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1. Introduction

The moduli space of stable bundles on the projective space P*> is an important object of investigation in algebraic
geometry. Especially important subclass of stable bundles is constituted by the so-called mathematical instanton
bundles. By definition a mathematical instanton on P3 is a stable vector bundle E of rank 2 with ¢;(E) = 0 and with
the property that

H'(P*, E(-2)) =0,
known as the instantonic condition. The second Chern class c;(E) is known as the charge, or the topological charge of
the instanton E.

Originally, instanton bundles appeared in the seminal work of Atiyah-Drinfeld—Hitchin—-Manin [1] as a way to describe
Yang-Mills instantons on a four-sphere S* which play an important role in Yang—Mills gauge theory. Since then
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they attracted a lot of attention, especially the questions like smoothness and connectedness of their moduli space and
different approaches to their construction were considered. Also a number of generalizations of instantons appeared, such
as instantons on higher-dimensional projective spaces [19, 24] (in particular symplectic instantons) and noncommutative
instantons [12].

The goal of this paper is to introduce another (in a way more direct) generalization of instantons. Instead of going to
higher dimensions, or into the noncommutative world, we suggest just to replace P> with another Fano threefold. In
doing so we note that the line bundle Ops(—2) appearing in the instantonic condition is nothing but the square root
of the canonical bundle, so as soon as we have a Fano threefold with canonical class being a square we can consider
instantons on it. This attracts our attention to Fano threefolds of index 2.

Here we should also mention an independent paper of Daniele Faenzi [7], which also discusses a generalization of
instanton bundles to Fano threefolds, especially to those with trivial third Betti number. In particular, the results obtained
in loc. cit. for the Fano threefold of index 2 and degree 5 and 4 are very close to the results in the present paper.

Recall that the index of a Fano manifold is the maximal integer dividing its canonical class. By Fano-Iskovskikh—Mukat
classification the index of a Fano threefold is bounded by 4, with P*> being the only index 4 variety and the quadric
@ the only index 3 variety. Among the Fano threefolds of index 2 the most important are those with Picard number 1.
Given such a threefold Y we denote by Oy(1) the ample generator of the Picard group. Then the canonical bundle of Y
is Oy(—2) and Oy(—1) is its square root. So, we have the following

Definition 1.1 ([13]).
Let Y be a Fano threefold of index 2. An instanton bundle on Y is a stable vector bundle E of rank 2 with ¢;(E) = 0
such that

HY(Y,E(-=1)) = 0. (1

The integer ¢;(E) is called the (topological) charge of the instanton E.

The goal of this paper is to show that instantons on Fano threefolds of index 2 share many properties of usual instantons.
So, their investigation, interesting by itself, may be helpful for further study of instantons on P>. To be more precise we
will concentrate on the following two issues: the monadic construction and the Grauert-Miilich Theorem.

Recall that every instanton of charge n on IP* can be represented as the cohomology in the middle term of a self-dual
three-term complex

Ops(—1)" = 02572 = Ops(1)"

(known as a monad). The reason for this is a relatively simple structure of the bounded derived category D?(P3) of
coherent sheaves on P3. This cateqory is known to have many full exceptional collections, the most convenient for
our question is the collection (Opg(—ﬂ, Ops, Op3 (1), Ops(Z)). The instantonic condition implies (by stability and Serre
duality) that any instanton lies in the right orthogonal to Ops3(2), which is the subcategory of D?(P?) generated by
Op3(—1), Op3, and Op3(1). Decomposing the instanton with respect to this collection gives the monad.

Of course, generic Fano threefold does not have a full exceptional collection, so the above description cannot work
verbatim. However, a certain part of it works. To be more precise, each Fano threefold Y of index 2 has an exceptional
collection (Oy, Oy (1)) (not full), which gives rise to a semiorthogonal decomposition

DE(Y) = (By, Oy, Oy (1)),

where triangulated category By, defined as the orthogonal By = (Oy, Oy(1))*, is called the nontrivial component of
DP(Y) and discussed in [15]. Now, if E is an instanton of charge n on Y then analogously to the case of P? the
instantonic condition implies that E is right orthogonal to Oy(1), hence it is contained in the subcategory (By, Oy) of
DP(Y). Decomposing E with respect to this semiorthogonal decomposition we can see that the component with respect
to Oy is just O%~2, while the component in By is a very special vector bundle E of rank n which is called the acyclic
extension of the instanton E. The decomposition itself takes the form of a short exact sequence

0—>E—>E—>OT2—>0,
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which is an analogue of the monad. Moreover, the bundle E itself should be considered as an analogue of the Kronecker
module, see e.g. [18], associated to the instanton. We show that E has many nice properties, in particular it is self-
dual with respect to a certain antiautoequivalence of the category By, which generalizes usual symmetry property of
Kronecker modules. Moreover, we show that one can easily reconstruct the instanton from its acyclic extension.

Another approach to construction and classification of instantons is based on investigation of the behavior of the re-
striction of an instanton to lines. In the case of P this behavior is described by the classical Grauert-Miilich Theorem
saying that if E is an instanton of charge n then

e for generic line L C P3 one has E], £ 0, ®0Oy;

e the lines L C IP? for which the restriction E; is nontrivial (jumping lines) are parameterized by a degree n divisor
Dk in the Grassmannian Gr(2, 4) of lines;

e the divisor comes with a coherent sheaf (which is locally free of rank 1 at points corresponding to lines L such
that ET, = O,(1)®O.(—1)), and the instanton can be reconstructed from the divisor and the associated sheaf.

We aim to prove the same for Fano threefolds of index 2. Of course, in this case we should look at the Hilbert scheme of
lines on Y (which is traditionally called the Fano scheme of lines) F(Y) which is a certain surface naturally associated
to the threefold Y. It is not clear whether the analogue of the first part of the Grauert—Miilich Theorem is true in this
case, however the second definitely holds. We show that as soon as the generic line on Y is not a jumping line for
an instanton E of charge n, the scheme of jumping lines is a curve Dg on F(Y) which is homologous to nD;, where
D is the curve on F(Y) parameterizing lines intersecting a given line L. Moreover, we show that the curve Dg comes
equipped with a coherent sheaf Lg (locally free of rank 1 at the points corresponding to 1-jumping lines) and discuss
the question of reconstructing E from the pair (Dg, LE).

The general study of instantons outlined above is illustrated by a more detailed description of what goes on for Fano
threefolds of index 2 and degree 5 and 4 respectively.

In case of degree 5 there is only one such threefold Y5, it can be constructed as a linear section of codimension 3 of
the Grassmannian Gr(2,5) embedded into the Pliicker space P(A?k®). Such linear section is given by the corresponding
three-dimensional space of skew-forms in terms of which one can describe the geometry (and the derived category)
of ¥5. In particular, the nontrivial part By, of the derived category of Y5 is generated by an exceptional pair of vector
bundles [20] which gives a description of the acyclic extension E of an instanton in terms of representations of the
Kronecker quiver with three arrows (which is a complete analogue of the Kronecker module describing instantons on P3),
and instanton itself is described as the cohomology of a self-dual monad

u" — o;}/;7+2 N (u*)n,

where U is just the restriction of the tautological rank 2 vector bundle from the Grassmannian Gr(2,5). On the other
hand, the Fano scheme of lines on Y5 is identified with P? and we show that the Kronecker module above can be
thought of as a net of quadrics parameterized by this P2. In these terms the curve D¢ of jumping lines of an instanton
E gets identified with the degeneration curve of the net of quadrics and the associated sheaf Lg with (the twist of) the
corresponding theta-characteristic on Dg. The usual procedure of reconstructing the net of quadrics from the associated
theta-characteristic shows that the instanton E can be reconstructed from the pair (Dg, Lg) in this case.

In the case of degree 4 we also have a nice interpretation. Each Fano threefold Y, of index 2 and degree 4 is an
intersection of two quadrics in P5. In the pencil of quadrics passing through Y, there are six degenerate quadrics. We
consider the double covering C of P! (parameterizing quadrics in the pencil) ramified in these six points. The curve C
has genus 2 and it is well known that By = D?(C) in this case, see [5] or [14]. Let T be the hyperelliptic involution of C.
We show that the acyclic extension E of an instanton E of charge n on Y; corresponds under the above equivalence
to a semistable vector bundle F on C of rank n such that 7*F = F* which has a special behavior with respect to
the Raynaud’s bundle on C. Moreover, the Fano scheme of lines on Y; is isomorphic (noncanonically) to the abelian
surface Pic®C and we show that the curve Dg coincides with the theta-divisor on Pic®C associated with the bundle F.
In particular, we show that in this case one can reconstruct the instanton E from the pair (Dg, Lg).
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The paper is organized as follows. In Section 2 we collect the preliminary material required for the rest of the paper. In
particular we discuss Fano threefolds of index 2 and their derived categories. Section 3 is the central part of the paper
where we develop the general theory of instantons. In particular, we introduce the acyclic extension of an instanton
and discuss the curve of its jumping lines. In Section 4 we consider in detail the case of degree 5 Fano threefolds, and
Section 5 deals with the degree 4 case. Finally, in Section 6 we outline possible approaches to instantons on Fano
threefolds of index 2 and degrees 3, 2, and 1.

2. Preliminaries

We work over an algebraically closed field k of characteristic 0.

2.1. Stable sheaves

Let F be a coherent sheaf on a smooth projective variety X of dimension n. Assume a polarization (i.e. an ample divisor
H on X) is chosen. Then the slope of F is defined as

un(F) = i (F)- H™ 7V r(F).

A sheaf F is called Mumford-semistable, or p-semistable if for each subsheaf G C F with r(G) < r(F) one has
ur(G) < py(F). If the last inequality is strict for all such G then one says that F is stable.

Analogously, F is called Gieseker-semistable if for each subsheaf G C F with r(G) < r(F) one has
x(X, G(tH))/r(G) < x(X, F(tH))/r(F) for t> 0.

Here x(X,—) stands for the Euler characteristic of a sheaf. By Riemann-Roch x (X, F(tH))/r(F) is a polynomial of
degree n with the coefficient at t” independent of F and the coefficient at "~ proportional to py(F). Thus each
Mumford-stable sheaf is Gieseker-stable, and each Gieseker-semistable sheaf is Mumford-semistable.

Note also that rescaling of H does not affect the (semi)stability of coherent sheaves. Thus if Neron—-Severi group of X
is isomorphic to Z one can forget about the choice of polarization. Moreover, in this case one can consider ¢((F) just as
an integer and the slope p(F) = ¢(F)/r(F) as a rational number. We are going to use this convention throughout the

paper.
Note also that if the Picard group of X is Z then a twisting of a sheaf F by a line bundle results in shifting the slope of

F by the integer equal to the class of this line bundle in Pic X. In particular, there is a unique twist such that the slope
p(F) is contained the interval —1 < p(F) < 0. This twist is called the normalized form of F and is denoted by Foom-

The following criterion is very useful for verification of stability.

Lemma 2.1 ([9]).

Assume that the Picard group of X is Z and its ample generator Ox(1) has global sections. Let F be a vector bundle
of rank r on X such that for each 1 < k < r —1 the vector bundle (AXF)nom has no global sections. Then F is stable.

We will refer to Lemma 2.1 as Hoppe's criterion.

2.2. Fano threefolds of index 2

A Fano variety is a smooth projective variety Y with the anticanonical class —Ky ample. The index of a Fano variety Y
is the maximal integer dividing the canonical class. We refer to [11] for a detailed introduction into the modern theory
of Fano varieties.
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It is well known that for a Fano variety of dimension m the index does not exceed m + 1, see [8, 11]. Moreover, there is
only one Fano m-fold of index m + 1, which is the projective space P", and only one Fano m-fold of index m, which is
the quadric Q™ C P In case of threefolds, thus we have P? of index 4 and Q3 of index 3, as well as Fano threefolds
of index 2 and 1. All of them are classified in [11]. In this paper we restrict the attention to Fano threefolds of index 2
and the Picard group of rank 1. There are five families of those, classified by the degree of the ample generator of the
Picard group:

degree 5 Y5 = Gr(2,5) NP° C P (a linear section of the Grassmannian);
degree 4 Yy = Q; N Q, C P° (an intersection of two 4-dimensional quadrics);
degree 3 Y3 C P! (a cubic threefold);

degree 2 Y; — P3 (a quartic double solid);

degree 1 Y, ——» P? (a hypersurface of degree 6 in the weighted projective space P(1,1,1, 2, 3)).

From now on we denote by Y any Fano threefold of index 2. We will indicate the degree by a lower index, for example
Y5 will stand for the degree 5 threefold. Since the Picard number of Y is 1, it follows that

HX(Y,Z) = HY(Y,Z) = H%(Y,Z) = Z,

(generated by the class of a hyperplane section, the class of a line, and the class of a point) so the Chern classes of
vector bundles can be thought of as integers. The ample generator of the Picard group is denoted by Oy(1), so we have

wy = Oy(—2).

2.3. The Fano scheme of lines

The Hilbert scheme of lines on Y is a surface which we denote by F(Y) and it is called traditionally the Fano scheme
of lines on Y. By definition, if W* =T(Y,Oy(1)) then F(Y) is a subscheme in Gr(2, W) consisting of all lines in P(W)
which lie in (the closure of) the image of Y via the (rational) map given by the line bundle Oy (1).

For a line L C Y we denote by D; C F(Y) the curve parameterizing lines intersecting L and its class in the group
A'(F(Y)) of 1-cycles on F(Y) modulo rational equivalence (which we denote by ~).

Let Z denote the universal family of lines. It is a codimension 2 subscheme in Y x F(Y), its fibers over F(Y) are mapped
onto lines in Y. Thus we have a diagram

Lemma 2.2.
If a Fano threefold Y of index 2 is generic in its deformation class then the map q in the above diagram is flat and finite.

Proof. In case of degree d = 5 and d = 4 it is easy to see that the map ¢ is finite and flat for any Y. Indeed,
if there is a point on Yy with infinite number of lines on Y, passing through this point then these lines sweep in Y, a
surface of degree less than d which is impossible by the Lefschetz Theorem. On the other hand, for d < 3 one can verify
the claim by a parameter counting. O
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Remark 2.3.
Although for generic Y the map q is flat and finite, both may fail for special 3-folds Y. For example, consider the cubic
3-fold in P* = P(xo, . .., x4) with equation x3x; + x5 + x3 + x3 + x3 = 0. It is easy to check that it is smooth. However

the lines passing through the point (1:0:0:0:0) are parameterized by the elliptic curve xo = x; = X3 + x3 + x3 = 0, so
the fiber of g over this point is not finite.

On the other hand, the map p: Z — F(Y) is always flat and smooth. In fact, it is a projectivization of the restriction to
F(Y) of the tautological bundle of Gr(2, W). We denote this rank 2 bundle on F(Y) by M. We will need to identify the
first Chern class of M.

Lemma 2.4.
We have ¢1(M) = —dD,.

Proof. For simplicity assume that Oy(1) is generated by global sections, i.e. the map Y --» P(W) is reqular. Take
a subspace W’ C W of codimension 2. Then ¢(M*) is represented by all lines L C P(W) which intersect P(W’). In
the other words it is the set of lines on Y which pass through Y N P(W’). But Y N P(W’) is a linear section of Y of
codimension 2, so its class is ¢1(Qy(1))? which is rationally equivalent to dL, where L is a line on Y. Hence the required
set of lines is rationally equivalent to d times the set of lines intersecting L, that is to dD;. O

Corollary 2.5.
We have Wz/IF(Y) = p*Op(y)(dDL)®q*Oy(—2) and Wz/(yxF(Y)) = p*OF(y)(dDL)‘

Proof. Since Z = Pr(y,(M) we have wz/rv) = p* det M*® Oz;r(v)(—2). The second formula follows immediately from
wZ/(YxF(Y)) = a)Z/F(y) ® q*wf since wy = Oy(—2) and OZ/F(Y)“) = q*Oy(1). O

2.4. Derived categories

For an algebraic variety X we denote by D’(X) the bounded derived cateqgory of coherent sheaves on X. It is a k-linear
triangulated category. The shift functor in any triangulated category 7T is denoted by [1] We denote Ext’(F, G) =
Hom(F, G[p)) and Ext*(F, G) = P,c;, Ext”(F, G)[—p]. One says that a triangulated category T is Ext-finite if Ext*(F, G)
is a finite dimensional graded vector space for all F, G € T. The derived category D?(X) is Ext-finite if X is smooth
and proper.

Definition 2.6 ([4, 5]).
A semiorthogonal decomposition of a triangulated category T is a sequence of full trianqulated subcategories A4, ..., Ay
in T such that Homg (A, Aj) = 0 for i > j and for every object T € T there exists a chain of morphisms

0=T,>Tp1—>...oT1 >Ty=T

such that the cone of the morphism Ty — T,_4 is contained in Ay for each k =1,2,..., m.

A semiorthogonal decomposition with components A4, ..., A, is denoted T = (A4, ..., A,). The easiest way to produce
a semiorthogonal decomposition is by using exceptional objects or collections.

Definition 2.7 ([3]).
An object F € T is called exceptional if Ext*(F, F) = k. A collection of exceptional objects (F,..., F,) is called
exceptional if Ext’(F;, Fy) =0 for all [ > k and all p € Z.

The minimal trianqulated subcategory of T containing an exceptional object F is equivalent to the derived category of
k-vector spaces. It is denoted by (F), or sometimes just by F.
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Lemma 2.8 ([5]).
If T is an Ext-finite triangulated category then any exceptional collection Fy,...,F, in T induces a semiorthogonal
decomposition

T=(AF,....F)

where A= (Fy,...,F))t ={F € T: Ext*(F,, F) =0, 1 < k < m}.

This construction can be efficiently applied to Fano varieties. Recall that by Kodaira vanishing any line bundle on a
Fano variety is exceptional. Moreover, if X is a Fano variety of index r then the sequence Ox, Ox(1),...,Ox(r —1) is
exceptional. In particular, for Fano threefolds of index 2 we have an exceptional pair Oy, Oy(1). By Lemma 2.8 it extends
to a semiorthogonal decomposition

DY) = (By,0v,0¢(1)), By =(0y,0y(1))". 2

The category By is called the nontrivial component of D?(Y). Some of its properties are discussed in [15].

For each exceptional object E € T one can define the so-called mutation functors as follows. For each object F € T
consider the canonical evaluation map Ext*(E, F)® E — F. Its cone is denoted by L (F) and is called the left mutation
of F through E. By definition we have a distinguished triangle

Ext*(E,F)® E - F — Lg(F). (3)
The right mutation of F through E is defined dually, by using the coevaluation map and the distinguished triangle
Re(F) - F — Ext*(F,E)'®E.
The following fact is well known.

Lemma 2.9 ([4]).

The left and right mutations through E vanish on the subcategory (E) and induce mutually inverse equivalences

1 %LE 1
E——>F-.
Re

3. Instanton bundles

Let Y be a Fano threefold of index 2. Recall that by definition an instanton of charge n on Y is a stable vector bundle
E of rank 2 with ¢;(E) = 0, c2(E) = n, enjoying the instantonic condition (1), which we rewrite for convenience as

HY(Y,E(=1)) = 0.

3.1. Cohomology groups

No wonder that the condition (1) has very similar consequences as the classical instanton condition on IP*>. For example,
the cohomology table of E has the same shape.
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A
Lemma 3.1 ([13]).

Let E be an instanton bundle of charge n on a Fano threefold of index 2 and degree d. Then the cohomology table of
E has the following shape:

[ [ 2 [ o [i] |
h3(E(t) x| 0 |0 0
h2(E(1) x[n=2]0] 0 |0
h'(E(1) 0 |[0]|n=2
hP(E(t)) 0| o |[0| O |=

In particular,

HYE() =0  for t<0,
HY(E@®) =0  for t< -1,
HXE@) =0  for t> -1,
HY}E@) =0  for t>=2

Proof. First note that H°(E(t)) = 0 for t < 0 by stability of E. Further, by the Serre duality,
H3(E(t))" = HYE*(—t —2)) = HY(E(-t—=2)) =0

for t > —2. Also by the Serre duality we have H?(E(—1))* = H'(E*(—1)) = H'(E(-1)) = 0. Finally, consider the
Koszul complex
0 — O(=3) - 0(-2)® - 9(-1P® - 9 - 0; - 0,

given by a triple of global sections of O(1) with Z a zero-dimensional subscheme of Y of length d (note that
dim H°(Y4,0(1)) = d + 2 > 3, so we can always find a triple of sections). Note that E® O is an artinian sheaf,
in particular H>%(E®Oz) = 0. On the other hand, looking at the hypercohomology spectral sequence of the above
Koszul complex tensored with £ we see that H?(E) cannot be killed by anything (since H*(E(—1)) = H*(E(-2)) = 0),
hence if H?(E) # 0O it should contribute nontrivially into HA(E®0z) = 0. Thus H*(E) = 0. Twisting additionally by
O(t) with t > 0 and using the same argument we prove inductively that H?(E(t)) = O for all t > 0. Then by the Serre
duality we have H'(E(—2—t)) = 0. This explains all zeros in the table. Applying Riemann—Roch one can easily deduce
that dim H'(E) = dim H*(E(=2)) = n — 2. O

Corollary 3.2.

The charge of an instanton bundle is greater or equal than 2.

The instanton bundles of charge 2 are called the minimal instantons. They are particularly interesting. For example
they have the following vanishing property.

Corollary 3.3.
If E is a minimal instanton then H{(E(t)) = 0 for all i and —2 < t < 0.

Remark 3.4.
The possible values of dim HY(E(1)) = dim H3(E(—3)) and dim H'(E(1)) = dim H?(E(—3)) are hard to find. There is a
simple restriction

dim H(E(1)) — dim H'(E(1)) = 2d — 2n + 4

which is given by Riemann—Roch. Moreover, probably one can show that
dim H°(E(1)) < 2d, dim H'(E(1)) < 2n — 4.
For this it is enough to check that for generic linear section C of Y of codimension 2 (which is an elliptic curve) one

has H°(C, E[¢) = 0. In this case it would be easy to deduce for minimal instantons the equalities H*(E(1)) = k%9,
H*(E(=3)) = k*[-3].
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3.2. The acyclic extension
As we have seen in Lemma 3.1, each instanton E enjoys the vanishing
H*(Y,E(-1))=0.

One can easily produce from E another bundle which has a stronger vanishing.

Lemma 3.5.
For each instanton bundle E there exists a unique short exact sequence

05 ESES00250 4)
such that E is acyclic, i.e.
H*(Y,E)=0.

Indeed, it is clear that E is nothing but the universal extension of H'(Y, E)® Oy by E. Another way to describe Eis
by saying that

E=1Lo,E,
the left mutation of E through Oy. Indeed, the definition of the left mutation (3) in this case literally coincides with exact

sequence (4). The bundle E will be referred to as the acyclic extension of the instanton E. Recall the semiorthogonal
decomposition (2) of D?(Y). We have the following

Lemma 3.6. N
The acyclic extension of an instanton of charge E is a simple p-semistable vector bundle E on Y with

fE)=n, (E)=0, o(E)=n, c(E)=0, H*(E) = H*(E(—1)) = 0.
In particular, Ee By. Moreover,
(E*)=h"(E)Y=n—2,  h(E*)=h*E*)=0.

Proof. Chern classes and cohomology of E are computed immediately using the defining sequence (4). To compute
the cohomology of E(—1) we twist (4) by —1, and to compute the cohomology of E* we dualize (4) and use self-duality
of E.

To check that E is simple we first show that Hom(E, E) = k (by applying Hom(E, —) to (4) and noting that E itself is
simple and Hom(E, Oy) = H°(Y, E) = 0). Then applying Hom(—, E) to (4) we see that Eis simple. Finally, to establish
p-semistability of E we note that E is an extension of two u-semistable sheaves of the same slope. O

3.3. The antiautoequivalence

Recall that any instanton, being a rank 2 bundle with trivial determinant, is self-dual. This self-duality translates to
the following property of the acyclic extension. Consider the following antiautoequivalence of the category OF C D?(Y).
First, note that the duality functor

F — RHom(F,Oy)

gives an antiequivalence of the category Of onto the category *Oy. Composing it with the left mutation functor Lg
with respect to Oy, and using Lemma 2.9 we conclude that

D: Ot - O,  F s Lo(RHom(F,0y))

is an antiautoequivalence of Oy. Moreover, it is easy to see that D is involutive.
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Lemma 3.7.
We have a functorial isomorphism 6: D?> = id.

Proof. Indeed, for each F we have a canonical distinguished triangle

RHom(F, 0y)®0Oy, — RHom(F,O0y) — D(F).
Dualizing it we obtain a triangle

RHom(D(F), Oy) — F — RHom(F,0y)*®Oy.

Since Lo(Qy) = 0, the application of exact functor Ly gives a functorial isomorphism D?(F) = L(F). But if F € O}
then Lo(F) = F. O

Moreover, the antiautoequivalence D preserves the subcategory By.

Proposition 3.8.
The category By is preserved by the antiautoequivalence D.

Proof. Assume that F € By = (Oy,Oy(1))t. Then we have RHom(F,Oy) € +{Oy(=1),0y) and so D(F) =
Lo (RHom(F,Oy)) € t0y(—1) N O%. But since wy = Oy(—2), it follows from the Serre duality that 2Oy (—1) = Oy (1)4,
so we see that D(F) € Oy N Oy (1)L = {0y, Oy(1))* = By. O

3.4. The self-duality of acyclic extensions

Now we can state the self-duality property of E.

Proposition 3.9.
If E is the acyclic extension of an instanton then there is a canonical isomorphism ¢: D(E) — E. Moreover, the
isomorphism ¢ is skew-symmetric, that is the diagram

D(E)

D(¢) N
~ 5 ~

D*(E) E

commutes.

Proof. Applying RHom(—, Oy) to (4) and denoting by o: E* — E the canonical isomorphism we obtain an exact
sequence

_ oAl
0 - 072 - RHom(E,0y) 25 E 0.

Combining it with (4) we obtain a long exact sequence

ApoAl  ~

0 - 02 — RHom(E,0y) =5 E — 0972 > 0.

Since Lp(Oy) = 0, we see that
¢ =Lo(AcoAl): D(E) » Lo(E) = E

1207
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is an isomorphism. Let us show that ¢ is skew-symmetric. For this note that the above arguments give the following
commutative diagram.

RHom(E, Oy)
M\ /

RHom(D(E), Oy)

E
Xﬁg /

Dualizing it we obtain

RHom(E, Oy)
and applying Lo we obtain
DZ(E
wk 4
D(E
Now it remains to note that the arrow in the top row is 6z and, since g’ = —g, the left arrow is —o. O

3.5. Reconstruction of the instanton

It turns out that any vector bundle F satisfying properties of both Lemma 3.6 and Proposition 3.9 is the acyclic extension
of appropriate instanton.

Theorem 3.10.

Assume that F is a vector bundle on Y with
r(F)=n, «(F)=0, c(F)=n, «c(F)=0, H*(F) = H*(F(—1)) =0, D(F)EF

Then HY(Y,F*) = 0 unless i = 0,1 and~h°(l—_*) = h'(F*) < n — 2. Moreover, if h°(F*) = n — 2 then there is a unique
instanton E of charge n such that F = E.

Remark 3.11.
It is easy to see that the conditions H*(F) = H*(F(—1)) = 0 together with ¢;(F) = 0 imply cz(F) = r(F) and c3(F) = 0.
Indeed, it follows easily from the description of the numerical Grothendieck group of the cateqgory By, see [15].

Proof. Let us write down the condition D(F) = F explicitly. Since F is a vector bundle, we have RHom(F, Oy) = F*.
Hence D(F) = Cone (H*(Y, F*)® Oy — F*). Writing down the long exact sequence of sheaf cohomology we obtain a
long exact sequence

0 - HY(Y,F)®Oy » F* - F - H'(Y,F)®0y — 0
as well as the vanishing of H(Y, F*) for i # 0,1. Note that by Riemann—Roch the Euler characteristic of F* is zero,
hence h%(F*) = h'(F*). Denoting this integer by h we can rewrite the above sequence as

0500 »F - F—-0l o

Let E be the image of the map F* — F. Note that E is locally free (as a kernel of an epimorphism of vector bundles).
Moreover, ¢1(E) = 0 and c(E) = n, hence r(E) > 2. Thus h=n—r(E) <n -2

Finally, if h = n — 2 then E has rank 2, is locally free, and ¢i(E) = 0, c2(E) = n. Moreover, it is stable since
HO(Y, E) = Coker (H°(Y, F*) — H°(Y, F*)) =0, and H'(Y, E(—1)) = 0 since both F(—1) and Oy(—1) are acyclic. [
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3.6. Ideals of lines

Recall that a line on a Fano threefold Y is a rational curve on Y of degree 1.

Proposition 3.12.
For any Fano threefold Y of index 2 and any line L C Y the ideal sheaf I, is contained in By. Moreover, it is fixed
by D:

D(l)) = 1.

Proof. From the exact sequence
0=/ —-0y,—>0,—-0

it follows easily that H*(Y, I;) = H*(Y, I,(—1)) = 0, so I, € By. Further, applying RHom(—, Oy) and taking into account
that
R}[Oﬂl(oL,Oy) = OL[—Z],

by the Grothendieck duality (since w;)y = w; ® w;FL = 01(—2)®0.(2) = O,), we obtain a triangle
Oy — RHom(l, Oy) — O/-1]. 5)
Since Lp(Oy) = 0 we conclude that
D(l}) = Lo(RHom(l;, Oy)) = Lo(O—1])) = Cone (Oy[-1] — O-1)) = I,

hence the claim. O

Remark 3.13.
In fact one can show that the isomorphism D(/;) = I, is skew-symmetric in the sense of Proposition 3.9. However we
will not need this fact, so we skip the proof.

As we will see below the ideals of lines give a connection between the geometric and categorical properties of lines.
However, sometimes it is more convenient to use the (twisted and shifted) dual objects. We denote

Ji = RHom(I,, Oy (=1))[1] € DE(Y).

Lemma 3.14.
We have a distinguished triangle
Oy(=M[1] = Jo = O(=1). (6)

Moreover, |/, € By.

Proof. The triangle is obtained from (5) by a shift and a twist. Since both Oy(—1) and O/ (—1) are acyclic, we
conclude that J, € OF. On the other hand,

RHom(Oy (1), J) = RHom (Oy (1), RHom(l,, Oy (—1)[1])) = RHom (O, (1)@, Oy (—=1)[1])
= RHom(l, Oy(—2)[1]) Z RHom(Oy, [,[2))* = 0

(we used the Serre duality in the last isomorphism), hence J;, € By. O

Remark 3.15.

One can check that the object J; is isomorphic to a cone of the unique nontrivial morphism O (=1)[—=1] — Oy(=1)[1].
Indeed, it is a cone of such a morphism just by (6), and the morphism is nontrivial since otherwise we would have
JL E O0y(—1)[1]® OL(—1) and thus J, would not be orthogonal to Oy(1). Finally, to check that the morphism is unique
we note that it is obtained by the antiautoequivalence RHom(—, Oy(—1)[1]) from the morphism Oy — O,. The later
morphism is evidently unique hence the claim.
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3.7.  Jumping lines

A line L C Y is a jumping line for an instanton E if E]; = O,(i)® O, (—i) with i > 0. More precisely, we will say in this
case that L is an i-jumping line. By analogy with the case of instantons on P3 it is very tempting to state the following

Conjecture 3.16.
For any instanton E on Y a generic line is not jumping.

The standard approach [18] to this conjecture does not work because the map from the universal line to Y has disconnected
fibers (as we have seen in Lemma 2.2 the map is finite). We will show in Sections 4 and 5 that this conjecture is related
to some well-known geometric questions.

Assume that E is an instanton such that generic line is not jumping for E. Let D C F(Y) be the subscheme parameteriz-
ing jumping lines of E and write i: Dg — F(Y) for the embedding. Also recall the notation introduced in subsection 2.3.
The following result is an analogue of the Grauert-Miilich Theorem.

Theorem 3.17.

If E is an instanton on Y of charge n such that generic line is not jumping for E then
Dg ~ nD;.
Further, there is a coherent sheaf L on Dg such that
Rp.q*E(—1) = i.Le[—1].
The sheaf L is invertible on the open subset of D parameterizing 1-jumping lines, and has the property
Lg Z RHom(Lg, Op,((n — d)Dy)).

In particular, if E has no 2-jumping lines then L is a line bundle such that L2 = Op,((n — d)Dy).

Proof. Consider the object = Rp,q*E(—1) € D*(F(Y)). If x is a point of F(Y) such that the corresponding line L,
on Y is not a jumping line, then H*(L,, E(=1)[, ) = 0 whence J is supported on the subscheme Dg. Further, if L, is a
1-jumping line then H*(L,, E(—1)[, ) = k@®k[—1], which means that J is a rank 1 sheaf on D¢ shifted by —1. Thus

De = —c1(F) = —c1(Rp«q*E(—1)).

Note that by Grothendieck—Riemann—Roch the first Chern class of Rp.q*(E(—1)) does not depend on E itself, it depends
only on the Chern character of E. In particular, to compute the rational equivalence class of Dg we can replace E by
any sheaf with the same Chern character. The most convenient choice is to take

E' = Ker (o?2 - @oh),
i=1

where Lyq,...,L, is a generic n-tuple of lines. It is clear that Rp.q*Oy(—1) = 0, hence we have Rp.q*E'(—1) =
@D Rp.q*O,(—1)[—1]. It remains to check that ¢(Rp.q*O,(—1)) = Dy,.

Indeed, let L; be the line corresponding to a point x; € F(Y). As L; is generic, we may assume that the map q is flat
over L;, so q*Or, = O4-1(;,)- But it is clear that

g (L) =p " (x) U DL“



A. Kuznetsov

where 5L,. is a section of the map p over Dy, (the points of DL,. are the pairs (y,x) € Y x F(Y) such that x € D; and y
is the unique point of intersection of the line L, with ;). Thus we have an exact sequence

0— Gp, — q"0 = Oy =0,

where CbL. is the sheaf of ideals of the scheme-theoretical intersection p~'(x;) N DL[ on ELI.. In particular, it is a sheaf

of rank 1 on pr Tensoring the above sequence by ¢g*Oy(—1) and taking into account that Rp*(Opq(X[)@ q*Oy(—1)) =
H’(p_1 (x), Opfw(x)(—'l)) ®0, =0 since p~'(x) = P!, we conclude that

Rp.q"(01,(=1)) = Rp.(q"01,®q"0y (1)) = Rp.(Cp, ® 4" Oy(-1)).

Since the restriction of the map p to 5“ is an isomorphism onto D;,, we conclude that Rp,q*(O,,(—1)) is a rank 1 sheaf
on D;,. Hence its first Chern class indeed equals D,.

For the second claim we have to check that J is a coherent sheaf shifted by —1. Since the map p has relative dimension 1,
the object F can have cohomology only in degree 0 and 1. Thus we have to check that the cohomology in degree 0
vanishes. Indeed, let F° denote the cohomology of F in degree 0 and F' the cohomology in degree 1. Then we have a
distinguished triangle

F - F - F-1]
Applying the Grothendieck duality and taking into account that wz/Fy) = p*Ory)(dD;) ® g*Oy(—2) by Corollary 2.5,
we have

RHom(F, Ory)) = RHom (Rp.q*(E(—1)), Ory)) = Rp. RHom (g (E(=1)), p'Ofy))
= Rp.(q"(E*(1)® wzrv[1]) = Rp.(q"(E*(1))® p*Orv)(dD1) ® g* Oy (—2)[1])
Z Rp.(q*(E(=1))®p* O (dDy)[1] = F(dD,)[1].

On the other hand, applying duality to the distinquished triangle for ' we obtain a triangle
RHom (F', Or))[1] — F(dD,)[1] — RHom (F°, Opy).

Note that since both 30 and F' are supported on a closed subscheme of F(Y), their derived duals are concentrated
in degrees higher than 1. Hence the first and the third term of the triangle are concentrated in nonnegative degrees.
It follows that the cohomology of F(dD;)[1] in degree —1, which is nothing but F°(dD;), vanishes. Thus 3° = 0 and
F = F'[-1]. Moreover, since F; is supported on the curve Dg we can write F = i,£g[—1], this being a definition of the
coherent sheaf £r. We have already seen the sheaf L is of rank 1 at any point of Dg corresponding to a 1-jumping
line.

Finally, recall that RHom(F, Or(y)) = F(dD,)[1]. Substituting here F = i,Lg[—1] and using the Grothendieck duality
we deduce

i.Le(dDy) = RHom (i.Lg[—1], OFy)) = i RHom (Le[—1],i'OFy)
= iy Rﬂ-[om(LE, u)DE/F(y)) = iy R.’]‘[Oﬂl(ﬁg, ODE(DE)) = iy R}[OTTL(LE, ODE(nDL))

which gives the required property of Lg. Finally, if there are no 2-jumping lines and so L¢ is a line bundle, this is
evidently equivalent to £ = Op,((n — d)Dy). O

Now we can state the following

Conjecture 3.18.
The curve of jumping lines Dg together with the line bundle L determines the instanton.

Again, the standard reconstruction procedure [18] does not work here since the lines corresponding to points of Dg do
not sweep Y (they sweep a certain surface), so it is not clear a priori how one could produce the bundle E out of this
surface. We will see however that for Fano threefolds of degree 5 and 4 the conjecture is true.
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3.8. Jumping lines in terms of By
It turns out that the curve of jumping lines can be described in the intrinsic terms of the category By. This description will

be useful later. To make a statement recall that for each line L we have defined an object J, = RHom(l;, Oy(—1))[1] €
DP(Y). This can be used to construct a universal family of objects J;.

Indeed, first note that the universal family of ideal sheaves /, is the ideal sheaf [; on Y x F(Y), where Z is the universal
line. Denote the embedding of Z into Y x F(Y) by . Now consider

d = RHom(l7, 70y (=1)®pi0rv)(=dDi)[1]),
where p; and gy are the projections from Y xF(Y) to F(Y) and Y respectively.  Applying the functor

RHom(—, q;Oy(—1)[1)) to the exact sequence 0 — Iz = Oyxry) = Oz — 0 and taking into account the fact that
by the Grothendieck duality we have

RHom (07, g0y (—1)® p; Orvy(—dDL)[1]) Z €. (q50y(=1)® pi O () (—d D) )[1]
= C*(q*oy(—”®P*OF(Y)(—C/DL)®wZ/YxF(Y)[—1]) Z4.q°0y (1)1 Z 0(=1)-1],

we deduce that J fits into the following distinguished triangle:
q10y(=1)®pi0Fm(=dD)[1] = d — 0(-1). )

Proposition 3.19.

Let E be the acyclic extension of an instanton E. A line L on Y is a jumping line for E if and only if Hom(E, J;) # 0.
Moreover, we have
Rp.q*E(—1) = Rp:. RHom(qiE, J).

In particular, if generic line is not jumping for E then Rp;. Rﬂ-[om(qﬁE,S) = i Le[-1].
Proof. First, J, € By C Oy, hence Ext'(E,jL) = Ext*(E, J;). Further,
Ext®(E, Oy(—1)) = H*(Y, E*(—=1)) = H*(Y,E(-1)) =0
by self-duality of E, hence Ext*(E, J;) = Ext*(E, O,(—1)). Finally, using again self-duality of E we see that
Ext®(E, Oi(—1)) = H*(Y,E*® O, (—1)) = H*(Y,E® O, (—1)) = H*(L, E],(—1)).

Combining all this we see that for non-jumping line L we have Ext'(E,jL) = 0, while for an i-jumping line L we have
dim Hom(E, J;) = dimExt'(E, J;) = i.

For the second statement we apply the functor Rp1. RHom(q*E, —) to the triangle (7). Note that

Rp1. RHom (g7 E, q30y(=1)® pj0ry(—dDy)) = Rpi.(q;E*(=1) @ piOr(y (—dDy))
ZHY(Y, E*(=1))® Of(y)(—dDy) = 0

since E* is an extension of E* = F by 0772 and both bundles are in Oy(1)1. On the other hand,
Rp1. RHom(q3E, 0,(~1)) = Rp.q*(E*(—1))

Again, since E* is an extension of E by 0772 and Rp1.q;(Oy(—1)) = 0 by base change we conclude that
Rp1.qi(E*(—1)) = Rp.g*(E(—1)). Combining all this we deduce the required isomorphism. O
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The same trick can be used for the description of the divisor of intersecting lines in F(Y)x F(Y) and for the curve
D, C F(Y) as well.

Lemma 3.20.
Two distinct lines L and L' intersect if and only if Hom(/, J;/) # 0.

Proof. Since Ext*(Oy,Jir) = 0 we have Ext*(l,J;) = Ext*™'(O,,Jis). Similarly, by the Serre duality we have
Ext®(Or, Oy(—1)) = Ext*(Oy(—1), 0.(=2)[3)* = H*(L, O,(—1)[3)* = 0, whence Ext*(O,, i) = Ext*(Or,Or). On the
other hand, if lines L and L’ do not intersect then this is zero. If they intersect in a point then Ext'(Q;, O;/) = k for i = 1
and i = 2. Combining with the above isomorphisms we conclude that

; k if L intersects L' and i = 0,1,
Ext(l,, Jy) =

0 otherwise,

which proves the lemma. O

4. Instantons on Fano threefolds of degree 5

In this section we consider in detail the case of the Fano threefold Y5 of index 2 and degree 5. We start with a short
reminder on the geometry and derived category of Ys.

4.1. Derived category
Recall that Y5 is a linear section of codimension 3 of Gr(2,5). Denote by V the vector space of dimension 5 and by
A C A?V* a generic vector subspace of dimension 3 (the group SL(V) acts with an open orbit on the Grassmannian

Gr(3,A*V*) and any A from the open orbit gives the same linear section). Denote also by U the restriction of the
tautological rank 2 subbundle from Gr(2, V) to Y5 and let

Ut = Ker (V'@ 0Oy — UY).

Recall that by [20] the category D?(Y5) is generated by an exceptional collection. For our purposes the most convenient
choice of the collection is

DP(Y5) = (U, U*, Oy, Oy, (1)) ®)

It gives the following descriptions of the category By,.

Lemma 4.1.
The category By, is generated by either of the following two exceptional pairs:

By, = (U, UY) = ((VU)(=1), U).
Moreover, we have canonical isomorphisms

Ext(U, UL) = Ext*((V/U)(—1),U) = A.
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Proof, The first decomposition follows immediately from the definition of By, and (8). To get the second, we apply to
DP(Ys) the antiautoequivalence F — RHom(F, Oy, (—1)). Since (U)* = V/U and U*(—1) Z U, we see that it takes (8)
to

D*(Y5) = (Oy5(=2), Oy (=), (VIU)(=1), ).

Finally, by the Serre duality we have
By, = {0y, Oy, (M)" = “(015(=2), Oy (- 1)),

which gives the second decomposition of By;.

For the computation of Ext's we refer to [20]. Here we will only explain how the evaluation morphism
a: AU — Ut

can be described. Consider the map AQU — A® V®O0y, =, V*® Oy, where ev is the evaluation of a 2-form (recall
that A is a subspace in A?V*) on a vector. Its composition with the projection V*® Oy, — U* vanishes (by definition of
¥5), hence the map itself factors through the subbundle U*. O

We would like to point out the following two funny consequences of the lemma. First, observe that it follows that the
left mutation of Ut through U is (V//U)(—1)[1] and dually, the right mutation of (V//U)(—1) through U is U*[—1]. In other
words, we have the following exact sequence:

0— (VIU)(=1) > A®U — U+ — 0. 9)
Also note that the antiautoequivalence from the proof of Lemma 4.1 takes the above exact sequence to
0 — (VIU)(—1) » AU — U+ — 0.
Since the sequence is canonical, it follows that there is an isomorphism
AZ A (10)

which can be easily shown to be symmetric. From now on for each vector a € A we will denote by a* € A* the covector
corresponding to @ under isomorphism (10).

4.2. The Fano scheme of lines

It is well known that the Fano scheme of lines on Y5 is P>. We will need the following more precise description.

Lemma 4.2.
We have F(Ys) = P(A). Moreover, for each point a € P(A) we have an exact sequence

0-U-L U -1 -0, (1)

and a distinguished triangle
(VIU)(=1) U - J. (12)
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Proof. Stability of V/U and U* implies that the morphism a: (V/U)(—=1) — U has kernel of rank 1. Since it is
reflexive, we conclude that it is a line bundle. Again, by stability of V/U and U* we know that it has degree —1, so
the kernel is Oy, (—1). Computing the Chern class of the cokernel we see that it is a torsion sheaf of rank 1 on some
line L on Ys5. Moreover, since the sheaves Oy, (—1), (V/U)(—1) and U are all acyclic, the cokernel is acyclic as well.
In particular, it has no O-dimensional torsion, so it is a line bundle on L, which being acyclic should be isomorphic to
Or(—1). Thus we obtain an exact sequence

0 > Oy, (=1) = (VAU)(—1) S U — 0,(=1) — 0.

In other words, we see that the cone of a: (V/U)(—1) — U is quasi-isomorphic to the (shifted by 1) cone of a morphism
01(—1) = Oy, (—1)[2] and, as it was explained in Remark 3.15, to justify the triangle (12) it remains to show that this
morphism is nontrivial. Indeed, if the morphism were trivial then the cone would be the direct sum of Oy, (—1)[1] and
O((—1), which should imply in particular that the surjection U — O,(—1) splits, which of course is false as U is torsion
free.

Now to obtain the first exact triangle it is sufficient to remember that J; = RHom(l;, Oy,(—1))[1] (just by definition).
Since RHom(—, Oy, (—1))[1] is an involution, we can apply it to (12). It is easy to see that we get precisely (11). O

Remark 4.3.

Alternatively, the object J; can be written as the cone of a morphism a*®U — U, where at C A is the orthogonal
complement of a € A. It follows from Lemma 3.20 that lines L and L’ intersect if and only if the corresponding vectors
a,a’ € A are orthogonal. Thus, the divisor D, is the line on P(A) orthogonal to a with respect to the quadratic form on
A corresponding to the isomorphism (10).

4.3. The action of the antiautoequivalence

Let us describe the antiautoequivalence D. For this it suffices to understand how it acts on the bundles U and U*.

Lemma 4.4.
We have D(U) = U*[1] and D(U*) = U[1]. Moreover, the morphism

D[—1]: A= Hom(W,U") — Hom (D[—1]U"), D[—1](W)) = Hom (W, U*) = A

is —1.

Proof. Indeed, we have RHom(U,0Oy) = U* and Lo(U*) = Cone(V*®0Oy, — U*) = U] Similarly,
RHom(U*, Oy,) = V/U and Lo (V/U) = Cone (V®Oy, — V/U) = U[1].

To check the second part take any a € A and the corresponding morphism a,: U — UL, By definition a, factors as
UL A®U S UL, Dualizing we obtain the morphism a; which factorizes as V/U 5 AU S 1. Note that it also

factorizes as V/U =5 A®(V/U) <5 U*. It follows that after the mutation Lo (and a shift) we obtain a map U — U*
which factorizes as U —» A®U — UL, hence coincides with —a. O

4.4. The monadic description
As Lemma 4.1 shows we have an equivalence
By, = D°(Qa),

where Db(Q,) is the derived category of finite dimensional representations of the quiver with 2 vertices and the space
of arrows from the first vertex to the second given by A,
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The equivalence is given by
®5: D*(Qa) — By, (M5, M3, m) — Cone (M;@U —— Ms@U").
The inverse equivalence ®5': By, — D?(Q,) takes any F € By, to the representation (M}, M) with
Ms = Ext* (U, F), M3 = Ext*(F, U[1))".
To get a monadic description of an instanton we just apply ®;" to its acyclic extension.

Lemma 4.5.
Let F be a semistable vector bundle of rank n with c¢1(F) = 0 such that F € By,. Then Ext*(F,U) = k"[-1].

Proof. First, note that U = U*(—1) (since U has rank 2 and detU = Oy, (—1)), hence we have the following exact

triple
0 - UH(—1) » V*®0Oy(-1) > U—>0

(this is just the exact triple defining Ut twisted by —1). By the Serre duality we have Ext'(F,Oy(—1)) =
H3={(Ys, F(=1))* = 0, so it follows that

Ext®(F,U) = Ext™ (F, U*(—1)). (13)
Now note that p(U) = —1/2, y(F) = 0. Therefore by stability of F and U we have
Hom(F,U) =0 and Hom (U, F(—2)) = 0.
On the other hand, p(U*(—1)) = —4/3 and p(F(—2)) = —2, hence by stability of F and U' we have
Hom(U*(—1), F(—2)) = 0.

By the Serre duality it follows that Ext’(F,U) = 0 and Ext’(F,U%(—1)) = 0. Combining this with (13) we see that
Ext'(F,U) = 0 unless i = 1. Computing the Euler characteristic with Riemann—Roch (recall that by Remark 3.11 we
have c;(F) = n and c3(F) = 0) we conclude that

Ext*(F,U) = k"[-1],
which proves the lemma. O
Let H be a fixed vector space of dimension n.

Proposition 4.6.
Let F be a semistable vector bundle of rank n with ¢;(F) = 0 such that F € By,. Choose an isomorphism H = Ext'(F,U).
If D(F) 2 F then there is an exact sequence

0 - HeU 25 H*'@ Ut — F — 0.

If the isomorphism ¢r: D(F) — F is skew-symmetric then the morphism yr is given by a symmetric in H tensor in
A H*® H* = Hom(H®U, H*®@U").
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Proof. Consider the universal extension

0-H®U—->F - F—0. (14)
It follows that Ext*(F’,U) = 0. On the other hand, Ext*(Oy,, F') = Ext*(Oy(1), F’) = 0 since this is true both for F
and U. Hence looking at exceptional collection (8) we see that F” € (U*), hence F’ is a direct sum of shifts of Ut. On

the other hand, from (14) we see that F’ is a vector bundle of rank 2n + n = 3n. Hence F' = (U*)". In other words, we
have shown that there is an exact sequence

0> HRU X5 HeUt - F = 0,

where H’ is another vector space of dimension n. Now it is time to use the self-duality of F. Applying D and taking
into account Lemma 4.4 we obtain another exact sequence

_yI
0 - (H)'®U —5% H*®@UL — D(F) — 0.
Both sequences come from a decomposition of an object of the category By with respect to the exceptional collection
(U, Ut), hence the map ¢r: D(F) — F induces a unique isomorphism of these exact sequences, that is a pair of

isomorphisms h: H* — H’, h": (H')* — H such that the following diagram commutes.

T

00— (Hy U — > H*@U* D(F) 0
ih’ lh ld’F
0 HeUu a H'@U* F 0

Applying the duality D once again we obtain yet another commutative diagram.

T

0— > (HyeU —— "~ Heut D(F) 0
ihT l(h/)T lD(dm)
0 Heu id H @U* F 0
Since D(¢r) = —dF we conclude that h’ = —h'. Identifying H’ with H* via h we see from the first diagram that
—yr = —y[, so yf = yr, that is yr is symmetric. 0

For each y € A® S?H* consider the induced map m,: H — H*®A. Consider also the composition

my®idq dypx®a

V: HoU H'®@ AU H'U*t

and
N my®idy idyx®ev

y: HQV —— H'@AQV —— H'@ V™.

Theorem 4.7.
Let H be a vector space of dimension n. Denote by M,(Ys) the set of all y € A® S?H* which satisfy the following
conditions:

(i) the map y': HRU — H*®U" is a fiberwise monomorphism of vector bundles,

(it) the rank of the map y: H® V — V*® H* equals 4n + 2.
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Then the moduli space MJ,(Ys) of instantons of charge n on Ys is the quotient M,(Ys)/GL(H). In particular, any
instanton of charge n is the cohomology bundle of a monad

0 > HeU X H'@Ur - C80y, 0,
where y € M,(Ys) and C = Cokery = k"2,

Proof. First, let us construct a map M,(Ys) — MJ,(Ys5). Take F = Coker(y’: H®U — H*®U'). Then F satisfies
the conditions of Theorem 3.10. Indeed, the only nontrivial thing to check is that h°(F*) = n — 2. But from the exact
sequence

05 F - Ho (VL) %5 H'elU — 0
it follows that H%(Ys, F*) is the kernel of the map H® V — H*® V* induced by y’. It is clear that this map coincides

with y, hence its rank is 4n + 2, so the kernel has dimension 5n — (4n+2) = n — 2. So, we deduce that F is the acyclic
extension of an instanton E of charge n which is the cohomology of the monad

0— HOU —» H'@U* — 0)2 — 0.

This construction can be performed in families, so we obtain a morphism M, (Ys) — MJ,(Y5). This morphism is surjective
by Proposition 4.6. So, it remains to check that the fibers are the orbits of GL(H).

Indeed, assume that the instantons E; and E, constructed from y;, y» € AQ S?H* are isomorphic. In other words, the
cohomology bundles of the monads

0> HRU 25> H'@U" - 052 50 and 0 — HRU -5 H'®U* - 0} - 0

are isomorphic. Since the monads come from a decomposition with respect to an exceptional collection, the isomorphism
extends to an isomorphism of monads. Thus there are unique isomorphisms f: H — H and g: H* — H* such that
vy, o f = goyj. Transposing (and using symmetricity of y;) we obtain y; o g7 = f7 o y5. Multiplying with f~7 on the
left and g~ on the right we obtain y,0g~" = f~7 o y]. Since f and g are unique it follows that g = =7, hence
Vi =fToy,of. O

One can rewrite slightly the monad as follows. Note that the morphism H*@U* — C® Oy, factors as HU* —
H*® V*® 0y, —» C®0Oy,. Therefore we have the following commutative diagram:

H*®uj_ N, H*® V*®Oy5 - @9 H*®u*

| |

HOU — > H'@U ——— > C®0,,

Since the top row is acyclic, it follows that the bottom row is quasi-isomorphic to
0 > HRU — K®0Oy, » H*'®U* — 0, (15)
where K = Ker (H*® V* — C) = Imy. So, we have proved

Proposition 4.8.
Any instanton of charge n on Y5 is the cohomology of a self-dual monad (15) with dimH = n and dimK = 4n + 2.
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4.5. Instantonic nets of quadrics

Any tensor y € A® S?H* can be thought of as a net of quadrics in P(H) parameterized by P(A*). So, given an instanton
E on Y5 we can consider the corresponding net of quadrics yg.

The space of nets of quadrics, A® S?H*, is acted upon by the group GL(H), so one can speak about GIT stability and
semistability of a net of quadrics. Recall that, according to [25], a net y is unstable if and only if there is a pair of
subspaces Hy, H, C H such that

e dim Hy + dim H, > dim H, and

e the map A* X5 S?H* — Hi @ H; is zero.

Proposition 4.9.
For any instanton E on Ys the corresponding net of quadrics yg is semistable.

Proof. Assume that yg is unstable. Let (H;, H,) be the destabilizing pair of subspaces. Consider the subspace
Hy = Ker (H* — H3). Note that the condition dim H; + dim H, > dim H is equivalent to

dim H; > dim I‘IZl
The second condition says that the image of the map Hi®A* ¢ H®A* X5 H* is contained in Hy. Thus we have a

commutative diagram

Hi @ A" —> H

L

HeoA Yt o

Consider the map ys: H1®U — Hy ® U+ induced by the upper line of the above diagram and the induced diagram
0——= HieU HeU (HIH)@U ——10

0 ——= HF@U — = H* U} —> H;@Ut ——> 0

with exact rows. Since the morphism yg is injective by Proposition 4.6 we conclude that y; is injective as well. Moreover,
we obtain an exact sequence

0 — Ker y, — Coker y; — Coker yz — Coker y, — 0.

Note that, by semistability of E = Coker Ve, the image of the middle arrow should have nonpositive first Chern class,
hence

c¢1(Coker ys) < c1(Ker yy).

On the other hand, since Ker y; = 0 we have
c1(Coker y,) = — dim Hy + dim H; > 0,

hence ¢q(Keryy) > 0. But Kery, is a subsheaf in (H/H;)®U, and U is stable of negative slope. This contradiction
proves the claim. O
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4.6. Jumping lines
Again consider the net of quadrics y € A® S?H* associated with an instanton £. Assume for a moment that generic
quadric in the net is nondegenerate. Then degenerate quadrics form a curve (of degree n) in P(A*) which we denote

by D,. By definition the curve D, is the support of the cokernel of the morphism H® Opa)(—2) N H*Q Opasy (—1)
induced by y. The cokernel itself is a coherent sheaf (we denote it by 6,) with the property that

RHom(6,, wp,) = 6. (16)

In particular, if the net is reqular, the curve D, is smooth and 6, is a theta-characteristic, that is a line bundle which is
a square root of the canonical class. Moreover, as the defining exact sequence

0 - H® Opar)(—2) L H*® Opary(—1) — 6, — 0 (17)
shows, this theta-characteristic is nondegenerate, that is
H°(D,,6,) = 0. (18)

In case of a nonregular net the sheaf 6, is neither locally free nor of rank 1 in general. But still it enjoys the
properties (16) and (18). We will call such sheaves generalized nondegenerate theta-characteristics.

Recall that the Fano scheme of lines on Y5 coincides with P(A) which itself is identified with P(A*), so the curve D, can
be thought of as a curve on the Fano scheme of lines. It turns out that it coincides with the curve of jumping lines of
the instanton E,, and the corresponding sheaf L is obtained from the theta-characteristic 6, by a twist.

Proposition 4.10.
Let E be an instanton on Y5 and yg the corresponding net of quadrics. Then one has a distinguished triangle

Rp.q* E(=1) = H®Opa)(—3) 25 H*® Oppasy(—2).

In particular, the generic line is nonjumping for E if and only if the generic quadric in the net ye is nondegenerate.
Furthermore, if these equivalent conditions hold then Dg = D, and £¢ = 6,(—1).

Proof. By Lemma 3.19 we know that Rp,q*E(—1) = Rp, RHom(q*E, ). On the other hand, one can easily write
a relative version of (11),
0 — UK Oppas(—3) = U B Opae(—2) — Iz — 0,

which gives a distinguished triangle
(VIU)(=1) B Oppar)(—3) = UK Opary(—2) — 7.
Now we combine this triangle with the exact sequence
0 - Hou 5 H'@U' — E — 0.

Note that Ext*(U, (V/U)(—1)) = Ext*(U+,U) = 0 by Lemma 4.1, Ext*(U,U) = k since U is exceptional and
Ext® (UL, (V/U)(—=1)) = k[—1] by (9). This gives the desired distinguished triangle

Rp1. RHom(qE, J) — H®Opu(=3) 25 H*®@ Opu(—2).

The rest of the proposition easily follows. O
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The above proposition gives the following reinterpretation of Conjecture 3.16 in terms of the associated net of quadrics
— if y is an instantonic net of quadrics then generic quadric in the net is nondegenerate. In fact we believe that this
should follow from the semistability of the net. To be more precise, we have the following

Conjecture 4.11.
If y is a semistable net of quadrics then the generic quadric is nondegenerate.

Remark 4.12.

Analogous statement for pencils of quadrics is very easy to prove by analyzing the possible isomorphism classes of the
images of the map H® Opi(—1) > H*®Op1 given by the pencil. If the image is 0% & Op1(—1)" with a + b < dimH
then taking Hy = Ker(H® Op1(—1) — Op1(=1)?) and H, = Coker (Op; — H*®0p1)* we get a destabilizing pair of
subspaces.

On the other hand, for higher dimensional linear spaces of quadrics the analogous statement is wrong. For example, the
5-dimensional space of Pliicker equations of Gr(2,5) consists of degenerate quadrics, but is stable.

We can also use Proposition 4.10 to deduce Conjecture 3.18.

Corollary 4.13.
For Fano threefold of degree 5 Conjecture 3.18 is true.

Proof. By Proposition 4.10 the (generalized) theta-characteristic of the net can be reconstructed from the sheaf £¢
on Dg, so it suffices to recall that the net can be reconstructed from the associated theta-characteristic 8. Indeed, if we
consider 6 as a sheaf on the projective plane, then the complex (17) is nothing but the decomposition of 8 with respect
to the standard exceptional collection (O(—2), O(—1), O) (by nondegeneracy property 6 is orthogonal to O, so it does not
appear in the decomposition). But the morphism H® O(—2) - H*® O(—1) gives back the net. Finally, the net allows
to reconstruct the instanton by Theorem 4.7 (or Proposition 4.8). O

5. Instantons on Fano threefolds of degree 4

In this section we concentrate on Fano threefolds of degree 4.

5.1. Derived category

A Fano threefold of degree 4 and index 2 is an intersection of two quadrics in P°. Denote by V a vector space of
dimension 6 and by A a vector space of dimension 2. Then a pair of quadrics gives a map A — S?V*, so we have a
family of quadrics in P(V) parameterized by P(A). There are six degenerate quadrics in this family, giving six special
points a1, ..., as € P(A). Let C be the double covering of P(A) ramified in {a1,...,as}. Then C is a curve of genus 2.
Denote by : C — P(A) the double covering and by 7: C — C its hyperelliptic involution. We will need the following
description of the category By,

Theorem 5.1 ([5, 14]).
There is an equivalence By, = D*(C) given by the Fourier-Mukai functor associated with the family of spinor bundles
on the quadrics in the family P(A).

Let us explain the statement. On each smooth quadric in the family P(A) there are two spinor bundles. Restricting them
to Y4 we obtain a pair of bundles on Y; which can be thought of as being associated with two points of C over the point
of P(A) corresponding to the quadric. Similarly, each sinqular quadric in P(A) is a cone over a 3-dimensional quadric
and Y, does not pass through its vertex. Hence the projection from the vertex gives a map from Y; onto a 3-dimensional
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quadric and we can pullback its (unique!) spinor bundle to Y;. This gives a bundle associated with the branching
point of C — P(A). One can show that all those spinor bundles form a vector bundle 8 of rank 2 on C x Y4 and the
Fourier—Mukai functor ®g: D?(C) — D®(Y4) is an equivalence onto By,. Note that this defines 8 only up to a twist by
the pullback of a line bundle on C.

Another approach to the relation of C and Y3 and the description of the universal spinor bundle 8 on C x Y; is due to
Mukai. He showed that Y; is the moduli space of stable rank 2 vector bundles on C with fixed determinant & of odd
degree and that 8 is the universal family for this moduli problem. For our convenience we assume that

degé =1

(note that a twist by a line bundle of degree k changes the degree of the determinant of a rank 2 bundle by 2k, so
the moduli spaces for all odd degrees are isomorphic and the corresponding universal spinor bundles § differ by the
corresponding twists). This fixes the bundle 8§ unambiguously. In particular, we have

det8 = EX Oy, (—1).
In fact one can compute also
(8) = n+ 2Ly, ne H(C)® H(Y4) € HY(C x Ya), n’ =4pcpy,

where Hy, Ly, and py stand for the classes of a hyperplane section, of a line and of a point on Y, while p¢ stands for
the class of a point on C. This allows to write down the Grothendieck—Riemann—Roch for the functor ¢ = ®g.

Lemma 5.2.
For any F € D?(C) we have

deg F
3 P

ch(®(F)) = (2deg F — r(F)) — (deg F)Hy + r(F)Ly +

Proof. One has ] ’
ch(8) =2+ (pc — Hy) — pcHy —n+ pcly + gpy + gpcpy.

Since the relative tangent bundle of C x ¥ — Y is just the pullback of wZ', its Todd genus equals 1 — pc, so
1
ch(8)td(Te) =2 —pe — Hy —n+ pcly + §py.

Multiplying this by ch(F) = r(F)+ (deg F)pc and taking pushforward to Y (i.e. taking the coefficient at p¢) one obtains
the result. O

5.2. Lines

The description of the Fano scheme of lines on Y; is well known. However, for our purposes we will need a description
closely related to our Fourier—Mukat functor. We start with the following

Lemma 5.3.
Let £ be a line bundle of degree 0 on C and 8, a stable rank 2 vector bundle on C with detS, = & corresponding to a
point y € Y. If HY(C,L®8,) # 0 then 8, is a nontrivial extension

0—>L71—>Sy—>L®E—>O. (19)

Vice versa, Ext' (L®E,L*1) = k? and each nontrivial extension of £LQ & with £~ is a stable rank 2 bundle on C with
determinant &.
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Proof. Assume that H(C,£®8,) # 0. Then we have a map £~' — §,. If this map is not injective at a point x € C
then the map factors through £~"(x) which is impossible by stability of 8, (since deg £~"(x) = 1). So, the map L' — §,
is an embedding of vector bundles. Hence the quotient is a line bundle which has to be isomorphic to det§,® L = L ® &.
The extension is nontrivial since 8, is simple.

Vice versa, note that Ext*(L® &, L") = H*(C, £72® &"). Since deg(£2® &') = —1, there are no global sections and
by Riemann—Roch the first cohomology has dimension 2. Now take any nontrivial extension

0-L1"5E85L05-0.

Evidently det & = &, so let us check that € is stable. If not then there should be a line bundle £’ of degree 1 such that
Hom(L’, &) # 0. Applying Hom(£’, —) to the above exact sequence we obtain

0 — Hom(L', ™" — Hom(L', &) — Hom(L', L®&) — Ext'(L, L") — ...

Since deg £’ = 1 and deq L' = 0 the first term is zero. Further, since deg(£ ® &) = 1 the third term is nontrivial only
if £’ =L®Z. In the latter case the map from the third term to the fourth term is the map k — Ext' (£ ® &, L") given
by the class of the extension, so if the extension is nontrivial the map is injective and we have Hom(£’, €) = 0 in any
case. O

Also we will need the following simple observation.

Lemma 5.4. ,
For any line bundle £ on a curve of genus 2 one has L& T" L = w‘éeg/”. In particular, if deq L = 0 then £* = 7(L).

Proof. First take £ = O¢(x) for some point x € C. Then t°£ = O¢(1(x)) and LR T*L = O¢(x + T(x)). But x + 7(x)
is the preimage of a point under the projection C — P!, hence the corresponding line bundle is the canonical class. This
proves the formula for £ = O¢(x). After that the general case follows since any line bundle is a (multiplicative) linear
combination of line bundles O¢(x), and both sides of the formula are (multiplicatively) linear in £. O

The set of points y & Y; for which the bundle §, fits into exact triple (19) is a curve isomorphic to
IP’(EX'(1 (L®& L") =P'. We denote this curve by

Ly C Yy

Below we will show that it is a line on Y;. Recall that with each line L C Y; we associate two objects, the ideal sheaf
I, € By, and the object J; = RHom(l;, Oy,(—1))[1] € By, as well.

Lemma 5.5.
There are isomorphisms ¢g: F(Y4) = Pic®C and ¢q: F(Y4) 5 Pic' C given by

do(L) = &7 (I[-1]), ¢1(L) = &7 (Jy).

Moreover, the diagram

F(Ya)

/ \
L L*Que®E!

Pic’C Pic'C

is commutative.

F=t=tc}
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Proof. Let F = ®~'(/[—1)), so that ®(F) = /,[—1]. Then for each point x € C we have
Ext*(F,0,) = Ext*(O(F), &(0,) = Ext*(l[=1],8,) = Ext*(9,[2]8,)

(the last isomorphism follows from the exact sequence 0 — /; — Oy, — O, — 0 since we have 8, € By,). Note that 8,
is a vector bundle of rank 2 and degree —1, and its dual is globally generated. Hence (8,)[; = O, ®O,(—1), therefore
Ext®(Or, 8x) = k[—2]. We conclude that Ext*(F, 0,) = k for all x € C, hence F = £ where £ is a line bundle. Since
c1(I[=1]) = 0 we deduce from Lemma 5.2 that deg £ = 0, that is £ € Pic°C.

Vice versa, let £L € Pic’C. Since ®(L) is the derived pushforward of a vector bundle pi£®8 on C x Y, along the
projection C x Y4 — Y4, its cohomology sheaves a priori sit in degrees 0 and 1. We denote those by H° and H'
respectively. Note that we have

Ho(Lj;®(L)) = H*(C,L®S,),

where j,: Speck — Y is the embedding of the point y. By Lemma 5.3 we have

kZ LnyLL,
kK ifyé Ly

k LnyLL,

H(C, £ ®8,) =
0 ifyéeLe,

H'(C, £ ®8,) = {

On the other hand, we have a spectral sequence
Lijy3t — 37 (Lj;®(£))
which can be rewritten as a long exact sequence
0 = Lj;H" = LojyH® — H(C,L®8,) — Lij;3" — 0,

and isomorphisms
Loj;3' = H'(C, £ ®8,), Lej;Ho = Loyt for t>1.

It follows that for generic y € Y; we have L.j;‘il{o = 0, hence the support of H° is a proper subvariety of Y;. On the
other hand, H° = R%p,, (p; £ ®8) is torsion free, hence H® = 0. Thus the above formulas say that

LojsH' = H'(C, L ®8,), Lij;H" = H(C, £ ®8,), Lsoj;H' = 0.

In other words, the sheaf 3" is locally free of rank 1 on Y4\ Ly and has a singularity along a curve L;. Note that it
follows that K" is torsion free. Indeed, if ' had a torsion, its support would lie in £;, hence would have codimension
at least 2, hence inj;‘}U would be nonzero for any point y in the support of the torsion subsheaf, while we know that
it is zero.

Thus we know that (' is a torsion free sheaf of rank 1. Moreover, by Lemma 5.2 its Chern character equals
ch(H) = —ch(®(£L)) =1 — Ly,.

In particular, ¢1(3;) = 0, hence H; is the sheaf of ideals of a subscheme Z, H' = [;, where Z is a subscheme
set-theoretically supported on L. and such that

Ch(OZ) = Ly4.
It follows that Z is a line, but possibly with a non-reduced structure at some points. However, if Z had a non-reduced

structure at a point y, then Oz would have a subsheaf supported at this point and then L3j;07 # 0, hence Lyj;lz # 0
which is a contradiction. Thus Z is a line, hence L is a line and ®(£) =/, .[-1].
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This proves that ® induces an isomorphism of Pic®C with F(Y4) considered as the moduli space of sheaves of
ideals of lines, hence ¢y is an isomorphism of F(Y;) onto Pic®C. To relate F(Y;) with Pic'C we recall that
Ji = RHom(I,[—1], Oy,(—1)), hence

Ji = RHom(®(L), Oy, (—1)) = RHom (Rpy.(8®prL), Oy,(—1)) = Rpy. RHom (S@pL, p\Oy,(—1))
= Rpy. RHom (8@ pcL, prwe®pyOy,(—1)[1]) = Rpy. (8" ® pr (L™ ® we)®@ py Oy, (—1)[1]),

where py and pc are the projections of CxY; onto the factors Y; and C respectively. Note also that
§*®@prE®@py0y,(—1) = 8 since 8 is a vector bundle of rank 2 with determinant equal to & X Oy,(—1). Hence we
conclude that

I Z Rpy«(8®pe(L* ®@we®E 1)) = d(L* @we®E 1]

which gives the commutativity of the diagram. Since both the left and the bottom arrows in the diagram are isomorphisms,
we conclude that the right arrow is an isomorphism as well. O

Lemma 5.6.
Assume L = ¢o(L) and let D; C F(Y,) be the curve parameterizing lines which intersect L. Then ¢(D;) C Pic'C is
a translate of the theta-divisor by L.

Proof. Recall that for any lines L, L’ on Y, we can write |, = ®(L)[1], Jr = &(L)[1], where £ = ¢y(L) € Pic°C,
L' = ¢1(L') € Pic'C. So,

Hom(ly, Jir) = Hom(®(L), ®(L)) = Hom (£, £) = HU(L' ® L),

Since L'® L’ is a line bundle of degree 1, it has a global section if and only if it is isomorphic to the line bundle O¢(x)
for some point x € C, that is if £’ = £(x). Thus by Lemma 3.20 we have ¢1(D;) = {£’ € Pic' C : Hom(/;, Ji/) # 0} is
the theta-divisor translated by £. O

5.3. The action of the antiautoequivalence

We also can identify the action of the antiautoequivalence D on D?(C).

Proposition 5.7.
We have D(F) = tF2).

Proof. Since C is a variety of general type, we know by [6] that any antiautoequivalence of D?(C) is a composition of
the usual dualization with a shift, a twist, and an automorphism. First, let us check how D acts on the structure sheaves
of points, that is, in terms of By, on spinor bundles §8,. First, note that H*(Y,8}) = k* the induced map (93;4 — 8
is surjective and its kernel is 8 (this can be checked on the corresponding quadric). Thus D(8,) = 8[1] In other
words, D(O0,) Z Oy[1]. Since RHom(0,, Oc) = O,[—1], we see that the shift part is [2] and the automorphism part is
given by 7. To identify the twist part we apply D to a line bundle £ of degree zero. Since ®(£) = /,[—1] for some line
L on Y and since D(/;) = I, by Proposition 3.12, we conclude that

D(®(L)) = L[1] = (£[2)).

Since ™ £ = £* by Lemma 5.4, the claim follows. O
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5.4. Description of instantons

Now to get a description of the moduli space of instantons we will need to know ®'(Qy). It turns out that (up to a shift)
it is a very interesting vector bundle on C, the so-called second Raynaud bundle [23]. By definition this is the (shift of
the) Fourier—Mukai transform of the bundle Opic(—20) with the kernel given by the Poincaré bundle. Note that the
theta divisor on Pic C is defined only up to a translation, accordingly the second Raynaud bundle is defined up to a
twist by a line bundle of degree 0 (so it would be more precise to speak about the Raynaud class of bundles). We will
need the following important property of the Raynaud class of bundles.

Lemma 5.8 ([22]).
Let R be a semistable vector bundle of rank 4 and of degree 4 on a curve C of genus 2. If for any line bundle L of
degree 0 on C we have Hom(£L,R) # 0, then R is a second Raynaud bundle.

This property can be used to identify the object ®'(Oy,).

Lemma 5.9.
We have ®'(Oy) Z R[1], where R is a second Raynaud bundle on C.

Proof. We have Ext*(0,, ®'(Oy)) = Ext*(®(0O,), Oy) = Ext*(8,, Oy) = H*(Y,8}) = k*. It follows that ®'(Oy) = R[1],
where R is a vector bundle of rank 4. Further, we have

Ext'(£,R) = Ext*(£, 9'(Oy[—1]) = Ext'(®(L), Oy[—1) = Ext*(I[—1], Oy[-1]) = k@ k—1].

It follows from Riemann—-Roch that the degree of R is 4. Also it follows that the main property of Raynaud bundles is
true for the bundle R. So it only remains to check that R is semistable.

First consider ®(R) = ®($'(Oy,))[—1]. Note that by definition of the mutation functor we have a distinguished triangle
9(®'(0y,)) — Oy, — La, (Oy,)

On the other hand, since we have a semiorthogonal decomposition D?(Y4) = (By,, Oy,, Oy, (1)) we know that ]ngy4 (Oy,) =
S(Roy, (1)(Oy,)), where S is the Serre functor. Since Ext"(Oy,, Oy, (1)) = V* we deduce that Ro, (1)(Oy,) = Te)v,[—1],
the shift of the tangent bundle to P(V) restricted to Y;. Hence ILT,Y4 (Ov,) = Tep)1v,(—2)[2]. Thus the above triangle
shows that ®(®'(0y,)) has two cohomology sheaves, Oy, in degree 0 and Ty, (—2) in degree —1.

Assume that 0 - F - R — G — 0 is a destabilizing exact sequence of vector bundles with F stable. Applying the
functor ® we get a distinquished triangle
O(F) = P(R) — 9(G)

which gives a long exact sequence of cohomology sheaves
0 = HUP(F)) = Ty, (—2) = HUD(G)) = H'((F)) = Oy, —» H'(P(C)) — 0 (20)

(note that since dim C = 1 the functor ® applied to a sheaf can have cohomology sheaves only in degrees 0 and 1).
Now since r(R) = 4 and degR = 4 we have either

e r(F)=1and degF > 2, or
e r(F)=2and degF >3, or

e r(F)=3 and deg F > 4.
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Consider the first two cases. Note that the slope of F is greater or equal than 3/2 in these cases. Note also that for
any y € Y; we have by the Serre duality

H'(C,8,®F) = Hom(F,8;®wc)".

The second bundle here has slope 2 — 1/2 = 3/2 and F in the first two cases has slope which is not smaller. Hence
by stability of F and 8, the above space is zero unless F = 8;®wc. Since the above is possible only for one y, we
conclude that 3'(®(F)) is either 0, or is the structure sheaf of a point. In any case its rank and ¢; is zero. Thus the
rank and c; of the sheaf H°(®(F)) coincide with those of ®(F) and so by the Grothendieck-Riemann—Roch formula,

Lemma 5.2, we have
deg F

HOCOEN = —5

Under our assumptions on F this is greater than —4/5, the slope of Tp(y)y,(—2). This contradicts the stability of the
latter bundle (which can be easily shown by using Hoppe's criterion, see Lemma 2.1) excluding the first two cases.

In the last case we have r(G) =1, deg G < 0. Such G can be embedded into appropriate line bundle £ of degree 0,
hence HO(P(G)) C HO(P(L)) which was shown to be zero (see the proof of Lemma 5.5). Thus by Lemma 5.2 we have

r(FH'(D(G))) = —r(P(G)) =1 —2deg G.

Since deg G < 0, this is greater than or equal 1. On the other hand, it follows from (20) that 3('(®(G)) is a quotient
of Oy,. This is possible only if deg G = 0, so G = £ € Pic’C. Then as we know ®(£) = /;[—1] with L a line. Since /;
is not a quotient of Oy, we get a final contradiction. O

Now we are ready to give a description of instantons on Y.

Theorem 5.10.
Let R be a second Raynaud bundle. The moduli space of instantons MJ,(Ys) is isomorphic to the moduli space of simple
vector bundles F on C of rank n and degree 0 such that

F* =TT, (21)
H(C,5®8,) =0  forall y€E Y, (22)
dimHom(F, R) = dimExt' (¥, R) = n — 2. (23)

Proof. For each instanton E consider its acyclic extension E. Then, as we know, E = & (F)[—1] for some F € D°(C).
We are going to show that J is a vector bundle. Indeed, since ®: D®(C) — By, is an equivalence we have F = ¢*(E[—1)).
Since ®*(Oy,) = 0 we have ®*(E) = ®*(E), so finally

F = &*(E)-1].

Further, it is easy to check that the functor ®* is also a Fourier-Mukat transform with the kernel 8*® ¢*Oy, (—2)[3]. Thus
the fiber of the object J at a point x € C is given by

T = H (Y4, 8T @ E(=2)),
so our goal is to show only that H? is nontrivial. First, we note that

H(Y,, 8'® E(—2)) = Hom(8,, E(—=2)) =0
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by stability of 8, and E. Similarly, using the Serre duality we deduce that
H3(Y2, 8t ® E(—2)) = H(Y4,8,® E)* = Hom(E,8,)" =0
again by stability of E and 8,. Finally, we note that for any x € C one has a short exact sequence
0= 8, = 0y (1)! = 87,y(1) > 0

(this is the restriction of the standard exact sequence of spinor bundles from a 4-dimensional quadric). Since
H* (Y4, E(—1)) = 0 we conclude that

H'(Ys, 8:®@ E(=2)) = H'(V4, 85(1)® E(—2)) = Hom(8,(1), E) = 0

again by stability of £ and 8,. Thus indeed we have only H?, so F is a vector bundle.

Since ®(F) = E[ﬂ using Lemma 5.2 we see that r(F) = n and deg F = 0. Moreover, since ¢ is fully faithful and Eis
simple by Lemma 3.6, we conclude that F is simple.

Let us check that F enjoys (21), (22), and (23). The first follows immediately from D(E) = F and Lemma 5.7. The
second follows from the fact that ®(F) is a vector bundle shifted by —1. And for the third one can use the fact that, by
Lemma 5.9,

Ext*(F, R) = Ext*(F, ®'(0y)[—1]) Z Ext*(®(F), Oy[—1]) = Ext*(E[—1], Oy[-1)) = Ext*(E, Oy) = H*(Y, E¥),

so (23) follows from Lemma 3.6.

Now let us check the inverse statement. If F is a vector bundle on C such that (22) holds then H%(®(F)) = 0 and
F = H'(P(F)) is a vector bundle, so one can write ®(F) = F[-1]. By Lemma 5.2 we deduce that r(F) = n and
¢i(F) = 0. Since the image of the functor ¢ is By, we conclude that H*(Yy, F) = H*(Ys, F(=1)) = 0. Moreover,
D(F) = F by (21) and Proposition 5.7, and since

Hi(Yy, F*) = Ext'(F, Oy) = Ext'(®(F)[1], Oy) = Ext'(F, d'(0y[—1])) = Ext'(F, R)

we see that (23) implies h%(F*) = h'(F*) = n — 2. Thus Theorem 3.10 applies and we conclude that F is the acyclic
extension of appropriate instanton of charge n on Y. O

5.5. Jumping lines

The curve Dg of jumping lines of an instanton E together with its natural coherent sheaf £g can be described in terms
of the associated vector bundle ¢ on C. Recall that in Lemma 5.5 we have constructed an isomorphism ¢; of F(Y4)
and Pic'C.

Proposition 5.11.

Let Fg be the simple vector bundle on C corresponding to an instanton E. Then isomorphism ¢, identifies the set of
jumping lines D of E with the set of £ € Pic' C such that Ext*(F, £) # 0. Moreover, let P be the Poincaré line bundle
on C x Pic' C and d5: D*(C) — DP(Pic' C) the associated Fourier-Mukai transform. Then Lg = dp(FL)[1].

Proof. Indeed, we have
Ext*(E,Ji) = Ext*(E, /) Z Ext* (d(Fe)[1], D(L)1]) = Ext*(Fe, £) = H*(C, Fr ® L)

and we deduce the first part from Proposition 3.19. Moreover, the relative version of the above equality gives the second
part as soon as we observe that the restriction of P to the fiber of C x Pic' C over the point of Pic'C corresponding to
L is £ itself, so the RHS of the above formula computes the (derived) restriction of ®5(F%) to the corresponding point
of Pic'C. O
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The above proposition allows to reinterpret Conjectures 3.16 and 3.18.

Corollary 5.12.
Assume that for any vector bundle F on C of rank n and degree 0 which satisfy (21), (22), and (23) one has Hom(F, L) = 0
for generic £ € Pic' C. Then Conjecture 3.16 is true for the Fano threefold Yj.

On the other hand, one can check that Conjecture 3.18 is true in this case.

Proposition 5.13.
An instanton on Y, can be reconstructed from the pair (Dg, £). In particular, Conjecture 3.18 is true for Fano threefolds
of degree 4.

Proof. Since we know that an instanton E can be reconstructed from the associated vector bundle ¢ on C, Theo-
rem 5.10, and since L is the shift of the Fourier—-Mukai image of F% with respect to the Fourier—-Mukai transform with
kernel given by the Poincaré bundle, it suffices to check that one can reconstruct a vector bundle on a curve C from its
Fourier—Mukai transform in D?(Pic' C).

For this we compute the composition of Fourier—Mukai transforms ®-0 ®s5: D?(C) — D?(C). Note that Pic'C is a self-
dual abelian variety and the Poincaré bundle on C x Pic' C is the restriction of the Poincaré bundle from Pic'C x Pic' C
which is considered as a product of an abelian variety and its dual. Moreover, since the canonical class of an abelian
variety is trivial, the Fourier—Mukai transform D?(Pic' C) — D?(Pic' C) with the kernel given by the dual of the Poincaré
bundle is the adjoint (shifted by 2) of the original Fourier—-Mukai functor. Since the Fourier—Mukai functor between
the derived categories of Pic' C is an equivalence, see [17], the composition with the left adjoint functor is the identity,
hence the kernel giving the functor ®p«0®p: DP(C) — DY(C) is the (derived) restriction of the structure sheaf of the
diagonal on Pic'C x Pic' C shifted by —2. The above restriction is very easy to compute, it is isomorphic to a cone of
a morphism A,Oc[-2] — A*NZ/P'LC1C on C x C (here A: C — C x C is the diagonal embedding). In particular, it follows
that for any vector bundle F on C we have a distinguished triangle

F[=2] = FON; piac = Po:(Pp(F)).
Note that the map F[—2] = F ® N* is given by an element in Ext*(F, F® N*) = H2(C, F*® F ® N*). Since C is a curve
this space is zero, whence we have

Gpi (g (F)) = Fl-1]®F @ N*.

This shows that F = H' (4 (Pp(F))) can be reconstructed from ®p(F). Applying this to F = F¢ we deduce the
proposition. O

6. Further remarks

One can continue research in several directions. First of all one can consider Fano threefolds of index 2 and degree < 3.

6.1. Fano threefolds of degree 3

Let Y3 be a Fano threefold of index 2 and degree 3, that is a cubic threefold in P*. There are at least two approaches to
the description of the category By,. First of all, it is proved in [13] that By, is equivalent to the nontrivial component of
the derived category of Xi4, a certain Fano threefold of index 1 and degree 14 which can be associated with Y5 (by the
way, to construct Xi4 from Y3 one needs to choose a minimal instanton on Y3). So, one can describe instantons on Y3
in terms of vector bundles on Xi4. This approach may give some interesting results, but it does not look as a way to
simplify the question. The manifold Xj4; does not look simpler than Y3 itself, so it is doubtful that it would be easier to
study vector bundles on Xj4 than on Yi.
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Another description of By, can be given as follows. Consider a line on Y; and a projection from this line Y3 --» P2. It is
a conic bundle, so one can consider the associated sheaf €y of even parts of Clifford algebras on P2. One can check that
By, is equivalent to a semiorthogonal component of the derived category of sheaves of Co-modules on P?. This is more
promising, since P2 has dimension smaller than Y3, so one can hope to have a grip on the structure of the moduli space
of instantons. We would also like to mention that this approach to the description of the category By, was used in [2].

6.2. Fano threefolds of degree 2

Let Y5 be a Fano threefold of index 2 and degree 2, that is a double covering of P* ramified in a smooth quartic surface.
Then the category By, has the following interesting property — its Serre functor is isomorphic to the composition of the
shift by 2 with the action of the involution of the double covering. This behavior is very similar to the behavior of the
Serre functor of Enriques surfaces. And in fact, conjecturally the derived categories of some Enriques surfaces can be
obtained as specializations of By, for very special double coverings known as Artin-Mumford double solids, see [10] for
more details. We think it may be interesting to investigate what kind of moduli space on Enriques surface appears in
this way.

6.3. Matrix factorizations

For Fano threefolds which can be described as hypersurfaces in weighted projective spaces (i.e. those of degree 3, 2
and 1) the category By can be also described as the category of graded matrix factorizations of the equation of the
hypersurface, see [21]. It may be interesting to describe the corresponding moduli spaces of matrix factorizations.

6.4. Minimal instantons

Another interesting question is to investigate the moduli spaces of minimal instantons on Fano threefolds of index 2. In
case of a cubic threefold Y5 this modult spaces were investigated in [16] and [13]. Moreover, it was shown in [13] that
in this case minimal instantons provide a relation of cubic threefolds with Fano threefolds of index 1 and degree 14.
Because of this, it would be very interesting to understand the geometry of minimal instantons and their moduli spaces
for other Y.
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