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Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model
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Specific features of orbital and spin structure of transition-metal compounds in the case of the face-sharing
MO6 octahedra are analyzed. In this geometry, we consider the form of the spin-orbital Hamiltonian for transition-
metal ions with double (eσ

g ) or triple (t2g) orbital degeneracy. Trigonal distortions typical of the structures with
face-sharing octahedra lead to splitting of t2g orbitals into an a1g singlet and eπ

g doublet. For both doublets (eσ
g

and eπ
g ), in the case of one electron or hole per site, we arrive at a symmetric model with the orbital and spin

interaction of the Heisenberg type and the Hamiltonian of unexpectedly high symmetry: SU(4). Thus, many
real materials with this geometry can serve as a testing ground for checking the prediction of this interesting
theoretical model. We also compare general trends in the spin-orbital (“Kugel-Khomskii”) exchange interaction
for three typical situations: those of MO6 octahedra with common corner, common edge, and the present case of
common face, which has not been considered yet.
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I. INTRODUCTION

Systems with orbital degeneracy usually exhibit quite di-
verse properties, often much different from those of purely spin
systems [1–3]. In particular, the coupling between orbital and
spin degrees of freedom, besides being of practical importance
for many specific materials, leads to several interesting
theoretical models, such as the spin-orbital model (often called
the Kugel-Khomskii model) [4,5] and the popular nowadays
compass model [5,6], a particular version of which is the
renowned Kitaev model [6,7].

It turns out that the specific features of one or another
system with spin and orbital degeneracy strongly depend on
the local geometry. The most typical cases, widely discussed
in the literature, are those with MO6 octahedra (M is a
transition-metal ion) sharing a common oxygen (or common
corner), typical, e.g., of perovskites such as LaMnO3 or layered
systems such as La2CuO4, and the situation with two common
oxygens for neighboring octahedra (octahedra with common
edge), met in many layered systems with triangular lattices
such as NaCoO2 and LiNiO2. The features of spin-orbital
systems in both these cases were studied in detail; see, e.g.,
Refs. [2,8]. However, there exists yet the third typical geom-
etry, which is also very often met in many real materials—
the case of octahedra with a common face (three common
oxygens). Strangely enough, this case has not been actually
considered in the literature. To fill this gap and to develop a
theoretical description of the spin-orbital (Kugel-Khomskii)
model for this “third case” is the main goal of the present
paper.

Interestingly enough, after fulfilling this program, we have
found out that the resulting model has a very symmetric
form—more symmetric than for the cases of common corner
or common edge. The resulting Hamiltonian in the main
approximation turned out to have a very high symmetry:
SU(4). Actually, the SU(4) model appeared already in the
very first treatment of these models [4,5] for the “artificial”
illustrative case, in which for doubly degenerate orbitals only

the diagonal intersite hopping exists, that is,

t11 = t22 = t, t12 = 0, (1)

where 1 and 2 are the indices denoting two degenerate
orbitals. The resulting exchange Hamiltonian, derived from the
degenerate Hubbard model in the strong-coupling limit t/U �
1 (U is the on-site Coulomb repulsion), written in terms of spin
s = 1/2 and pseudospin τ = 1/2 operators describing doubly
degenerate orbitals, has a very symmetric form

H = t2

U

∑
〈i,j〉

(
1

2
+ 2si sj

) (
1

2
+ 2τ iτ j

)
. (2)

This Hamiltonian not only has SU(2) × SU(2) symmetry (it
contains scalar products of s and τ vector operators), but it
shows even much higher SU(4) symmetry (interchange of 4
possible states of each site: 1 ↑, 1 ↓, 2 ↑, 2 ↓).

The SU(4) spin-orbital model was extensively discussed
in the literature with the main emphasis on novel quantum
states (exact solution of the 1D model [10]; the presence
of three Goldstone modes [10,11]; the gap formation [12];
spin-orbital singlets on plaquettes in a square lattice [13] and
in two-leg ladders [14]; spontaneous symmetry breaking with
the formation of dimer columns [15]; real spin-orbital liquid
on honeycomb lattice [16]). There were also some attempts
to apply this model to real materials [9,17–19]. Recently
the SU(4) model [or more general SU(N) model with N
“colors”] has been applied also to cold atoms on a lattice [20].
However, especially as to real transition-metal compounds,
these applications were still rather questionable [21,22]. In the
present paper, we demonstrate that there exists a situation in
transition-metal solids in which the SU(4) physics might be
indeed close to reality; this is the case of spin-orbital systems
with face-sharing MO6 octahedra. Even if we include the
terms in the effective exchange Hamiltonian, which break this
SU(4) symmetry, see Appendix C, such terms are usually much
weaker than the dominant SU(4) exchange, so that in any case
the SU(4) physics would dominate the properties of a system in
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FIG. 1. (Color online) A chain of face-sharing octahedra. Large
(red) and small (blue) circles denote metal and ligand ions,
respectively.

a broad temperature interval J ′ < T < J , where J is the scale
of SU(4) terms in the exchange, and J ′ is that of symmetry-
breaking terms (typically in systems with 3d elements J ′ ∼
0.1J ). Even at T = 0 strong quantum fluctuations in the SU(4)
model, especially in one-dimensional systems, may overcome
the effect of symmetry-breaking terms.

As far as the actual materials are concerned, in the most
typical and best-studied geometries, such as in systems like
perovskites, with corner-sharing MO6 octahedra and with
∼180◦ M-O-M bonds, the problem is that conditions (1)
required for SU(4) model (2) are not fulfilled. In effect,
whereas the spin part of the spin-orbital exchange is of the
Heisenberg si sj type [SU(2)], the orbital part of the exchange
turns out to be very anisotropic, containing terms of the type
τ zτ z, τ xτ x , τ zτ x , and also some linear terms, but not, for
example, τ yτ y . (The latter terms can appear for complex
combinations of the basis orbitals, which usually do not lead
to static lattice distortions but may be sometimes important
giving rise to quite exotic types of the ground state [23]). Also
for another well-studied case, that with edge-sharing octahedra
and with 90◦ M-O-M bonds, the situation is more complicated:
sometimes the orbital part of the exchange is anisotropic, and
in some cases the leading term in the exchange, ∼t2/U , drops
out completely and the remaining exchange depends on the
Hund’s rule exchange (not included above) [1,21,24].

The third, much less studied situation, that with the face-
sharing MO6 octahedra (see Fig. 1), is considered below. In
situations with face-sharing octahedra, one naturally obtains
for the doubly degenerate case (eσ

g orbitals, or eπ
g orbitals

obtained from triply degenerate t2g orbitals due to trigonal
crystal field, typical for this geometry) that the resulting
spin-orbital (Kugel-Khomskii) model is of the type of Eq. (2);
i.e., it is the SU(4)-symmetric model. Thus, the systems
with this geometry, which are in fact quite abundant among

transition-metal compounds, represent an actual realization of
the high-symmetry SU(4) model and can provide a natural
testing ground for it. The experimental study of the systems
with face-sharing arrays may thus allow a verification of
the predictions of this model, such as the strong spin-
orbital entanglement and the presence of three Goldstone
modes.

Experimentally, there are many transition-metal com-
pounds with face-sharing geometry. Such materials include for
example hexagonal crystals such as BaCoO3 [25], BaVS3 [26],
or CsCuCl3 [27], containing infinite columns of face-sharing
ML6 octahedra (L stands here for ligands O, Cl, S, . . . ),
as shown in Fig. 1. Many other similar systems have finite
face-sharing blocks, e.g., BaIrO3 [28], BaRuO3 [29,30], or
Ba4Ru3O10 [31,32] with blocks of three such face-sharing
octahedra, connected between themselves by common corners;
or blocks of two such octahedra as in large series of systems
with the general formula A3(M1)(M2)2O9 [33–40], where A
is Ba, Ca, Sr, Li, or Na, and face-sharing M2O6 octahedra
of transition metals are separated by M1O6 octahedra (which
have common corners with M2O6). Such systems have very
diverse properties: some of them are metallic [42]; others are
insulators [33] or undergo metal-insulator transitions [34].
Despite similar crystal structures, they may have charge-
ordered [34] or uniform [37] charge states and their magnetic
properties are also quite different changing from the singlet
ground state [35,36] to the situations when part of the magnetic
moments turn out to be suppressed [33,41] and to ferro- or
antiferromagnetic order [25,38,43]. However, in any case, the
first problem to consider for such systems is that of a possible
orbital and magnetic exchange in this geometry. The analysis
of this problem is the main task of the present paper.

In Sec. II, we formulate a minimal model for the face-
sharing geometry, which is in fact the Hubbard model taking
into account the orbital degrees of freedom. In Secs. III
and IV, we consider the chains of face-sharing octahedra
with eg and t2g orbitals, respectively, and demonstrate that
in both cases we arrive at a highly symmetrical spin-orbital
model. The obtained results are discussed in Sec. V. More
technical issues are considered in appendices. In Appendix
A, we show that trigonal distortions characteristic of the
face-sharing geometry do not affect the symmetric form of the
effective spin-orbital Hamiltonian. In Appendix B, we derive
the explicit form of the electron hopping integrals via ligands
as a function of an angle characterizing the trigonal distortion
of octahedra. In Appendix C, we present the general form of
the exchange Hamiltonian including the terms with the Hund’s
rule coupling, going beyond the symmetric SU(4) form.

II. MODEL

Let us suppose that we have a linear chain of 3d magnetic
ions. Each of them is located at the center of an octahedron
of anions with face-sharing geometry. In contrast to the
case of corner-sharing octahedra, where the z direction is
usually chosen along the fourfold symmetry axis connecting
the transition-metal ion with one of the apexes of the
ligand octahedron (tetragonal coordinate system), here it is
convenient to choose a trigonal system with the z axis along
the chain and the x and y axes in the plane perpendicular to the
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FIG. 2. (Color online) (a) Magnetic atom (M) surrounded by
trigonally distorted oxygen (O) octahedron in transition-metal com-
pounds with face-sharing octahedra. The global trigonal coordinate
is shown. Trigonal distortion is determined by the angle θ ; the value
cos θ0 = 1/

√
3 corresponds to undistorted octahedron. Magnetic

atoms form a quasi-one-dimensional chain directed along the z axis.
(b) Crystal field splitting of d orbitals of the magnetic atom. The
splitting of t2g levels (�1) is due to both the trigonal distortions of
oxygen octahedra and contribution from neighboring M atoms to the
crystal field. The sign of �1 can be different depending on the type
of distortions.

chain [see Fig. 2(a)]. In such geometry, two nearest-neighbor
ions, M1 and M2, are nonequivalent: a pair of ligand triangles
surrounding one metal ion can be considered as rotated by
180◦ with respect to that surrounding another ion.

To formulate a minimal model for the chain, we start from
the well-known Hamiltonian in the second quantization that
corresponds to a general problem of interacting electrons,

H =
∑
ij

∑
γ γ ′σ

t
γ γ ′
ij c

†
iγ σ cjγ ′σ

+ 1

2

∑
i

∑
γβγ ′β ′

∑
σσ ′

Uγβ;γ ′β ′c
†
iγ σ c

†
iβσ ′ciβ ′σ ′ciγ ′σ . (3)

Here, i and j denote lattice sites, where the magnetic ion is
located, γ , γ ′, β, β ′ run over the active orbitals on each site,
σ , σ ′ denote spin up or spin down, and ciγ σ (c†iγ σ ) are the
annihilation (creation) operators for an electron at site i with
the quantum numbers γ and σ . The first term describes the
kinetic energy and the second one corresponds to the on-site
Coulomb repulsion, where

Uγβ;γ ′β ′ =
∫∫

d rd r ′φ

γ (r)φ


β(r ′)V (r,r ′)φγ ′(r)φβ ′(r ′).

Here, φ(r) are one-particle wave functions and V (r,r ′)
describes the interparticle interactions. The crystal field felt
by the magnetic ions has an important component of cubic Oh

symmetry due to octahedra of anions. It splits the one-electron
d levels into a triply degenerate level (t2g) and a doubly
degenerate level (eg). In the case of the face-sharing octahedra,
actual symmetry is usually lower than Oh due to, e.g., axial
order of the metal ions, which in such a geometry often form
chains, dimers, trimers, etc. This type of low-dimensional
packing in its turn results in drastic distortions of the ligand
octahedra by itself so that octahedra appear to be trigonally
distorted [elongation or compression along the vertical z

direction in Fig. 2(a)]. Such local distortions of D3d symmetry

lead to splitting of t2g orbitals into an a1g singlet and eπ
g

doublet; the original eg (eσ
g ) doublet by that remains unsplit

(see below Fig. 2(b)).
The model treatment will be performed separately for two

situations, when eg and t2g orbitals are active, taking into
account trigonal distortions.

III. eg LEVELS

We first consider the case of one hole (electron) at the
degenerate eg level, which corresponds, e.g., to the orbital
filling of Cu2+ ions in CsCuCl3. It has been established (see,
e.g., Ref. [44]) that both the trigonal field and the spin-orbit
coupling do not split the eg levels.

In the case of ideal MO6 octahedra, one may use the
trigonal coordinate system. The eg doublet for two neighboring
magnetic ions along the chain can be written as [45]

|d1〉 = 1√
3
|x2 − y2〉 −

√
2

3
|xz〉,

|e1〉 = − 1√
3
|xy〉 −

√
2

3
|yz〉 (4)

for an ion M1, and

|d2〉 = 1√
3
|x2 − y2〉 +

√
2

3
|xz〉,

|e2〉 = − 1√
3
|xy〉 +

√
2

3
|yz〉 (5)

for the nearest-neighbor ion M2 [the corresponding structure
is illustrated in Fig. 2(a)].

We start from the two-band 1D Hubbard Hamiltonian of
the form of Eq. (3), where orbital indices γ take the values
d1, e1 for the M1 sites (sites with, e.g., odd i) or d2, e2 for
the M2 sites (sites with even i). We restrict ourselves by
the consideration of the nearest-neighbor hopping amplitudes
along the chain, tγ γ ′ ≡ t

γ γ ′
ii+1. These hopping amplitudes have

two contributions, which, for this particular geometry, could
be of the same order of magnitude: direct hopping between two
magnetic ions along the chain, td−d

γ γ ′ , and the indirect hopping
via neighboring anions, tviaA

γγ ′ . We consider both these situations
separately.

We begin by calculating the direct hopping terms. We
choose the z direction (trigonal axis) parallel to the chain. In
this situation, the only nonzero d-d Slater-Koster parameters
[46] are

txy,xy = tx2−y2,x2−y2 = Vddδ,

tyz,yz = txz,xz = Vddπ . (6)

Therefore, we have for the direct case

td−d ≡ td−d
d2,d1

= td−d
e2,e1

= 1
3Vddδ − 2

3Vddπ , (7)

td−d
e2,d1

= td−d
d2,e1

= 0. (8)

The calculation of effective hoppings via ligands tviaA
γγ ′

is more complicated. The direct derivation is performed in
Appendix B. Here, we only show that tviaA

γγ ′ ∝ δγ γ ′ using
simple considerations. Assume that we know hopping integrals
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along a superexchange path between two neighboring cations
involving an anion (A1) located at one of the apexes of the
octahedron. In general, we have three nonzero hopping inte-
grals tviaA1

d2,d1
= t1, tviaA1

e2,e1
= t2, and tviaA1

d2,e1
= tviaA1

e2,d1
= t3 between

the M1 and M2 ions. Then, the hopping integrals for the other
two superexchange paths (via A2 and A3) could be found
by rotating the xy plane by ± 2π

3 about the trigonal axis.
Denoting by primes the axis in the coordinate system rotated
by 2π

3 , (x ′,y ′,z′), z′ = z, we can write taking into account that
|xy〉 ∝ xy/r2 and |x2 − y2〉 ∝ (x2 − y2)/(2r2)

|di〉 = |d ′
i〉 cos

2π

3
− |e′

i〉 sin
2π

3
,

|ei〉 = |d ′
i〉 sin

2π

3
+ |e′

i〉 cos
2π

3
, (9)

where i = 1,2. Therefore

|d ′
i〉 = |di〉 cos

2π

3
+ |ei〉 sin

2π

3
,

|e′
i〉 = −|di〉 sin

2π

3
+ |ei〉 cos

2π

3
. (10)

After the rotation, the path M1-A2-M2 becomes the path
M1-A1-M2. Thus, we can express the hopping integrals via
A2, tviaA2

d2,d1
= t ′1, tviaA2

e2,e1
= t ′2, and tviaA2

d2,e1
= tviaA2

e2,d1
= t ′3 in terms of

those via A1 according to tviaA2
μν = tviaA1

μ′ν ′ . Using Eq. (10), we
obtain

t ′1 = t1 cos2 2π

3
+ t2 sin2 2π

3
+ t3 sin

4π

3
,

t ′2 = t1 sin2 2π

3
+ t2 cos2 2π

3
− t3 sin

4π

3
, (11)

t ′3 = t2 − t1

2
sin

4π

3
+ t3 cos

4π

3
.

The hopping integrals via A3 are found by substituting 2π
3 for

− 2π
3 :

t ′′1 = t1 cos2 2π

3
+ t2 sin2 2π

3
− t3 sin

4π

3
,

t ′′2 = t1 sin2 2π

3
+ t2 cos2 2π

3
+ t3 sin

4π

3
, (12)

t ′′3 = t1 − t2

2
sin

4π

3
+ t3 cos

4π

3
.

The total hopping integrals are tviaA
i = ti + t ′i + t ′′i (i = 1,2,3).

Performing the summation over all three paths, we obtain

tviaA
γγ ′ = t0δγ γ ′ , t0 = 3

2 (t1 + t2). (13)

The value of t0 as a function of the p-d Slater-Koster
parameters Vpdσ and Vpdπ , and the p-d charge transfer energy
� is calculated in Appendix B. Here, we see that the situation
is again similar to the direct exchange, for which we have equal
hopping integrals between the same orbitals, and hopping
between different orbitals is absent. This is a rather general
result based only on the existence of the threefold trigonal
axis and it does not depend on the specific features of the
superexchange paths. Therefore, the results (7), (8), (13) show
that the parameters for the hopping part of the Hamiltonian are
td2,d1 = te2,e1 = t and te2,d1 = td2,e1 = 0, with t = td−d + t0.

For the Coulomb part of Hamiltonian (3), we can use
the standard parametrization: the on-site Coulomb (Hubbard)
repulsion on the same orbital Uee,ee = Udd,dd = U , and that on
different orbitals Ude,de = U ′ = U − 2J . Here J is the Hund’s
rule coupling constant. Note here that the latter relationship
is valid only for the unscreened Coulomb potential and can
be violated in real transition-metal compounds since U is
usually screened more by surrounding ligands than the purely
intra-atomic parameter J [4]. In the general case, other Slater
integrals, not only U and J , may enter [2]; we use below this,
the so-called Kanamori parametrization, which in most cases
is sufficient.

Assuming that t � (U,J ), we can change over to an
effective Hamiltonian that acts on the subspace of functions
with singly occupied sites. The calculation is standard (see,
e.g., Refs. [4,5]). In the first approximation (J = 0), the result
is the symmetrical SU(4) model

Heff = t2

U

∑
〈i,j〉

(
1

2
+ 2si sj

) (
1

2
+ 2τ iτ j

)
, (14)

where si is the spin operator of the eg electron at site i

defined as si = 1
2

∑
γαβ c

†
iγ ασ αβciγβ and τ i is the pseudospin

operator for the orbital degree of freedom at site i defined as
τ i = 1

2

∑
αγ γ ′ c

†
iγ ασ γ γ ′ciγ ′α (σ are the Pauli matrices). Notice

that the same τ operators correspond to different orbitals at the
neighboring sites (since the neighboring face-sharing anion
octahedra are rotated with respect to each other). A more
general form of the spin-orbital Hamiltonian with the finite
Hund’s rule coupling J is presented in Appendix C.

Thus, the transition-metal compounds with face-sharing
octahedra could provide the closest realization of the high-
symmetry spin-orbital model. The leading term of the ex-
change ∼t2/U has the high SU(4) symmetry, but the terms
of higher order containing the Hund’s rule coupling constant
would have a more complicated form; see Appendix C. The
ground state of this general Hamiltonian including terms
∼J/U in the the mean-field approximation is well known to
be ferromagnetic in spin and antiferromagnetic in pseudospin
[4,5]. In general, however, quantum effects related to the
SU(4) symmetry may favor other types of states, and the total
resulting type of the ground state requires a special analysis.

The value of the effective electron-electron hopping t

depends on the details of the crystal structure, in particular, on
the M1-O-M2 angle. Note that at some values of this angle, the
contribution of the M1-O-M2 exchange via oxygens can vanish
(see Appendix B), and such case should be treated separately.

IV. t2g LEVELS

There are many materials which have the orbital filling
corresponding to the present case. These are not only the well-
known V2O3 and BaVS3, but also many other 3d and especially
4d and 5d transition metal compounds, such as Ba4Ru3O10 and
BaRuO3. As was mentioned above, even in the case of ideal
MO6 octahedra, there exists the trigonal symmetry, which is
inherent to face-sharing geometry.

The trigonal crystal field acts on the triplet t2g level
further splitting it into a doublet (eπ

g ) and a singlet (a1g). The
corresponding part of the Hamiltonian due to a trigonal field

155125-4



SPIN-ORBITAL INTERACTION FOR FACE-SHARING . . . PHYSICAL REVIEW B 91, 155125 (2015)

can be written as

Ht = δ
(
L2

z − 2
3I

)
, (15)

where I is the unit operator, Lz is the angular momentum
operator in the basis of trigonal axes, and the parameter δ can
be positive or negative. We now analyze the sign of the possible
contributions to δ. The trigonal field due to a distortion of the
octahedra can have both signs, positive for an elongation and
negative for a compression of the octahedra along the trigonal
axis. The trigonal field due to the neighboring magnetic cations
forming 1D structures is always positive (δ > 0). The singlet
is the lowest energy state for δ > 0 and the doublet for δ < 0.

In the trigonal coordinate system, we have the a1g singlet,

|a1〉 = |3z2 − r2〉, (16)

and a doublet eπ
g ,

|b1〉 = − 2√
6
|xy〉 + 1√

3
|yz〉,

|c1〉 = 2√
6
|x2 − y2〉 + 1√

3
|xz〉, (17)

for an ion M1, and the same singlet

|a2〉 = |3z2 − r2〉, (18)

and a doublet,

|b2〉 = − 2√
6
|xy〉 − 1√

3
|yz〉,

|c2〉 = 2√
6
|x2 − y2〉 − 1√

3
|xz〉, (19)

for the nearest-neighbor ion M2.
It has to be mentioned that these expressions for the wave

functions [and Eqs. (4) and (5)] are given for the case of
the ideal MO6 octahedra, where the M-O-M angle is about
70.5◦. The trigonal distortions will mix eπ

g and eσ
g orbitals.

More detailed calculations, which take into account such
modification of the wave function due to trigonal distortions,
are presented in Appendix A. This mixing, however, only
changes some numerical coefficients and does not change
the main conclusion that there exist only equal diagonal
hoppings, the hopping between different orbitals being zero—
the conditions important for getting the SU(4) model (14).

Here, we consider the electronic configuration as shown in
Fig. 2(b): the a1g level has energy lower than that for the eπ

g

level. The conditions for the existence of such a configuration
are discussed in Appendix A. Further on, we assume that the
a1g level is fully occupied, there is one electron at the doubly
degenerate eπ

g level, and the upper eσ
g levels are empty. In this

case, we can use a 1D two-band Hubbard Hamiltonian in the
form of Eq. (3), but now orbital indices γ take the values b1,
c1 for the M1 sites (odd i) or b2, c2 for the M2 sites (even
i). The hopping amplitudes tγ γ ′ are the sum of the direct d-d
and indirect (via ligands) hopping amplitudes. Note that our
analysis is relevant also for the case of negative but large in
absolute value �1, when the empty a1g level lies far above the
eπ
g level with one electron.

For the direct d-d hopping, we have now

td-d ≡ td-d
b2,b1

= td-d
c2,c1

= 2
3Vddδ − 1

3Vddπ ,

td-d
b2,c1

= td-d
c2,b1

= 0. (20)

To find the relations for the hopping via ligands, we can use
the consideration similar to that used in the previous section,
but with the replacement

|di〉 → |bi〉, |ei〉 → |ci〉, i = 1, 2. (21)

Repeating after this substitution all calculations as described
above, we obtain that the hopping amplitudes have again the
symmetric form

tγ γ ′ = (td-d + t0)δγ γ ′, (22)

where direct hopping amplitude td-d is given by Eq. (20), while
the hopping amplitude via ligands, t0, is obtained in Appendix
B [Eq. (B7)].

Thus, the same arguments as those presented in the previous
section show that for one electron (or hole) at eπ

g levels
(neglecting the contribution of a1g states), the effective spin-
orbital Hamiltonian for a chain of face-sharing octahedra
would have the same form of Eq. (14) as for “real” eg

orbitals, including the SU(4) part, Eq. (14), and if necessary
the extra terms [4,5] ∼J/U (see Appendix C). This form of the
effective Hamiltonian is, in fact, a consequence of the lattice
symmetry: eπ

g and eσ
g are similar representations of the same

point group. Moreover, taking into account trigonal distortions
of the metal-ligand octahedra and the Coulomb interaction
between cations in the chain does not change the symmetry of
the Hamiltonian (see Appendix A below).

V. CONCLUSIONS

In the present paper, we considered the effective spin-orbital
exchange for the “third case” (as compared to the first two
well-known cases of MO6 octahedra with common corner
and common face), namely, the case of local geometry with
face-sharing MO6 octahedra. The trigonal distortions are
inherent to such systems. They determine the symmetry of
the problem, splitting the t2g levels to those with a1g and eπ

g

orbitals, and reduce it to the appropriate spin-orbital model
with pseudospin 1/2. We show that the resulting effective
spin-orbital Hamiltonian in this situation is a well-known
symmetric Kugel-Khomskii model, Eq. (2), or, in a more
complete form, Eq. (C1), both for the eσ

g and eπ
g orbitals.

The leading terms of the model have the SU(4) symmetry. In
that sense, the situation with face-sharing geometry is very
different from the usually considered cases of MO6 octahedra
with a common corner (M1-O-M2 angle ∼180◦) and with a
common edge (M1-O-M2 angle ∼90◦).

This result is important in several respects. First of all,
it points out a class of real physical systems, for which
the spin-orbital model of SU(4) symmetry can be applied.
This opens the possibility to experimentally check some
nontrivial predictions of this model, such as strong spin-orbital
entanglement and crucial role of quantum effects. Second, it is
instructive to compare the general tendencies existing for three
typical geometries: those of MO6 octahedra with a common
corner (one common oxygen for two neighboring MO6
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octahedra), common edge (two common oxygens), and a com-
mon face (three common oxygens). The general conclusions
in the better known first and second cases are rather different.
For the common-corner geometry, the typical well-known
rule is that the ferro-orbital ordering gives antiferromagnetic
spin alignment, and vice versa [1,2,4,5]. However, this is not
true for the case of common edges, with ∼90◦ M1-O-M2
bonds: in this situation, often one has ferromagnetic spin
ordering irrespective of orbital occupation [21,24]. In that
sense, the situation with face-sharing octahedra leading, e.g.,
to Hamiltonian (14) is more similar to that with a common
corner than to the situation with a common edge: ferro-spins
coexist with antiferro-orbitals and vice versa. On the other
hand, as stressed in Appendix B, for the superexchange via
ligands (but not for direct d-d hopping) the leading terms
in the exchange ∼t2/U ∼ [t2

pd/�]2/U can drop out for
certain values of the M1-O-M2 angle, similar to the case of
common-edge geometry. Thus, the systems with face-sharing
geometry represent a class of their own, and they have to be
considered as such. Our treatment is focused on the specific
features related to such geometry, and the resulting picture
turns out to be quite interesting.

Turning to real systems, several factors not considered in the
present paper may become important, which could decrease
the symmetry of the resulting model. One is the electron-lattice
(Jahn-Teller) interaction, which, in principle, could lead to
orbital ordering independent of the spin one; in systems
such as CsCuCl3, for example, it could result in helicoidal
superstructures (see Ref. [47] and references therein). The
second one, considered in detail in Appendix B, is the strong
trigonal distortion of MO6 octahedra, which for particular
situations can strongly reduce the M-O-M contribution to
the total exchange, so that for a certain M-O-M angle, only
the direct d-d contribution remains. In this case, one may
need to take into account higher-order terms ∼J/U in the
superexchange Hamiltonian. These terms, written down in the
general expression (C1) presented in Appendix C, have less
symmetric form in orbital variables τ ; i.e., they can also violate
the SU(4) symmetry. Nevertheless, pronounced quantum
effects typical of the SU(4) model with its intrinsic strong
spin-orbital entanglement can still be dominant and determine
the type of the ground state of the system. However, even if the
type of the ground state at T = 0 would be determined by these
symmetry-breaking terms [with the energy scale J ′ ∼ t2

U
J
U

,
which is typically about 10% of the main SU(4) term of
the order of t2

U
], there would exist a broad temperature range

J ′ � T � t2

U
, in which the behavior would be determined by

the SU(4) physics. However, the situation taking place in each
particular real system requires a special treatment.

As far as real materials are concerned, one more issue is
worth discussing. Whereas the situation with common-corner
and common-edge geometry is met in all cases, 3D, 2D, and
1D, common-face geometry in this sense is more “choosy”: it
is typical for one-dimensional systems (CsCuCl3, BaCoO3),
and often such face-sharing octahedra exist for just dimers or
linear trimers (e.g., in BaIrO3). We are not aware of any real
substances with the 2D or 3D face-sharing geometry, although
we cannot exclude such cases in principle. As to the exchange
in such hypothetical situations, we can give some arguments

that in this case for real eg systems the resulting Hamiltonian
would also be in a first approximation SU(4) symmetric, but
for the t2g levels it would not be the case, because the choice of
relevant a1g and eπ

g orbital would depend on the direction and
be different for different nearest neighbors. The 1D systems,
however, should not necessarily involve straight chains; there
may be zigzag or even spiral chains. In all such cases, the SU(4)
physics would be preserved for eg electrons to a first approxi-
mation. In some sense, it might be even advantageous, because
such 1D model is exactly soluble—although it would be very
interesting (if at all possible) to have similar 2D or 3D systems.
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APPENDIX A: FACE-SHARING OCTAHEDRA WITH
TRIGONAL DISTORTIONS

Let us now consider a more general case, namely, that
with the crystal field of trigonal symmetry corresponding to
the stretching or compression of the chain of face-sharing
octahedra. In the main text, we considered exchange interac-
tion for eg and t2g orbitals taking for the corresponding wave
functions those of pure eg and t2g orbitals for cubic symmetry.
However, trigonal distortion can modify these wave functions,
leading, in particular, to a mixing of eσ

g and eπ
g orbitals. In

this appendix, we consider these effects; as a result, we find
that their inclusion does not qualitatively modify our main
conclusions, and can lead only to some change in certain
numerical coefficients.

An elementary building block of transition-metal com-
pounds with face-sharing octahedra is shown in Fig. 2(a).
Magnetic atoms form a quasi-one-dimensional chain directed
along the z axis. Each magnetic atom is surrounded by the
distorted oxygen octahedron. Distortions are described by a
single parameter θ , which is the angle between the z axis
and the line connecting M and O atoms [see Fig. 2(a)]. For
undistorted octahedron, we have θ = θ0 = arccos(1/

√
3). The

crystal field splits fivefold-degenerate d electron levels of the
transition-metal atom into two doubly degenerate eσ

g , eπ
g levels,

and a1g level, as it is shown in Fig. 2(b). The energy difference
�1 between eπ

g and a1g levels can be positive or negative
depending on the type of trigonal distortions. Stretching of the
oxygen octahedron (θ < θ0) increases the energy of the a1g

level with respect to the eπ
g one, leading to �1 < 0. However,

the contribution to the crystal field from neighboring magnetic
cations acts in the opposite direction, and, in general, we can
have �1 > 0 even for (slightly) stretched octahedra.

Let us now discuss some details. In the point-charge
approximation, the crystal field potential acting onto a chosen
cation located at point r can be represented as a sum of
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Coulomb terms:

V (r) = v0

∑
i

r0

|r − ri | , (A1)

where ri are the positions of ligand ions. For d states, the
existence of the threefold symmetry axis leads to a significant
simplification of the expression for the crystal field, which can
be, approximately, written in the following form:

V (r) = V0(r) + v1(r)
3∑

s=1

P2(cos θs) + v2(r)
3∑

s=1

P4(cos θs),

(A2)

where P2 and P4 are the Legendre polynomials, P2(x) =
1
2 (3x2 − 1) and P4(x) = 1

8 (34x4 − 30x2 + 3). Here, we took
into account the symmetry in the arrangement of two opposite
edges of the ligand octahedron and as a result, we have

cos θs = cos θ ′ cos θ + sin θ ′ sin θ cos

(
φ′ − 2πs

3

)
, (A3)

where θ ′ and φ′ describe the direction of r, that is, r =
r{sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′}.

Now, we should find the matrix elements of the crystal field
potential for the complete set of d functions:

|xy〉 = Rd (r)
sin2 θ ′ sin 2φ′

2
,

|xz〉 = Rd (r) sin θ ′ cos θ ′ cos φ′,

|yz〉 = Rd (r) sin θ ′ cos θ ′ sin φ′, (A4)

|x2 − y2〉 = Rd (r)
sin2 θ ′ cos 2φ′

2
,

|2z2 − x2 − y2〉 = Rd (r)
3 cos2 θ ′ − 1

2
.

Straightforward, but rather cumbersome calculations, lead
us to the following matrix:

V̂αβ = E0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−3a4−10a2
15 0 −b

2 0 0

0 12a4+5a2
15 0 b

2 0
−b
2 0 12a4+5a2

15 0 0

0 b
2 0 −3a4−10a2

15 0

0 0 0 0 −18a4+10a2
15

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where E0 = 10Dq is the splitting between eg and t2g levels,
and

a4 = − 3
2

(
5
2 cos4 θ − 15

7 cos2 θ + 3
14

)
,

a2 = 27
35κ(3 cos2 θ − 1), (A5)

b = 3 sin3 θ cos θ.

Here, parameter κ is defined as

κ = r2
0

∫ ∞
0 r2R2

d (r)r2dr∫ ∞
0 r4R2

d (r)r2dr
= r2

0
〈r2〉
〈r4〉 = k

(
r0

aB

)2

, (A6)

where r0 is the cation-ligand distance and aB is the Bohr
radius. A rough estimate for the factor k can be found by
using the hydrogen-like form for the radial part Rd (r) of the
wave function in metal ions, Rd (r) ∼ rn∗−1 exp (−z∗r/aB),
where n∗ and z∗ are the effective values of the principal
quantum number and of the nuclear charge, respectively [48].
According to Ref. [48], we have n∗ = 3, 3.7, and 4 for 3d,
4d, and 5d shells, respectively. For d electrons, there is the
following simple rule: the charge of all filled shells inside
the d shell is subtracted from the nuclear charge and the
charge of all d electrons except the given one is multiplied
by 0.35 and also subtracted. For example, for Co4+ with the
nuclear charge z = 27, we find z∗ = 7.6. In this case, we
have k = (z∗)2/810 ≈ 0.07. More accurate estimates using the
linearized muffin-tin orbitals (LMTO) give k = 0.2–0.3.

As a result, we find the wave functions of eσ
g , eπ

g , and
a1g energy levels, which depend on the trigonal distortions.
Choosing the reference frame as shown in Fig. 2(a), we obtain

for the wave functions expressions having the forms similar
to those obtained above for the case of undistorted octahedra.
Thus, for eg levels (eσ

g orbitals), we have [cf. Eqs. (4) and (5)]

|d1,2〉 = sin
α

2
|x2 − y2〉 ∓ cos

α

2
|xz〉,

|e1,2〉 = − sin
α

2
|xy〉 ∓ cos

α

2
|yz〉. (A7)

For t2g orbitals, we have the same a1g singlet, Eqs. (16) and
(18), and the eπ

g doublet [cf. Eqs. (17)–(19)]

|b1,2〉 = − cos
α

2
|xy〉 ± sin

α

2
|yz〉,

|c1,2〉 = cos
α

2
|x2 − y2〉 ± sin

α

2
|xz〉. (A8)

The ∓ and ± signs in the above expressions for cation
wave functions for neighboring M atoms occur since the
oxygen octahedra surrounding neighboring metal atoms are
transformed to each other by the 180◦ rotation about the z

axis. Parameter α in Eqs. (A7) and (A8) depends on the trigonal
distortions as well as on the contribution to the crystal field
from magnetic atoms. Neglecting the latter effect, we find

cos α = a√
a2 + b2

, a = a2 + a4. (A9)

For the ideal octahedron, we have α = α0 ≡ π − 2θ0 =
arccos(1/3). Substituting this value to Eqs. (A7) and (A8), we
arrive at the results of the previous sections. The dependence
of α on the M1-O-M2 angle β = π − 2θ is illustrated in
Fig. 3. Parameter α decreases monotonically when β increases,
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FIG. 3. (Color online) Angle α versus M1-O-M2 angle β = π −
2θ ; k = 0.1, r0 = 2 Å.

and it changes faster for β close to the value β0 = π − 2θ0

corresponding to the ideal octahedron. This decrease becomes
sharper for larger values of κ .

These results were obtained neglecting the effect of
neighboring metal atoms in the chain. Taking into account
the contribution to the crystal field from these atoms modifies
the parameter a2 in the following manner:

a2 → a2 − 27κ

35

Z∗

12 cos2 θ
, (A10)

where Z∗ is the effective charge (in units of e) of the metal
ion. Note that Z∗ can be different from z∗ mentioned above.
Parameters a4 and b, as well as the relations (A7)–(A9), remain
the same. Stretching of oxygen octahedra (θ < θ0) tends to
make α < α0, while the effect of neighboring metal atoms
acts in the opposite direction. For α > α0, the energy of the
a1g level is lower than that of the eπ

g one [see Fig. 2(b)],
leading to �1 > 0. Thus, in general, we can have �1 > 0 even
for (slightly) stretched octahedra. Just this situation takes place
in BaCoO3 with the chains of face-sharing Co4+O6 octahedra
[25]. Here, Co4+ with the d5 configuration has one hole at the
eπ
g level.

The wave functions Eqs. (A7) and (A8) are the general-
ization of those considered in Secs. III and IV to the case
of arbitrary trigonal distortion characterized by an angle α.
In other words, these distortions mix the eπ

g and eσ
g wave

functions for ideal octahedra MO6 given in Eqs. (4) and (5)
and Eqs. (17)–(19).

It is quite straightforward to demonstrate that orbitals (A7)
and (A8) provide the structure of the spin-orbital Hamiltonian
of the same form of Eq. (14) at any given α (taking into
account both direct and ligand-assistant hoppings). Thus, our
main conclusions remain the same even with the eσ

g -eπ
g mixing

taken into account.

APPENDIX B: ELECTRON HOPPING VIA LIGANDS

Here, we analyze a possible dependence of the hopping
integrals between metal ions via ligand ions (let them be
called oxygens for brevity) on the M-O-M bond angle. In

the chain of face-sharing MO6 octahedra, we chose a unit cell
consisting of two oxygen triangles forming an octahedron and
two metal ions, M1 and M2 (see Fig. 2). Then, the tight-binding
Hamiltonian describing the charge transfer between metal ions
via oxygen can be written in the following form (spin indices
are omitted for simplicity):

Hpd = −
∑
nμA

[t1μ;1Ad
†
n1μpn1A + t2μ;1Ad

†
n2μpn1A

+ t1μ;2Ad
†
n1μpn2A + t2μ;2Ad

†
n2μpn−1 2A + H.c.]

+�
∑
nA

(p†
n1Apn1A + p

†
n2Apn2A), (B1)

where n enumerates unit cells, p†(p) and d†(d) are creation
(annihilation) operators for p and d electrons, respectively,
numbers 1 and 2 correspond to metal ions M1 and M2,
respectively, and to the oxygen triangle above each of them,
μ is the set of basis d functions [Eqs. (A7) for eσ

g orbitals or
Eqs. (A8) for eπ

g orbitals], and A = {s,η}, where s = 1,2,3 and
η = px,py,pz, is a set of subscripts numbering the atoms in
each oxygen triangle and denoting the oxygen p orbitals. For
each doublet (eσ

g or eπ
g ), we have four dnlμ (l = 1,2) operators

and eighteen pnjA (j = 1,2) operators, for which we should
take into account all possible electron hoppings.

In the second order of the perturbation theory on tpd/�, we
can derive a Hamiltonian describing the effective hoppings
of electrons between the states of d doublets under study
via the oxygen p orbitals. To do this, we first proceed to
the momentum representation for electronic operators dklμ =∑

n e−2ikz0ndnlμ/
√

N , pkjA = ∑
n e−2ikz0npnjA/

√
N , where N

is the number of unit cells in the chain and z0 = 2r0 cos θ is
the distance between neighboring M1 and M2 atoms (r0 is
the M-O distance). Following then the standard procedure, we
obtain for the effective Hamiltonian

Heff = −
∑
kμν

[tμν(k)d†
k1μdk2ν + H.c.], (B2)

where (tlμ;jA are assumed to be real)

tμν(k) = 1

�

∑
A

[t1μ;1At2ν;1A + t1μ;2At2ν;2Ae−ikz0 ]. (B3)

According to Ref. [46], the hopping amplitudes tlμ;jA can
be expressed via two Slater-Koster parameters Vpdσ and Vpdπ

and directing cosines of the radius vector r connecting the
corresponding oxygen and metal ions [49]. If we choose the
reference frame as shown in Fig. 2, the radius vector rl;js

directed from the oxygen atom s (=1,2,3) in the j th (j = 1,2)
group of oxygens to the neighboring metal ion l (=1,2) is

rl;js = r0(−1)j{sin θ cos ϕs, sin θ sin ϕs, (−1)l−1cos θ}, (B4)

where ϕs = 2π (s − 1)/3. Using these relations, Table I of
Ref. [46], and Eqs. (A7) for eσ

g orbitals or Eqs. (A8) for
eπ
g orbitals, we calculate the hopping amplitudes tlμ;jA as

functions of Slater-Koster parameters Vpdσ and Vpdπ , the
angle θ , and the parameter α describing the orbital states.
Substituting then the obtained tlμ;jA into Eq. (B3) and
performing the summation, we arrive finally at the following
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relation for the effective d-d hopping amplitudes:

tμν(k) = δμνt0(1 + e−ikz0 ). (B5)

This relation is valid both for eσ
g and eπ

g orbitals. For eσ
g orbitals,

the parameter t0 is

t0 = −9

8

V 2
pdσ

�
sin2θ cos 2θ

(
2 cos θ cos

α

2
− sin θ sin

α

2

)2

+ 3

2

V 2
pdπ

�

[(
sin θ sin

α

2
+ cos θ cos

α

2

)2

+ cos 2θ
(

sin θ cos θ sin
α

2
− cos 2θ cos

α

2

)2
]

+ 3
√

3

2

Vpdσ Vpdπ

�
sin θ sin 2θ

[
sin2 θ cos θ sin2 α

2

− sin θ (3 cos2 θ − sin2 θs) sin
α

2
cos

α

2

+ 2 cos θ cos 2θ cos2 α

2

]
. (B6)

In the case of eπ
g electrons, the hopping integral t0 reads

t0 = −9

8

V 2
pdσ

�
sin2θ cos 2θ

(
2 cos θ sin

α

2
− sin θ cos

α

2

)2

+ 3

2

V 2
pdπ

�

[(
sin θ cos

α

2
+ cos θ sin

α

2

)2

+ cos 2θ
(

sin θ cos θ cos
α

2
− cos 2θ sin

α

2

)2
]

+ 3
√

3

2

Vpdσ Vpdπ

�
sin θ sin 2θ

[
sin2 θ cos θ cos2 α

2

− sin θ (3 cos2 θ − sin2 θ ) sin
α

2
cos

α

2

+ 2 cos θ cos 2θ sin2 α

2

]
. (B7)

Note that the effective Hamiltonian (B2) with hopping
amplitudes of the form of Eq. (B5) is equivalent to the simple
tight-binding Hamiltonian of the form

Heff = −t0
∑
mμ

[d†
mμdm+1μ + H.c.]. (B8)

This can be easily checked by using the transformation for
electronic operators

dn1μ → d2mμ, dn2μ → d2m+1μ, m ∈ Z. (B9)

Thus, from the viewpoint of the electronic properties, the
magnetic sites M1 and M2 are equivalent to each other even
though crystallographically they are different. One should keep
in mind, however, that d-orbital wave functions of neighboring
magnetic sites are different.

The dependence of the hopping integral t0 for eσ
g and eπ

g

orbitals on the M-O-M bond angle β = π − 2θ is illustrated
in Figs. 4 and 5, respectively. For the ratio Vpdσ /Vpdπ , we
took the commonly used value [50] equal to 2.16. We see that

FIG. 4. (Color online) Hopping integral for eσ
g orbitals versus

M1-O-M2 angle β = π − 2θ ; k = 0.1, r0 = 2 Å.

at some value of β the hopping integral via oxygens either
changes sign (for eπ

g orbitals) or becomes close to zero (for eσ
g

orbitals). For eσ
g orbitals this happens for M-O-M bond angle

close to that characteristic of an undistorted octahedron β0 =
π − 2 arccos(1/

√
3) ∼= 70.5◦, while for eπ

g orbitals t0 changes
sign at a bit smaller value of β (compressed octahedron).
The total d-d hopping amplitude is t = t0 + td−d . Thus, for
eσ
g orbitals t is always positive, while for eπ

g orbitals it can
change sign. Usually, the direct d-d hopping amplitude td−d

is assumed to be smaller than the characteristic value of the
effective hopping via oxygens t0 ∼ V 2

pdσ /�. Our calculations
show however that for some M-O-M bond angles the direct
hopping becomes dominant. Moreover, for eσ

g orbitals this
can be the case of the ideal octahedron. When the hopping is
suppressed, the higher-order corrections to the SU(4) model,
containing the terms ∼J/U , which have less symmetric form
in orbital τ variables (see, e.g., Refs. [4,5]) may have to be
included.

FIG. 5. (Color online) Hopping integral for eπ
g orbitals versus

M1-O-M2 angle β = π − 2θ ; k = 0.1, r0 = 2 Å.
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APPENDIX C: GENERAL FORM OF THE EXCHANGE
HAMILTONIAN

Let us now present the full form of the exchange Hamil-
tonian, including terms containing the Hund’s rule coupling
constant J . These terms appear when we consider not the
virtual hopping between occupied orbitals, but the hopping

to an empty orbital of the neighbor, with the consecutive
effect of Hund’s coupling. The derivation of these terms
is straightforward [4,5], although a bit cumbersome. In our
case of face-sharing octahedra, the resulting spin-orbital
Hamiltonian has the form

Heff = t2

U

∑
〈i,j〉

{(
1

2
+ 2si sj

) (
1

2
+ 2τ iτ j

)
+ JU

U 2 − J 2

[
2
(
τ iτ j − τ z

i τ z
j

) −
(

1

2
+ 2si sj

) (
1

2
− 2τ z

i τ z
j

)]

+ J 2

U 2 − J 2

[(
2τ z

i τ z
j − 1

2

)
+ (1 + 2si sj )

(
τ iτ j − τ z

i τ z
j

)]}
. (C1)

We see indeed that, whereas the leading term in the full
Hamiltonian (C1) has the SU(4) form, its symmetry is broken
by the terms of higher order in J/U . Nevertheless, for many
realistic situations these terms give only a small correction
to the main term, which could in principle be smaller than
the results of quantum fluctuations in the SU(4) model. And,

as mentioned above, even if these symmetry-breaking terms
would determine the type of the ordering in the ground
state at T = 0, there would exist a broad temperature range
(t2/U )(J/U ) � T � t2/U , in which the properties of the
system would be determined by the first, SU(4), part of the
Hamiltonian.
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