is fully faithful and Ẽ issimple by Lemma 3.6, we conclude that F is simple.Let us check that F enjoys (21), (22), and (23). The first follows immediately from D(Ẽ) ∼= Ẽ and Lemma 5.7. Thesecond follows from the fact that Φ(F) is a vector bundle shifted by −1. And for the third one can use the fact that, byLemma 5.9,

Ext•(F,R) = Ext•(F,Φ!(OY )[−1]) ∼= Ext•(Φ(F),OY [−1]) = Ext•(Ẽ [−1],OY [−1]) = Ext•(Ẽ,OY ) = H•(Y , Ẽ∗),
so (23) follows from Lemma 3.6.Now let us check the inverse statement. If F is a vector bundle on C such that (22) holds then H0(Φ(F)) = 0 and
F = H1(Φ(F)) is a vector bundle, so one can write Φ(F) ∼= F [−1]. By Lemma 5.2 we deduce that r(F ) = n and
c1(F ) = 0. Since the image of the functor Φ is BY4 we conclude that H•(Y4, F ) = H•(Y4, F (−1)) = 0. Moreover,D(F ) ∼= F by (21) and Proposition 5.7, and since

H i(Y4, F ∗) = Exti(F,OY ) = Exti(Φ(F)[1],OY ) ∼= Exti(F,Φ!(OY [−1])) ∼= Exti(F,R)
we see that (23) implies h0(F ∗) = h1(F ∗) = n − 2. Thus Theorem 3.10 applies and we conclude that F is the acyclicextension of appropriate instanton of charge n on Y4.
5.5. Jumping lines

The curve DE of jumping lines of an instanton E together with its natural coherent sheaf LE can be described in termsof the associated vector bundle FE on C . Recall that in Lemma 5.5 we have constructed an isomorphism φ1 of F (Y4)and Pic1C .
Proposition 5.11.
Let FE be the simple vector bundle on C corresponding to an instanton E. Then isomorphism φ1 identifies the set of
jumping lines DE of E with the set of L ∈ Pic1C such that Ext•(F,L) 6= 0. Moreover, let P be the Poincaré line bundle
on C ×Pic1C and ΦP : Db(C )→ Db(Pic1C ) the associated Fourier–Mukai transform. Then LE = ΦP(F∗E )[1].
Proof. Indeed, we have

Ext•(E, JL) ∼= Ext•(Ẽ, JL) ∼= Ext•(Φ(FE )[1],Φ(L)[1]) = Ext•(FE ,L) = H•(C,F∗E⊗L)
and we deduce the first part from Proposition 3.19. Moreover, the relative version of the above equality gives the secondpart as soon as we observe that the restriction of P to the fiber of C ×Pic1C over the point of Pic1C corresponding to
L is L itself, so the RHS of the above formula computes the (derived) restriction of ΦP(F∗E ) to the corresponding pointof Pic1C .
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The above proposition allows to reinterpret Conjectures 3.16 and 3.18.
Corollary 5.12.
Assume that for any vector bundle F on C of rank n and degree 0 which satisfy (21), (22), and (23) one has Hom(F,L) = 0
for generic L ∈ Pic1C. Then Conjecture 3.16 is true for the Fano threefold Y4.

On the other hand, one can check that Conjecture 3.18 is true in this case.
Proposition 5.13.
An instanton on Y4 can be reconstructed from the pair (DE ,LE ). In particular, Conjecture 3.18 is true for Fano threefolds
of degree 4.

Proof. Since we know that an instanton E can be reconstructed from the associated vector bundle FE on C , Theo-rem 5.10, and since LE is the shift of the Fourier–Mukai image of F∗E with respect to the Fourier–Mukai transform withkernel given by the Poincaré bundle, it suffices to check that one can reconstruct a vector bundle on a curve C from itsFourier–Mukai transform in Db(Pic1C ).For this we compute the composition of Fourier–Mukai transforms ΦP∗◦ΦP : Db(C )→ Db(C ). Note that Pic1C is a self-dual abelian variety and the Poincaré bundle on C ×Pic1C is the restriction of the Poincaré bundle from Pic1C ×Pic1Cwhich is considered as a product of an abelian variety and its dual. Moreover, since the canonical class of an abelianvariety is trivial, the Fourier–Mukai transform Db(Pic1C )→ Db(Pic1C ) with the kernel given by the dual of the Poincarébundle is the adjoint (shifted by 2) of the original Fourier–Mukai functor. Since the Fourier–Mukai functor betweenthe derived categories of Pic1C is an equivalence, see [17], the composition with the left adjoint functor is the identity,hence the kernel giving the functor ΦP∗◦ΦP : Db(C ) → Db(C ) is the (derived) restriction of the structure sheaf of thediagonal on Pic1C ×Pic1C shifted by −2. The above restriction is very easy to compute, it is isomorphic to a cone ofa morphism ∆∗OC [−2]→ ∆∗N∗C/Pic1C on C ×C (here ∆ : C → C ×C is the diagonal embedding). In particular, it followsthat for any vector bundle F on C we have a distinguished triangle
F [−2] → F⊗N∗C/Pic1C → ΦP∗ (ΦP(F )).

Note that the map F [−2]→ F⊗N∗ is given by an element in Ext2(F, F ⊗N∗) = H2(C, F ∗⊗F ⊗N∗). Since C is a curvethis space is zero, whence we have ΦP∗ (ΦP(F )) ∼= F [−1]⊕F ⊗N∗.
This shows that F ∼= H1(ΦP∗ (ΦP(F ))) can be reconstructed from ΦP(F ). Applying this to F = FE we deduce theproposition.
6. Further remarks

One can continue research in several directions. First of all one can consider Fano threefolds of index 2 and degree ≤ 3.
6.1. Fano threefolds of degree 3
Let Y3 be a Fano threefold of index 2 and degree 3, that is a cubic threefold in P4. There are at least two approaches tothe description of the category BY3 . First of all, it is proved in [13] that BY3 is equivalent to the nontrivial component ofthe derived category of X14, a certain Fano threefold of index 1 and degree 14 which can be associated with Y3 (by theway, to construct X14 from Y3 one needs to choose a minimal instanton on Y3). So, one can describe instantons on Y3in terms of vector bundles on X14. This approach may give some interesting results, but it does not look as a way tosimplify the question. The manifold X14 does not look simpler than Y3 itself, so it is doubtful that it would be easier tostudy vector bundles on X14 than on Y3.
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Another description of BY3 can be given as follows. Consider a line on Y3 and a projection from this line Y3 99K P2. It isa conic bundle, so one can consider the associated sheaf C0 of even parts of Clifford algebras on P2. One can check that
BY3 is equivalent to a semiorthogonal component of the derived category of sheaves of C0-modules on P2. This is morepromising, since P2 has dimension smaller than Y3, so one can hope to have a grip on the structure of the moduli spaceof instantons. We would also like to mention that this approach to the description of the category BY3 was used in [2].
6.2. Fano threefolds of degree 2
Let Y2 be a Fano threefold of index 2 and degree 2, that is a double covering of P3 ramified in a smooth quartic surface.Then the category BY2 has the following interesting property – its Serre functor is isomorphic to the composition of theshift by 2 with the action of the involution of the double covering. This behavior is very similar to the behavior of theSerre functor of Enriques surfaces. And in fact, conjecturally the derived categories of some Enriques surfaces can beobtained as specializations of BY2 for very special double coverings known as Artin–Mumford double solids, see [10] formore details. We think it may be interesting to investigate what kind of moduli space on Enriques surface appears inthis way.
6.3. Matrix factorizations

For Fano threefolds which can be described as hypersurfaces in weighted projective spaces (i.e. those of degree 3, 2and 1) the category BY can be also described as the category of graded matrix factorizations of the equation of thehypersurface, see [21]. It may be interesting to describe the corresponding moduli spaces of matrix factorizations.
6.4. Minimal instantons

Another interesting question is to investigate the moduli spaces of minimal instantons on Fano threefolds of index 2. Incase of a cubic threefold Y3 this moduli spaces were investigated in [16] and [13]. Moreover, it was shown in [13] thatin this case minimal instantons provide a relation of cubic threefolds with Fano threefolds of index 1 and degree 14.Because of this, it would be very interesting to understand the geometry of minimal instantons and their moduli spacesfor other Yd.
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