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other layer of assumptions and models to fix 
them; truncated singular value decomposi-
tion (TSVD), Tikhonov regularization, and L 
curves are examples of deconvolution “fixes” 
[13]. As a result, we are facing a wide spec-
trum of processing options affecting every 
aspect of perfusion analysis.

For that reason alone, perfusion measure-
ments from different software may not cor-
relate very well—even when applied to the 
same data [9, 14–16]. In fact, they might not 
correlate at all [17]. Therefore, when a hospi-
tal faces the task of upgrading its perfusion 
tools, it often must choose between two evils: 
not upgrading (but preserving measurement 
consistency) or upgrading (but likely losing 
the consistency with the previous results).

Finally, the problem of diverse methodol-
ogy only gets worse when one needs to judge 
the performance of a perfusion algorithm on 
the basis of real patient data. The varying as-
pects of real image acquisition—such as noise, 
dose and contrast levels, scanning protocols, 
artifacts, pathologies and abnormalities, and 
many more—largely affect perfusion results, 
making many comparisons incompatible. As a 
result, radiologists are frequently puzzled by 

Digital Perfusion Phantoms for 
Visual Perfusion Validation

Oleg S. Pianykh1,2

Pianykh OS

1Department of Radiology, Beth Israel Deaconess 
Medical Center, Harvard Medical School, 330 Brookline 
Ave, Boston, MA 02215. Address correspondence to  
O. S. Pianykh (opiany@gmail.com). 

2School of Applied Mathematics and Information 
Science, National Research University-Higher School of 
Economics, Moscow, Russia.

Medica l  Phys ics and Informat ics •  Or ig ina l  Research

AJR 2012; 199:627–634

0361–803X/12/1993–627

© American Roentgen Ray Society

O
ver the past decade, perfusion has 
become one of the mainstream 
clinical analysis tools. Blood flow 
(FB), blood volume (VB), mean 

transit time (TM), and other perfusion parame-
ters are routinely extracted from temporal im-
aging sequences. Their values and color maps 
are used as the basis for critical clinical deci-
sions. Their applications range from emer-
gency departments to pharmaceutical trials. 
References to perfusion data have become 
commonplace in diagnostic radiology.

This ever-growing need produced a broad 
spectrum of perfusion algorithms derived 
from even broader sets of assumptions and 
mathematical models [1–12]. Their outcomes 
depend on parameters defined by their au-
thors and modified by their users to reflect 
various processing and viewing preferences 
(e.g., eigenvalue thresholds, input-output 
functions, degrees of continuity, resolution, 
color ramps, recirculation points, intensity 
ranges, and smoothing kernels, to name a 
few). In addition, all well-known perfusion 
methods—such as the universally adopted 
deconvolution approach, discussed later—
have intrinsic limitations that lead to yet an-
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OBJECTIVE. Despite the increasingly broad use of perfusion applications, we still have 
no generally accessible means for their verification: The common sense of perfusion maps 
and “bona fides” of perfusion software vendors remain the only grounds for acceptance. 
Thus, perfusion applications are one of a very few clinical tools considerably lacking practi-
cal objective hands-on validation. 

MATERIALS AND METHODS. To solve this problem, we introduce digital perfusion 
phantoms (DPPs)—numerically simulated DICOM image sequences specifically designed to 
have known perfusion maps with simple visual patterns. Processing DPP perfusion sequences 
with any perfusion algorithm or software of choice and comparing the results with the expect-
ed DPP patterns provide a robust and straightforward way to control the quality of perfusion 
analysis, software, and protocols.

RESULTS. The deviations from the expected DPP maps, observed in each perfusion software, 
provided clear visualization of processing differences and possible perfusion implementation errors.

CONCLUSION. Perfusion implementation errors, often hidden behind real-data anato-
my and noise, become very visible with DPPs. We strongly recommend using DPPs to verify 
the quality of perfusion applications.
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strange perfusion outcomes, such as unusu-
al insensitivity to the input data, as shown in 
Figure 1. With too many factors affecting the 
final results, a rational analysis becomes vir-
tually impossible.

All this creates a natural need for a robust, 
nonintrusive, scanner- and patient-free perfu-
sion validation tool that would let one compare 
the outcomes and accuracy of several perfu-
sion-processing applications as objectively as 
possible. We introduce digital perfusion phan-
toms (DPPs) as a solution to this problem. DPP 
is a simulated DICOM image sequence specifi-
cally designed to have known perfusion maps 
with simple and regular visual patterns. These 
patterns can be compared with the actual maps 
computed from a DPP with a perfusion algo-
rithm of choice. The result of this comparison 
provides an objective way to assess the quality 
of the chosen perfusion algorithm, software, 
and protocols.

For the rest of this article, we will assume 
that we work with perfusion CT; perfusion 
MRI phantoms can be built in the same way 
and CT attenuations would usually be re-
placed with the log of MR intensity [2].

Materials and Methods
Digital Perfusion Phantoms: The Concept

Let S be a temporal DICOM image (I) sequence:

S = {I0, I1,…, In,…,IN}, 

capturing contrast material passing through the 
volume of interest. The image index n corresponds 
to the acquisition time tn, with time t0 being the 
unenhanced baseline. Contrast enhancement is re-
flected in pixel intensity values In(x, y), that change 
with the acquisition time tn and reproduce contrast 
density according to the imaging modality (linear-
ly in CT, exponentially in MRI). Perfusion param-
eters FB, VB, and TM are computed from this ob-
served contrast density at each pixel (x, y) on the 
basis of the chosen perfusion algorithm and modal-
ity. The resulting spatial distributions of parameter 
values are displayed as perfusion maps, with a pre-
set color ramp; there is no color information in the 
original perfusion values.

We define DPP as a computer-simulated image 
sequence:

S = {I1, I2,…, In,…, IN}, 

where each temporal pixel value In(x, y) = In(x, y; tn) 
is generated to create predefined visual perfusion 
map patterns. That is, given FB, VB, and TM val-
ues (maps), we build DPP sequence S to produce 
these maps.

Consider the fundamental perfusion convolution 
equation, which we refer to as equation 1, that has 
been adopted by most current perfusion analysis tools:

In(x, y) = In(x, y;tn) = In(x, y) +
(1)

∫R(x, y;τ) K (tn − τ)dτ + e(x, y)
tn

τ = 0

where I0(x, y) = I(x, y; t0 = 0) is the baseline image, 
R(x, y; t) is the residual function, K(t) is the convolu-
tion kernel (found from the arterial input function 
and venous output function), and e(x, y) is random 
noise [2, 3, 7, 8]. Then, to build a visual perfusion 
phantom S, we need to select I0(x, y), R(x, y; t), and 
K(tn) in such a way that FB(x, y), VB(x, y), and TM(x, 
y) maps would contain predefined regular visual pat-
terns—that is, “digital phantoms.” In this respect, 
DPP is a known solution to equation 1. On the other 
hand, any perfusion algorithm can be viewed as a 
numeric solver for equation 1. Hence, the principal 
concept of DPP: If a solver fails on a known solu-
tion, it cannot be trusted in general.

This transforms DPP into a straightforward 
perfusion validation tool.

Building a Digital Perfusion Phantom
Temporal phantom design—To design DPP se-

quence S, we used two independent perfusion pa-
rameters—FB and TM—to then calculate volume 
according to the central volume principle [18]: 
VB = FB × TM. Using brain perfusion analogy, we 
chose to simulate a 45-second perfusion sequence 
(n = 45, T = tN = 45 seconds) with a 1-second in-
terimage delay as follows (Fig. 2A):

K(t) = tae–t / b,

where K(t) is the convolution kernel function, t is 
time, and a and b are positive constants used to de-
fine different perfusion flow patterns.

We also chose the following piecewise-linear 
function:

 R(t) = FB × max(0, 1 – ct), 

where R(t) is residual function, FB is blood flow, c 
is positive constant, and t is time. We chose these 
functions because they, first, closely reproduce the 
shapes of the real R(t) and K(t) extracted from the 
true perfusion data; and, second, represent popular 
choices studied in the perfusion literature [2, 11] and 
therefore are used by perfusion software developers 
to implement perfusion algorithms.

Positive constants a, b, and c were chosen to 
match the given TM map (as defined in the follow-
ing section) and to produce various temporal pat-
terns over the 45-second time interval (Fig. 2B). 
Using equation 1, we obtained a closed-form so-
lution for the contrast attenuation I(x, y; tn) as a 
function of time. As a result, we defined temporal 
I(x, y; tn) corresponding to given FB, TM, and VB.

Spatial phantom design—The main goal of DPP 
spatial design was to find a pattern that can be easily 
visualized on the FB, TM, and VB maps. We discovered 
the following exponential parameterization, which 
we refer to as equation 2, to achieve that goal:

TM(x, y) = T0 (2)
0

 
≤ x, y

 
≤ d

y/dT1

T0

, FB(x, y) = F0 ,
x/dT1

T0

where (x, y) are integer pixel coordinates, T0 and 
T1 are maximum and minimum transit times, re-
spectively; F0 is minimum blood flow; and d is im-
age width or height (we used square images). In 
this case, the third volume parameter, VB, has to 
follow the same exponential equation, which we 
refer to as equation 3:

VB(x, y) = F0TM = V0 (3), 0
 
≤ x, y

 
≤ d

(x +y)/dT1

T0

where (x, y) are integer pixel coordinates, V0 is 
minimum blood volume, and d is image width or 
height. Therefore, with respect to the central vol-
ume principle, our exponential parameterization 
(equations 2 and 3) has a unique spatial property: 
TM remains constant along the horizontal axis x; 
FB, along the vertical axis y; and VB, on diago-
nal lines x + y = constant. To make this pattern 
more apparent, we divided each image axis into 
10 equal segments with constant FB, TM, and VB 
values, thus producing the striped patterns—hori-
zontal in TM, vertical in FB, and diagonal in VB 
(Fig. 3). Thus, constant-value square tiles can be 
used to judge perfusion algorithm stability; sharp 
boundaries between them indicate greater sensi-
tivity to changes, and striped patterns—equation 
1 is being correctly implemented.

As a result, we designed a baseline DPP con-
forming to perfusion convolution and central vol-
ume principles and producing regular linear patterns 
in the perfusion maps. For the remainder of this ar-
ticle, we will be considering only the temporal part 
of our DPP phantom: the 400 × 400 DPP square area 
(inside the “skull” outline) changing in time.

Artifacts—In addition to satisfying the most fun-
damental properties, perfusion algorithms are ex-
pected to be numerically stable and precise. There-
fore, we decided to complement our baseline DPP 
with random noise for noise-resistance analysis and 
thin angular lines for spatial resolution analysis.

One-pixel-thin angular lines were drawn from 
two phantom corners (Fig. 4B): left-top (point L) 
and right-top (point R). The lines radiating from 
L, which we refer to as “L lines,” were made with 
a 25% increase in the underlying phantom inten-
sity and those radiating from R (i.e., “R lines”), 
with a 50% increase. Many perfusion packages use 
smoothing  to overcome noise, often diluting and 
losing fine image details. Therefore, thin lines were 
added to test the spatial resolution of the algorithm.

Random gaussian noise, commonly used in per-
fusion simulations [19], was also added to test the 
algorithm’s resistance to noise (Fig. 4C). From 
the many available ways to define noise patterns, 
we chose noise proportional to the temporal devia-
tion of the contrast enhancement line I(x, y; tn) in 
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equation 1, thus covering a wide range of noise am-
plitudes. Noise and thin lines model local intensity 
changes, with opposite implications: Ideal perfusion 
software should suppress the noise without losing 
the fine lines.

As a result, we generated two DPP sequences: 
baseline DPP1 (Figs. 3 and 4A) and artifact (lines 
and noise in Fig. 4C) DPP2. For all images, we used 
a 512  × 512 pixel matrix with a large 400 × 400 
phantom square in the middle divided into 10 × 10 
square tiles (40 × 40 pixels each), with each tile 
corresponding to a constant triplet of FB, TM, and 

VB values (Fig. 3). The attenuations (measured in 
Hounsfield units) in the resulting 400 × 400 phan-
tom matrix ranged from 10 to 510 HU; on the out-
side, the phantom was surrounded by a simulated 
skull outline (required in some perfusion packages) 
and air background (–1000 HU). The interimage 
time delay was set to 1 second, and all phantom 
images were stored in DICOM format, conform-
ing to DICOM CT SOP. Thus, the only difference 
between DPP and real perfusion scans was in the 
simulated spatial distribution of DPP pixel values 
(square tiles with constant perfusion values); ev-

erything else was consistent with real perfusion 
data such as CT brain perfusion.

Results
To see DPPs in action, we tested three popu-

lar perfusion packages using their brain perfu-
sion option: software A (TeraRecon Perfusion, 
provided to us via the TeraRecon test server), 
software B (Perfusion 4, GE Healthcare), and 
software C (Vitrea 6.1, Vital Images). All three 
packages claimed perfusion deconvolution im-
plementation [2], thus conforming to equation 
1 and our DPP design. Two DPPs were used: 
baseline DPP1 (artifact-free) (Fig. 4A) and arti-
fact DPP2 (with thin lines and noise) (Fig. 4C), 
as detailed earlier. All three programs received 
the two DPP sequences as input, with identical 
arterial input function, venous output function, 
thresholding, and color ramp settings. The re-
sulting perfusion maps were only adjusted to be 
in the same color and intensity window for con-
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Fig. 1—Perfusion implementation oddities.
A–C, Three perfusion flow maps computed from same 
brain CT sequence using same settings and same 
popular perfusion software package. Only difference 
was in arterial input and venous output point locations; 
these points were selected correctly for map 3 (C) and 
were completely misplaced on background noise in 
map 1 (A) and on sinus in map 2 (B). 
D–F, Despite very clear differences in arterial and 
venous function profiles shown in D-F (HU vs. time 
graphs), flow maps 1, 2, and 3 (A–C) look strikingly 
similar. Even map 1 (A), based on random noise input 
(D), looks similar to map 3 (C), derived from true flow 
functions (F).

Fig. 2—Perfusion convolution functions.
A, R(t) is the residual function, K(t) is the convolution kernel function, and t is time, used in our digital perfusion phantom. The vertical axis shows the change in HU.
B, Examples of resulting contrast attenuation curves I(x, y; tn) from equation 1, shown for mean transit time (Tm) parameter set to 1 second (curve 1), 20 seconds (curve 2), and 45 
seconds (curve 3).
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sistent comparison. The resulting maps are dis-
cussed below. Because all perfusion programs 
offered different (and often incompatible) op-
tions, we ran them with the default settings pro-
vided by their vendors.

Blood Volume Maps
The baseline DPP1 was used to test soft-

ware packages A, B, and C for an expected 
diagonal pattern in the VB maps. As one can 
see from the output DPP1 maps (Figs. 5A–
5C), software B produced the closest match 
to the expected diagonal pattern, whereas 
software A and C visibly deviated from the 
45° slope and software C deviated from the 
expected slope linearity (left bottom corner 
of Fig. 5C corresponding to low-FB and high-
TM area). In comparison, software B (Fig. 5B) 
had the lowest dynamic color range: Half of 
its map was uniformly red, with most inter-
mediate shades essentially lost. The volume 
map from software A (Fig. 5A) showed much 
more subtle differentiation in VB values.

Also note that the square tiles with con-
stant VB had very visible boundary artifacts in 
maps from software packages B (Fig. 5B) and 
C (Fig. 5C), such as the “ghost” line shown 
with arrow 1 in Figure 5B; however, while 

tile edges were simply smoothed by soft-
ware B in Figure 5B, they received overlap-
ping rectangular boundaries by software C (ar-
row 2 in Fig. 5C). Some perfusion values in 
the map yielded by software C were clearly 
misplaced—such as the yellow rectangle sur-
rounded by a red boundary (arrow 3)—raising 
questions about the correctness of the map and 
sensitivity of software C to the input.

DPP2 with thin line and noise artifacts un-
covered even more differences between the 
three perfusion packages (Figs. 5D–5F). Soft-
ware A preserved a reasonable number of fine 
lines despite apparent smoothing: One can see 
the smoothed noise on the square tiles (expect-
ed to have constant color). Perfusion smooth-
ing has one principal disadvantage: Smoothed 
noise starts looking like structural anatomy. 
Nonetheless, software B clearly used more ag-
gressive smoothing than software A, and re-
moved both noise and fine line details. Artifi-
cial colors on tile boundaries (arrow 4 in Fig. 

5E) and false spots (arrow 5 in Fig. 5E) present-
ed other unfortunate results of oversmoothing. 
The thin lines in the top left corner of software 
B’s map (Fig. 5E; low FB and TM) mutated into 
shapeless blots (arrow 6 in Fig. 5E) that could 
also be confused with anatomic or pathologic 
findings on real-data maps. Finally, note the 
rounded corners on the map yielded by soft-
ware B (arrow 7 in Fig. 5E)—likely another 
side effect of a large smoothing kernel.

Software C essentially flattened all noise 
and thin line artifacts; they were complete-
ly lost and ignored. Small traces of them can 
be seen in the light-blue tiles near the diag-
onal (Fig. 5F). Note that these artifacts also 
were somewhat “rectagonalized” like the in-
tertile boundaries. In this way, software C 
turned out to be the most insensitive to the 
fine image detail given that its map of DPP2 
(Fig. 5F) looks very much like that for DPP1 
(Fig. 5C). Also note the loss of data in the top 
left corner and bottom right corner, shown 
by two arrows labeled arrow 8 in Figure 5F, 
making it look as if software C’s map is an 
overlap of two identical maps shifted along 
the “green” diagonal.

Ghost lines, blots, smoothed noise, and 
disfigured edges—so obvious with DPPs—
become undistinguishable from true ana-
tomic and pathologic findings in real patient 
cases. They result in distorted perfusion mea-
surements and can easily lead to incorrect 
clinical decisions. The dissimilarities in DPP 
output for all three packages also illustrate 
that perfusion software from different ven-
dors cannot be expected to deliver the same 
results [14] and may not even capture the 
same flow trends.

Fig. 3—Digital perfusion phantom (DPP) design.
A, One of phantom temporal images, In, with 
simulated anatomy and 400 × 400 digital perfusion 
phantom (DPP) square area, changing in time. FB = 
blood flow, TM = mean transit time, VB = blood volume.
B–D, Perfusion maps for DPP area square 
constructed with exponential parameterization: 
mean transit time (TM , horizontal stripes); blood flow 
(FB, vertical stripes), and blood volume (VB, diagonal 
stripes). 

Fig. 4—Simulating artifacts in digital perfusion 
phantom (DPP) sequence.
A–C, Original DPP (A) with addition of thin lines (B) 
and noise artifacts (C).
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Blood Flow Maps
The FB maps shown in Figure 6 were ex-

pected to produce vertical stripes (Fig. 3C), 
but none of the three software packages 
reached that goal. Software C probably was 
the closest to the ideal striping, but even it se-
verely deviated from the vertical pattern in the 
top right corner of Figures 6C and 6F (low-TM, 
high-FB area). For software A and B, nonverti-
cal deviations were apparent for both low-TM 
and high-TM areas. Overall, all three packages 

provided a perfect illustration of highly uncor-
related perfusion software [14].

Visible distortion of the expected FB pattern 
can be explained in the context of deconvolution 
perfusion analysis. FB is the hardest to compute 
with deconvolution: It is often expressed as R(0) 
or as max[R(t)]. Using either to compute FB 
makes FB very sensitive to noise and algorithm 
settings, such as eigenvalue truncation thresh-
old. Therefore, the deviations from the vertical 
stripes in Figure 6 can be somewhat anticipated. 

This example also makes us aware of the fact 
that many perfusion deconvolution techniques, 
such as TSVD, are nothing but the approxima-
tions to the ideal solution, often trading perfu-
sion accuracy for higher noise suppression [17]. 
For that reason, many perfusion deconvolution 
techniques can significantly diverge from the 
true solution in some input data ranges. DPPs 
can clearly identify the areas of this divergence.

DPP2 with noise and thin line artifacts (Figs. 
6D–6F), similar to the VB case, showed stronger 
smoothing in software package B (still merg-
ing noise in large blots, as shown by arrow 1 
in Figure 6E); a large impact of noise on the 
structural elements in software A (as shown by 
breaking square tiles in Figure 6D), and near-
ly complete insensitivity to noise and thin lines 
in software C (as shown by Figure 6F). Note 
that in software B, artifacts resulted in further 
deviation from the vertical pattern, especially 
in the now-green top right corner of Figure 6E 
(high-FB, low-TM area) where the coloring pat-
tern became essentially diagonal. In software C, 
we observed the same misplaced yellow tiles 
(arrow 2 in Fig. 6F)—possible sign of numer-
ic instability of the perfusion algorithm, intro-
ducing false perfusion values to the locations 
where they should not exist.

Fig. 5—Digital perfusion phantoms (DPPs) verifying 
blood volume maps.
A–C, Baseline DPP without artifacts (DPP1). Blood 
volume (VB) maps from perfusion packages A (A), 
B (B), and C (C) are shown. In B, arrow 1 points to 
“ghost” line. In C, arrow 2 shows tile edges received 
overlapping rectangular boundaries and arrow 3 
points to misplaced perfusion value.
D–F, DPP with noise and line artifacts (DPP2). VB maps 
from perfusion packages A (D), B (E), and C (F) are 
shown. Software B clearly used more aggressive 
smoothing, and both noise and fine line details were 
removed. Artificial colors on tile boundaries (arrow 
4, E) and false spots (arrow 5, E) presented additional 
unfortunate results of oversmoothing. Thin lines in 
top left corner of software B’s map (low blood flow 
and mean transit time) mutated into shapeless blots 
(arrow 6, E) that can also be confused with anatomic 
or pathologic findings on maps of real data. Finally, note 
rounded corners (arrow 7, E) on software B’s map; this 
feature is likely another side effect of a large smoothing 
kernel. For software C, note loss of data in top left (upper 
arrow 8, F) and bottom right corners (lower arrow 8, F), 
making it look as if software C’s map is overlap of two 
identical maps shifted along “green” diagonal.

Fig. 6—Digital perfusion phantoms (DPPs) verifying 
blood flow maps.
A–C, Baseline DPP (DPP1). Flow volume (FB) maps 
from perfusion packages A (A), B (B), and C (C) are 
shown. 
D–F, DPP with artifacts (noise and lines) (DPP2). FB 
maps from perfusion packages A (D), B (E), and C (F) 
are shown.
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Mean Transit Time Maps
TM maps for DPP1 (Fig. 7) produced rather 

interesting outcomes for all three implementa-
tions. In this case, all three software packag-
es largely deviated from the ideal horizontal 
stripes, but contrary to the nonlinearities in the 
FB maps, deviations in TM manifested them-
selves in a more discrete and random fashion—
with frequently misplaced constant-value tiles. 
Consider arrow 1 on the map yielded by soft-
ware package A (Fig. 7A) as an example of 
when a relatively high TM value is surround-
ed by neighbors with visibly lower TM values. 
This behavior is impossible in the ideal DPP so-
lution, where TM grows monotonically (equa-
tion 2), so we have to attribute it to numerical-
ly unstable deconvolution implementation. 
In real clinical cases, perfusion artifacts are 
usually blamed on noise or poor image acqui-
sition; but Figures 7A–7C, corresponding to 
the artifact-free DPP1, clearly show that per-
fusion imperfections may abound in perfusion 
algorithms rather than input data.

Note that our DPP design can be used for 
numeric observations about the perfusion 
values and their ranges. For instance, con-
sider the misplaced green tile (arrow 1 in 
Fig. 7A) in the middle of software A’s map; 

this tile is hard to explain rationally given 
the noise- and artifact-free input data. Expo-
nential parameterization (equation 2), break-
ing a 45-second time interval into 10 stripes, 
corresponds to incrementing TM by a factor 
of 451/10 = 1.46, when moving from one stripe 
to another. The green tile (arrow 1 in Fig. 
7A) seems to be shifted three stripes above 
its line. This three-stripe misplacement cor-
responds to the factor of 453/10 = 3.13, which 
is a substantial 313% error!

It is also instructive to observe that soft-
ware packages A and B produced nearly iden-
tical TM maps—both in terms of their appear-
ance and processing artifacts—in spite of the 
clear differences between the A and B maps 
of VB and FB. This finding brings us to anoth-
er important conclusion: An intervendor per-
fusion similarity for one perfusion parameter, 
such as TM, does not ensure similarity for the 
other parameters, such as VB and FB.

Interestingly enough, adding noise and thin 
lines (Figs. 7D–7F) contributed to hiding some 
of the deficiencies observed in the three maps. 
For example, the misplaced tiles in software 
A’s map were consumed by noise, and the un-
naturally looking boundaries between the tiles 
in software C’s map nearly disappeared. Ironi-
cally, this result shows another common pitfall 
with real-life perfusion implementations—that 
is, when noise and other artifacts “improve” 
perfusion results by covering the numeric er-
rors in the original perfusion algorithms. Also 
note that DPP2 fine-line artifacts were produced 

Fig. 7—Digital perfusion phantoms (DPPs) verifying 
mean transit time maps.
A–C, Baseline DPP (DPP1). Mean transit time (TM) maps 
from perfusion packages A (A), B (B), and C (C) are 
shown. In A, arrow 1 shows misplaced constant-value 
tile, which resulted from a relatively high TM value being 
surrounded by neighbors with visibly lower TM values. 
In C, arrow 2 shows misplaced TM value and arrow 3 
shows thickened false intertile boundary. 
D–F, DPP with artifact (noise and lines) (DPP2). TM 
maps from perfusion packages A (D), B (E), and C (F) 
are shown. 

Fig. 8—Perfusion maps for convolution-based 
digital perfusion phantom (DPP) processed with 
nonconvolution Axel algorithm. VB = blood volume,  
FB = blood flow, TM = mean transit time.
A–C, Baseline DPP (DPP1).
D–F, DPP with artifacts (noise and lines) (DPP2).
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with constant intensity scaling (25% and 50%, 
respectively), which really should not affect 
TM at all. Therefore, the fine lines in the maps 
yielded by software packages A and B, partial-
ly seen in the top left corners of Figures 7D and 
7E (lowest FB and lowest TM), indicate numeric 
errors rather than true TM values.

Finally, the TM map for software C (Figs. 
7C and 7F) exhibits peculiarities of its own. 
First of all, it looks visibly different from the 
TM maps for software A and B and might look 
like the best approximation to the expected 
horizontal line pattern. However, it still suf-
fers from misplaced values (arrow 2 in Fig. 
7C) and thickened false intertile boundar-
ies (arrow 3 in Fig. 7C). It also shows a very 
strange response to the same gaussian noise 
pattern: discrete rectangularlike on the left 
(arrow 4 in Fig. 7F; low-FB area), and much 
smoother and rounded on the right (arrow 5 
in Fig. 7F; high-FB area).

Changes in Implementations, Baseline,  
and Algorithms

It is natural to ask how DPPs, based on the 
perfusion convolution model in equation 1, 
could perform with nonconvolution perfu-
sion algorithms such as Axel’s perfusion [1]. 
We implemented Axel’s approach with our 
software. The results are shown in Figure 8.

As can be seen, the nonconvolution nature 
of Axel’s perfusion analysis changed the ob-
served coloring pattern: The stripes in FB be-
came diagonal (instead of vertical) with the 
same diagonal pattern also seen in the up-
per “blue” area of the TM map. Nevertheless, 
the change in global stripping pattern did not 
(and should not) affect the local continuity of 
the perfusion value distribution and the regu-
larity of the DPP visual pattern. As a result, 
we can still use our DPPs in a very consistent 
way. In fact, all we need to know for any new 
type of perfusion analysis algorithm is its ide-
al response to the DPP maps built from equa-
tions 2 and 3. Then, the algorithm verification 
work remains exactly the same as illustrated 
with software packages A, B, and C. More-
over, DPPs can be used to infer the underlying 
model (deconvolution vs Axel, for instance). 
And, with a few numeric measurements on 

DPP maps, one can even deduce the corre-
sponding model parameters, such as eigenval-
ue thresholding, thus recovering the entire per-
fusion implementation. In any event and with 
any software package we studied, DPPs pro-
vide very clear feedback about the algorithm’s 
response to noise, fine artifacts, and different 
ranges of perfusion values.

Another interesting direction lies in su-
perimposing DPPs with a real baseline anat-
omy. In particular, this can help us visual-
ize to what extent real shapes and contours 
affect different perfusion implementations. 
Figure 9 provides a good illustration for this: 
We used our DPP1 phantom with a real skull 
outline as the baseline image I0.

Although the overall response to DPP1 
(Figs. 9A–9F) remains the same as expect-
ed, note the obvious divergence in software 
packages B and C close to the baseline shape 
boundaries. Small noise and edge patterns 
so visible in software B (arrow 1 in Fig. 9A) 
completely disappear in software C (Fig. 
9D); smooth regions in software B (Fig. 9B) 
become very noisy and unnaturally rectangu-
lar in software C (arrow 2 in Fig. 9E); circu-
lar areas with clearly different perfusion val-
ues in software C (arrow 3 in Fig. 9D) do not 
match anything in software B (Fig. 9A). Once 
again, DPPs become ideal for highlighting all 
these differences—the differences that would 

otherwise be blamed on anatomy and noise 
but that, in reality, correspond to diverging 
perfusion implementations.

Finally, as a good practical and extreme 
counterexample, Figure 10 shows DPP maps 
built with two free perfusion programs found 
online, which we refer to as software pack-
ages D and E. The divergences from the ex-
pected DPP patterns are appalling, raising 
many questions about the correctness and 
numeric stability of software D and E.

 We know that perfusion algorithms may 
vary, but under no circumstances should they 
produce random and incoherent maps out of 
smooth and gradually changing DPP data. 
Implementation errors, so easy to hide behind 
real-data anatomy and noise, become very vis-
ible with DPPs. We strongly recommend using 
DPPs as the very first perfusion software test to 
verify the basic quality of the implementation.

Conclusion
We introduced DPP as an objective visual 

perfusion validation tool and proved its effec-
tiveness regardless of the underlying perfusion 
algorithm implementation. Verification of the 
perfusion processing is the most basic and im-
portant step for its acceptance, but DPPs can 
be used in more complex and quantitative ex-
periments. First, just like any real perfusion 
data, DPPs correspond to a valid contrast flow, 

Fig. 9—Baseline digital perfusion phantom (DPP1), 
placed over baseline image of skull and processed with 
two different perfusion packages. Note differences in 
responses to baseline shape. VB = blood volume,  
FB = blood flow, TM = mean transit time.
A–C, Software B. 
D–F, Software C. Arrows point to different perfusion 
processing errors in software B and software C 
packages.
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producing meaningful values of FB, TM, and 
VB (Fig. 2). These values can be assessed and 
compared. However, unlike the real perfusion 
scans, our DPPs are not affected by scanner set-
tings or choice of patients, pathologic findings, 
or complex anatomy. This constitutes the prin-
cipal advantage of DPP, justifying their use 
for objective perfusion comparison.

Second, our core DPP design does not pre-
clude perfusion researchers and vendors from 
building their own DPP sequences tuned to re-
flect more specific perfusion phenomena. How-
ever, the DPP1 sequence we offer provides a 
universal baseline designed to verify the nu-
meric properties of perfusion analysis tools re-
gardless of perfusion acquisition aspects.

Third, artifacts (i.e., thin lines and noise) 
in DPP2 can be altered in strength to find the 
“breaking point” of given perfusion tech-
nique or protocol. Consider the problem of 
reducing CT radiation exposure: DPPs with 
increasing noise (corresponding to lower CT 
exposure) can be used to determine the radia-
tion thresholds for perfusion in low-dose CT.

Fourth, treatment of noise becomes one of 
the principal factors for judging the quality of 
perfusion implementation. Strong spatial noise 
filtering (smoothing) not only removes the im-
portant image details, but also often changes 
the random noise pattern, making it look more 
like structured anatomy. Strong temporal de-
noising, such as larger eigenvalue truncation 
in TSVD, produces visible deviations from the 
expected perfusion values and their distribu-
tion patterns [17]. DPPs can be used to iden-
tify these instances, as illustrated.

Fifth, this work should not be viewed as an 
advertisement of any particular perfusion 
product and implementation. As follows from 
our analysis, all software packages have their 
own advantages and deficiencies. In this case, 
DPPs provide an objective, vendor-indepen-
dent perfusion comparison tool.

This interesting discussion is open, and 
we invite you to participate. The DPP se-
quence used in this work will be provided on 
request in the original DICOM format.
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Fig. 10—Extreme cases in digital perfusion phantom (DPP) verification. Note strong and nearly random 
artifacts on both maps.
A, Blood flow (FB) map from software package D. Baseline DPP (DPP1) was used with thin L lines added.
B, Mean transit time (TM) map from software package E.
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