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1. Introduction and review

The model of the spatial competition is the model of
interaction of firms (players) selling homogeneous product for the
customers distributed along the line (or in a more complicated
domain). This line can be either physical distance (street in
the city, coastline, highway) or amount of product characteristic
preferred by customers (horizontal product differentiation in
the model of Monopolistic Competition or even the political
spectrum in the Downs Model of Political Competition).
There are several alternative models of spatial competitions, in
particular [Downs, 1957], [Prescott, Visher, 1977], [Lancaster,
1979] which are beyond the scope of this article. Here we study
the Hotelling’s model in its original formulation. Numerous
customers are evenly distributed along an interval and buy
product from the firm who quotes the least delivered price. No
customer has any preference for any firm except on the ground of
product price plus transportation cost which is assumed linear
with the distance. There are three stages in the game (or two
stages for the firms). At the first stage firms choose the locations
of their shops. At the second stage they quote prices for their
products. And at the third stage customers choose the firm.

The model was formulated by H.Hotelling in 1929 for two
players selling product. In his article an equilibrium point in the
price-setting subgame was considered as a point of simultaneous
local maximum of profit functions for both players. He obtained
the equilibrium prices and quantities as the functions of the shop
locations. However his analysis was incomplete since he did not
examine when the founded local maximum would be a global
maximum. Based on his analysis of the first stage of the game
H.Hotelling concluded that the tendency towards agglomeration
dominates the incentive to differentiate which was called the
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minimum differentiation principle.
Fifty years later C.d’Aspremont et al. in [d’Aspremont et al.,

1979] showed that the price equilibrium found by Hotelling does
not always exist and they obtained the corresponding necessary
and sufficient existence conditions. The price equilibrium
existence problem turned out to be the principal theoretical
problem for the Hotelling’s model.

The base game setting contains several questions mentioned
already by Hotelling himself which must be solved in order
to make model more adequate for practical applications. First
of all there are strategies through which one player undercuts
the delivered price of the other, and attracts to himself the
whole market. These strategies are particularly advantageous
when both players choose locations close enough to each other.
In particular condition found in [d’Aspremont et al., 1979]
determines the limit after which these strategies must be taken
into account.

In fact the profit functions of players are discontinuous and
two-peaked. Nash-Cournot equilibrium exists only if both players
choose the second peak provided that it is higher than the
first one. It means that in the state of equilibrium no player
can benefit by undercutting and pressing the competitor out
of the market. However if the mentioned condition found in
[d’Aspremont et al., 1979] is violated then for at least one player
the first peak of the profit function becomes higher than the
second one and it is profitable for this player to undercut the
competitor throughout the whole market. From the other hand
in the resulting monopolistic state the player driven out of the
market can always quote some low positive price and get some
positive profit. Therefore any monopolistic state of the market is
also unstable. Hence there are no Nash-Cournot equilibria when
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players choose locations too close to each other. Since no price
equilibrium exist for some locations then the location-setting
subgame and Hotelling’s game as a whole become incorrect. This
situation is the principal difficulty of the Hotelling’s model which
prevent its satisfactory solution up to now.

After the article [d’Aspremont et al., 1979] had appeared a
wide stream of papers on the subject is not diminishing up to
now. This fact confirms the topicality of the model even in spite
of the appeared difficulties and some doubts about its practical
usefulness. The literature published by 2001 was reviewed in
[Brenner, 2001]. The approaches suggested to tackle the price
equilibrium existence problem can be divided into three groups.
The first approach is related to modifications of the transport
cost functions so that the price Nash-Cournot equilibrium would
exist for all location pairs. This approach was initiated in
[d’Aspremont et al., 1979] by using a quadratic transportation
cost function instead of the linear one. In this case the existence
of a price equilibrium is ensured for any pair of locations and
Nash-Cournot equilibrium in the location stage of the game
implies maximum differentiation, an incentive of players to move
away as far as possible from each other. The discussion on
relation between principles of differentiation and unification in
the Hotelling’s model continues up to now and different authors
suggest different answers. A considerable part of papers on
spatial competition is devoted to different functional forms of
the transport cost as it allows to get round the existence problem
of subgame perfect equilibrium. However this approach can not
answer the question what happens when one player can undercut
the competitor throughout the whole market. Another approach
for the first time suggested in [Dasgupta and Maskin, 1986] is to
solve the problem in terms of mixed strategies. The first study
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of the Hotelling’s model in mixed strategies was carried out in
[Osborn, 1987]. However the complete solution in explicit form
is not obtained up to now because of its complexity. The third
approach is to modify the model in a more sophisticated way.
For example in [Ahlin, 2006] the preferences of customers depend
upon ’the congestion’, i.e. the customer face on an additional cost
proportional to the number of other customers purchasing from
the same firm. Although such models can be solved completely
but simplicity and transparency of the original Hotelling’s setting
is somewhat lost. Thus the problem of driving the competitor out
of the market by undercutting mentioned already by Hotelling
himself is still the principal unsolved obstacle for the complete
analysis of the model.

Another essential parameter of the model is the price
elasticity of demand. In the base setting it is supposed that
each customer consumes a unit of the product per unit time
in each unit of length of line. The demand is thus at the
extreme of inelasticity. In the simplest way the elasticity of
demand can be introduced in the model by the condition of non-
negativity of the customer profit function, i.e. if the customer
purchasing the product gets negative profit, he or she abstains
from the purchasing. Different modifications of the transport
cost function have been already mentioned. Among the other
important parameters extending the model are the number of
players (more than 2), different distributions of customers, the
uncertainty, the incentive to collude, other equilibrium concepts
such as solution in mixed strategies or Stackelberg equilibria
when players take moves sequentially etc. A brief comparative
list of papers selected by authors are given in the Table 1.

The organization of the paper is as follows. In the next
section the Hotelling’s setting of the model is presented. In
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Section 3 we introduce the concepts of the Equilibrium in Secure
Strategies (EinSS) and of the Best Secure Response (BSR) and
investigate their properties which provide foundation for our
method. In Section 4 we define secure strategies for the price-
setting Hotelling’s subgame. In Sections 5 and 6 we present
the complete solution of the Hotelling’s game in its original
formulation in secure strategies. Finally Section 7 concludes
paper with a summary and interpretation of results.
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Fig. 1. Location of the two players on the interval.

2. Hotelling’s Model

In the original Hotelling’s setting customers are distributed
with a constant density along the interval [A,B] of length l.
Without loss of generality the distribution density can be taken
as unit. Two firms (players) are selling an identical product at
prices p1 and p2 in the points x1 and x2 (x1 6 x2) located
at respective distances a and b from the ends of the interval
(a + b 6 l, a > 0, b > 0 - see Fig.1). Sometimes we will also use
below the index notation: a1 = a, a2 = b. Let d = l−a−b denote
the distance between the firms. Each customer transports his
purchases home at a certain cost per unit distance. Also without
loss of generality this transportation cost per unit distance can
be taken as unit. The unit quantity of the product is consumed
in each unit of time in each unit of length of interval. The
demand is thus at the extreme of inelasticity. No customer has
any preference for either firm except on the ground of price plus
transportation cost. Therefore the sold quantities q1 and q2 are
equal respectively to the lengths of intervals with the customers
choosing the corresponding firm.

One seeks for the subgame perfect equilibrium in the three-
stage dynamical game.
Stage 1. Firms choose their locations x1, x2(x1 6 x2).
Stage 2. Firms quote prices for their product p1, p2 ∈ [0,∞].
Stage 3. Customers choose the firm they buy from.
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The profit functions of the firms are:

(1)

u1(p1, p2) =


p1(a+ b+ d), p1 < p2 − d
p1(a+ d+p2−p1

2
), |p1 − p2| 6 d

0, p1 > p2 + d

u2(p1, p2) =


p2(b+ a+ d), p2 < p1 − d
p2(b+ d+p1−p2

2
), |p1 − p2| 6 d

0, p2 > p1 + d

Further we will also use the following notation.

(2) ui(p1, p2) =


uIi , pi < p−i − d
uIIi , |pi − p−i| 6 d

uIIIi , pi > p−i + d

Depending on the quoted prices there are three possibilities
for the first firm plotted in Fig.2. In the domain I it captures the
whole market. There is a price competition between two firms in
the domain II. And finally in the domain III the first firm fails
the competition and retires from the market.

Notice here that Hotelling considered absolutely inelastic
demand. In the simplest way the elasticity of demand can be
introduced in the model by the condition of non-negativity of
the customer utility function taken in the form:

(3) u(x) = 1− min
i∈{1,2}

(pi + |xi − x|),

where x is a customer location and product utility is taken
as unit without loss of generality. If the customer purchasing
the product gets negative profit, he or she abstains from the
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Fig. 2. Three domains for the profit function of the first player.

purchasing. Under this condition the firm prices do not exceed
the unit: p1, p2 ∈ [0, 1]. In this paper however we restrict our
study only to inelastic demand.

For the described setting of the model with inelastic demand
the classical results were obtained. In 1929 H.Hotelling found the
equilibrium prices and quantities for the price subgame.

(4)
p1 = l +

a− b
3

, p2 = l − a− b
3

q1 =
1

2

(
l +

a− b
3

)
, q2 =

1

2

(
l − a− b

3

)

For this Hotelling’s solution d’Aspremont, Gabszewicz and
Thisse in 1979 proved the following existence condition:
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Theorem 1. For a + b = l, the unique equilibrium point is
given by p∗1 = p∗2 = 0. For a+ b < l, there is an equilibrium point
if and only if

(5)
(
l +

a− b
3

)2

>
4

3
l(a+ 2b),

(
l +

b− a
3

)2

>
4

3
l(b+ 2a),

and whenever it exists an equilibrium point is uniquely
determined by (4).

These results are the starting point for our study.

3. An Equilibrium in Secure Strategies

An Equilibrium in Secure Strategies (EinSS) postulates the
incentive of players to maximize their profit under the condition
of security against the actions of other players. This logic
entirely corresponds with the natural behavior of duopolists in
the Hotelling’s model. Below we provide the formal definitions
of the simple EinSS of the game G = (Si, ui, i ∈ N) according
to [Iskakov, 2005]:

Definition 1. A threat of player j to player i is a pair of
strategy profiles {s, (s′j, s−j)} such that uj(s′j, s−j) > uj(s) and
ui(s

′
j, s−j) < ui(s). The strategy profile s is said to contain the

threat to player i. The profile (s′j, s−j) and the strategy s′j of
player j is said to threaten to player i.

Definition 2. A strategy si of player i is a secure strategy at
a given complement s−i if profile s does not contain any threats
for player i. A strategy profile s is a secure profile if all its
strategies are secure strategies.
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Definition 3. A set Wi(s) of preferable strategies
secured against threats is a set of strategies s′i of player
i at a given s such that ui(s′i, s−i) > ui(s) and provided that
ui(s

′
i, s
′
j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of

player j 6= i to player i.

Definition 4. A strategy profile s∗ is an Equilibrium in
Secure Strategies (EinSS) if and only if for all i we have that

Wi(s
∗) 6= ∅, s∗i ∈ arg max

si∈Wi(s∗)
ui(si, s

∗
−i).

From the above definitions it follows that Wi(s
∗) consists of

the secure strategies of player i which do not change his or her
equilibrium profit at a given complement s∗−i:

si ∈ Wi(s
∗) <=>

{
ui(si, s

∗
−i) = ui(s

∗)

si is a secure strategy at s∗−i
In particular it implies that all strategies in the EinSS are secure
strategies. However it is essential that in the definition of EinSS
we use the set Wi(s

∗) rather than simply the set of secure
strategies. Otherwise EinSS might include some meaningless
points such as the profiles which correspond to the minimum
possible in the game payoffs.

In the EinSS no player can securely benefit by changing his
or her strategy while the other player keep theirs unchanged. In
contrast to Nash equilibrium their choice is limited by narrower
set of strategies secured against threats. Therefore the EinSS
postulates the incentive of players to maximize their profit under
the condition of security against the actions of other players.

In the further discussion we will use the following intuitively
obvious definitions.
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Definition 5. A set of secure strategies of player i at a
given complement s−i is denoted as Vi(s−i).

Definition 6. The best secure response function
of player i at a given complement s−i is a multifunction
BSRi = arg max

si∈Vi(s−i)
ui(si, s−i).

Definition 7. The best secure response set of player i is
a set

MBSRi
= {s|si = BSRi(s−i), ∀s−i ∈ Si}

Definition 8. The best secure response set is a set

MBSR =
⋃
i∈N

MBSRi
= {s|si = BSRi(s−i),∀i ∈ N}

Let us denote the set of Nash equilibria and the set of EinSS
as MNE and MSSE respectively. Then the set of MESS can be
characterized by the following statement.

Theorem 2. MNE ⊆ MSSE ⊆ MBSR. The inverse inclusions
are not valid.

Proof. MNE ⊆ MESS: Let s∗ be a Nash equilibrium. Then
for every player i s∗i is a secure strategy, i.e. s∗i ∈ Wi(s

∗). And s∗i
is the best strategy of all possible ones. Therefore by definition
s∗ is an EinSS.
MESS * MNE:

Counterexample: K1 =

1 2 2
2 0 3
2 3 0

, K2 =

1 2 2
2 3 0
2 0 3

,

16



MNE = ∅, MESS = {(1, 1)}.
MESS ⊆MBSR:
Let s∗ be an EinSS <=> s∗i ∈ arg max

si∈Wi(s∗)
ui(si, s

∗
−i) => s∗i ∈

Wi(s
∗) => s∗i is a secure strategy, i.e. s∗i ∈ Vi(s

∗
−i). Let us

consider si such as ui(si, s
∗
−i) > ui(s

∗). Then si /∈ Wi(s
∗),

i.e. ∃j 6= i, ∃sj 6= s∗j : uj(si, sj, s
∗
−ij) > uj(si, s

∗
−i),

ui(si, sj, s
∗
−ij) < ui(s

∗) < ui(si, s
∗
−i) => si /∈ Vi(s

∗
−i) =>

si /∈ arg max
s′i∈Vi(s∗)

ui(s
′
i, s
∗
−i) => s∗ ∈MBSR.

MBSR * MESS:

Counterexample: K1 =

1 8
5 4
6 3

, K2 =

1 0
1 2
1 2

, MESS = ∅,

MBSR = {(1, 1)}. �

The closest to the EinSS concept in the Game Theory
is the concept of the solution in terms of objections and
counter objections employed in the coalition theory. For the first
time terms ’objections’ and ’counter objections’ was introduced
in [Aumann, 1964] for the analysis of coalition stability.
Subsequently several more similar approaches were suggested.
We shall consider here only those concepts which in modified way
can be applied to the non-cooperative games without coalitions.
Among these concepts are the objection and counter objection
equilibrium in differential games described in [Vaisbord, 1980]
and V-solutions described in [Vilkas, 1990]. Below we provide
brief comparison of the EinSS with these concepts.

1. The EinSS applies to individual players rather than
coalitions which simplifies analysis considerably. Indeed the
extension of the EinSS concept to the cooperative games seems
to be a non-trivial problem. Therefore the comparison is possible
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only in cases when all coalitions consist of a single player.
2. In accordance with our definition a ’threat’ implies that

there is a particular player who can decrease his profit. In
the mentioned alternative concepts an ’objection’ implies an
objection to a game profile but not to a particular player.

3. In our approach a ’threat’ is defined only in relation to
a given game profile whereas the definition in [Vilkas, 1990]
employs much stronger requirement that the coalition strategy
must be profitable at arbitrary strategies of players outside of
coalition.

These differences do not allow to apply the mentioned
alternative approaches to the Hotelling’s problem.

4. Secure Strategies in the Hotelling’s Game

In order to determine the secure strategy set let us consider
the profit function of the first player u1(p1, p2) at a fixed price
of the second player p2. For p2 6 d the profile (p1, p2) lies in the
domains II and III (see Fig.2) and the profit function u1(p1, p2)
is a one-peaked function of p1 as plotted in Fig.3. The peak
is reached either inside the segment [0, p2 + d] or at its right
endpoint. For p2 > d the profile (p1, p2) lies in the three successive
domains I, II and III and the profit function u1(p1, p2) is a two-
peaked function of p1 as plotted in Fig.4 with the highest peak
being either the first or the second one.

Any EinSS is a secured profile. Moreover according to
theorem 2 the strategy of each player in the EinSS is the best
secured response against the strategies of competitors. Therefore
in order to find EinSS in the price Hotelling’s subgame one has to
analyze threats existing in the subgame and identify the secured
profiles. Note that the player can threaten the competitor only

18



Fig. 3. The profit function u1(p1, p2) of player 1 at the fixed price
p2 6 d of player 2.

Fig. 4. The profit function u1(p1, p2) of player 1 at the fixed price
p2 > d of player 2.
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Fig. 5. Three types of threats in the price Hotelling’s subgame.

by decreasing his price and there are three types of threats.
Firstly the player entering the market can threaten monopolistic
competitor. Secondly the player by decreasing his price can
threaten competitor to drop his market share. And finally the
player can threaten to drive the competitor out of the market
by undercutting his price. All three cases are illustrated in
Fig.5. This simple observation can be formalized in the following
proposition.

Theorem 3. The profile (p1, p2) in the price-setting subgame
(Pi = R+, ui(p1, p2), i ∈ {1, 2}) with the profit functions (1) is a
secure strategy profile if and only if

(6a)

(6b)

pi 6 arg max
|p−p−i|6d

uIIi (p, p−i), i ∈ {1, 2}

if p−i > d, uIi (p−i − d) 6 uIIi (pi, p−i), i ∈ {1, 2}

Proof. Let us identify the secure profiles in the price-setting
subgame.
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If p1 < p2 − d then the second player gets zero profit. And
there is always threat for the first player that the second player
will drop his price to p′2 < p1 +d and will get positive benefit. In
this case the market share and the profit of the first player will
decrease. The profile (p1, p2) is not secure. The case of p2 < p1−d
is symmetrical. Therefore all secure profiles lies in the domain
|p1 − p2| 6 d.

Let us now consider threats to player 2 if |p1 − p2| 6 d.
According to (1) the profit function u1(p1) at the fixed price p2

is concave in the domains I and II and equals zero in the domain
III, i.e. in general u1(p1) is a two peaked function. Therefore the
player 1 can benefit either by shifting price to the domain I or
by moving price nearer to the peak of u1 in the domain II (see
Fig.5). The first case is possible when p2 > d and max

p∈[0,p2−d]
uI1(p) >

uII1 (p1, p2) and there is always threat for player 2 to be driven
out of the market. In the second case the threat to player 2 exists
if and only if the player 1 can benefit by decreasing his or her
price, i.e. when p1 > arg max

|p−p2|6d
uII1 (p, p2). Therefore the security

condition for the player 2 can be written in the form.
|p1 − p2| 6 d

if p2 > d, max
p∈[0,p2−d]

uI1(p) = uI1(p2 − d) 6 uII1 (p1, p2)

p1 6 arg max
|p−p2|6d

uII1 (p, p2)

The security condition for the player 1 we get by symmetry.
These conditions are equivalent to (6). Notice that the condition
|p1 − p2| 6 d follows automatically from the conditions (6a). �

Inequalities in (6) has an obvious economic interpretation.
The meaning of the first two inequalities (6a) was explained
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by Hotelling. They exclude losses of players in the process of
competition when one of the players gets benefit by decreasing
price and increasing his market share. The second conditions
(6b) exclude for players the situation of pressing out of the
market. These conditions were employed in the proving of the
proposition 1 in [d’Aspremont et al., 1979] in order to find the
limitation for the Hotelling’s solution. However the question on
what shall be the appropriate solution when the conditions (6b)
become critical is open up to now.

In order to find the complete solution of the price subgame
one has to take into account both conditions as they all have
the substantial meaning in the given problem. By adding the
second conditions in (6) we postulate in the frame of the EinSS
concept that the players secure themselves against being driven
out of the market by undercutting. From the other hand Nash
equilibrium does not allow to analyze this kind of threat which
implies sharp change of strategy by players and discontinuity of
the best response function of at least one player. In this case
functions of the best response do not intersect any more on the
profile plane (p1, p2) and Nash equilibrium exists no longer.

5. Solution of the price-setting subgame

Theorem 4. The price-setting subgame (Pi = R+, ui(p1, p2), i ∈
{1, 2}) with the profit functions (1) has the following unique
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solution in secure strategies for arbitrary location pair (a, b):

1) 0 6 a 6 3l + b− 6
√
bl, 0 6 b 6 3l + a− 6

√
al,

p∗1 = l + (a− b)/3, p∗2 = l + (b− a)/3,
u∗1 = (p∗1)

2/2, u∗2 = (p∗2)
2/2

2) 3l + b− 6
√
bl 6 a 6

√
l −
√
b√

l +
√
b
(4
√
bl − l − b), a > 0,

p∗1 = 2l − 2
√
bl, p∗2 = 3l + b− a− 4

√
bl,

u∗1 = (p∗1)
2/2, u∗2 = p∗2(l − a+ b+ p∗1 − p∗2)/2

3) 3l + a− 6
√
al 6 b 6

√
l −
√
a√

l +
√
a
(4
√
al − l − a), b > 0,

p∗1 = 3l + a− b− 4
√
al, p∗2 = 2l − 2

√
al,

u∗1 = p∗1(l − b+ a+ p∗2 − p∗1)/2, u∗2 = (p∗2)
2/2

(7)

4)

√
l −
√
b√

l +
√
b
(4
√
bl − l − b) 6 a 6 l − b,

√
l −
√
a√

l +
√
a
(4
√
al − l − a) 6 b 6 l − a,

p∗i = 2(l − yi), u∗i = l(p∗−i − l + a+ b), i ∈ {1, 2},

yi =
3

√
−ri/2 +

√
Ri +

3

√
−ri/2−

√
Ri + gi/6,

Ri = (si/3)3 + (ri/2)2,

si = −g2
i /12 + fihi/2,

ri = −g3
i /108 + figihi/12− f 2

i l,

g1 = l + a+ 3b, h1 = 3l − a+ b, f1 = b,

g2 = l + 3a+ b, h2 = 3l − b+ a, f2 = a

Proof. Existence. The first solution in (7) is equivalent to (4,
5). This case was considered and proved in [Hotelling, 1929] and
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Fig. 6. Prices and profits of players at unilateral EinSS.

[d’Aspremont et al., 1979].

The second solution in (7) is the unique solution of the
following system.

(8)



p∗1 = arg max
|p1−p∗2|6d

uII1 (p1, p
∗
2)

uI1(p
∗
2 − d) = uII1 (p∗1, p

∗
2), if p∗2 > d

p∗2 6 arg max
|p2−p∗1|6d

uII2 (p∗1, p2)

uI2(p
∗
1 − d) = uII2 (p∗1, p

∗
2), if p∗1 > d

According to the equations of this system the strategy of player
1 is the best response and at the same time his profit equals the
profit he would get if he would drive the competitor out of the
market by undercutting (see Fig.6). Inequalities in this system
state that the profit function of player 2 increases with his price
and driving the competitor out is not profitable for him.

Let us prove that the profile (p∗1, p
∗
2) is the EinSS according

to definition 4. According to theorem 3 the strategies of both
players are secure. The price p∗1 is the best response of player 1
and satisfies the definition of EinSS. Let us consider the change
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in strategy of player 2 with a new price p2 6= p∗2. If p2 < p∗2
then the profit of the player 2 decreases and price p2 is not
a preferable strategy for him p2 /∈ W2(p

∗
1, p
∗
2) by definition 3.

Let us consider the case of p2 > p∗2. If we substitute p2 in the
second equation of (8) then the left hand side will be more than
the right hand side, i.e. it will be more profitable for player
1 to drive the competitor out of the market. Therefore p2 by
definition 3 is not preferable strategy of player 2 secured against
threats p2 /∈ W2(p

∗
1, p
∗
2). The price p∗2 satisfies the definition of

EinSS. The profile (p∗1, p
∗
2) is the EinSS. This type of EinSS we

will call the unilateral EinSS for the threats in it limit strategies
of only one player (in a given case prices of player 2).

The third solution in (7) is obtained from the second solution
by interchanging players.

The fourth solution in (7) is the unique solution of the
following system.

(9)



uI1(p
∗
2 − d) = uII1 (p∗1, p

∗
2), if p∗2 > d

uI2(p
∗
1 − d) = uII2 (p∗1, p

∗
2), if p∗1 > d

p∗1 6 arg max
|p1−p∗2|6d

uII1 (p1, p
∗
2)

p∗2 6 arg max
|p2−p∗1|6d

uII2 (p∗1, p2)

According to the equations of this system the profits of both
players (in the right hand sides) are equal to the profit they
would get if they would drive the competitor out of the market
by undercutting (in the left hand sides). Inequalities of this
system state that the profit functions of both players increase
with increasing their prices (see Fig.7).
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Fig. 7. Prices and profits of players at bilateral EinSS.

Let us prove that the profile (p∗1, p
∗
2) is the EinSS according

to definition 4. According to theorem 3 the strategies of both
players are secure. Let us consider the change in strategy of
player 2 with a new price p2 6= p∗2. If p2 < p∗2 then the profit of
the player 2 decreases and price p2 is not a preferable strategy
for him by definition 3 p2 /∈ W2(p

∗
1, p
∗
2). Let us consider the case

of p2 > p∗2. If we substitute p2 in the first equation of (9) then
the left hand side will be more than the right hand side, i.e. it
will be more profitable for player 1 to drive the player 2 out
of the market. Therefore p2 by definition 3 is not preferable
strategy for player 2 secured against threats. The price p∗2
satisfies the definition of EinSS. In a similar way the price p∗1
also satisfies the definition of EinSS. This type of EinSS we will
call the bilateral EinSS since each player in it is limited by the
threat from the competitor.

Uniqueness. Let us prove that there are no other solutions.
Let (p1, p2) be an EinSS. Then (p1, p2) is a profile of secure
strategies and according to theorem 3 must satisfy (6).
Furthermore, if for at least one player both inequalities (6a) and
(6b) are strict then this player can slightly increase his price
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and profit without being exposed to any threats, i.e. the profile
(p1, p2) can not be an EinSS. Therefore for each player either
(6a) or (6b) must turn into equality and we obtain only four
possible cases of EinSS considered above. �

The four domains of the location pairs (a/l, b/l) which
correspond to the four cases in (7) are plotted in Fig.8.
They cover all possible location pairs and intersect only on
the boundaries where equilibrium prices and profit functions
join continuously. Contours of the solutions p∗1/l and u∗1/l

2 in
these domains are plotted in Fig.9. The solution in the first
domain coincides with the solution found in [Hotelling, 1929]
and [d’Aspremont et al., 1979].

6. Solution of Hotelling’s location-then-price game

Existence and uniqueness of equilibrium in the price-setting
subgame allows to obtain the correct solution of the two-stage
Hotelling game in its original formulation.
Theorem 5. The Hotelling’s location-then-price game (x1 =
a, x2 = l − b, ui(p∗1(a, b), p∗2(a, b)), i ∈ {1, 2}) with the profit
functions (1) and the equilibrium prices p∗i (a, b) defined in (7)
reaches the following Nash equilibria (a∗, b∗):

(10a)

(10b)

(10c)

a∗ = l/4, b∗ = l/4;(
l +

a∗ − b∗

3

)2

=
4

3
(a∗ + 2b∗)l, 0 6 a∗ < l/4;(

l +
b∗ − a∗

3

)2

=
4

3
(b∗ + 2a∗)l, 0 6 b∗ < l/4.

There are no other Nash equilibria in the game.
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Fig. 8. Four domains of the location pairs (a/l, b/l) in the price
subgame.

Fig. 9. Solution of the price subgame p∗1/l (left) and u∗1/l2 (right).
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Proof. In the plane of the location pairs (a, b) let us consider
a set of strategy profiles MBR1 , where the strategy of the first
player is the best response against the strategy of the second
one, and a set of strategy profiles MBR2 , where the strategy of
the second player is the best response against the strategy of the
first one. From the theorem 4 it follows that

MBR1 =

{
(a, b) : 3l + b− 6

√
bl 6 a

6

√
l −
√
b√

l +
√
b
(
√
bl − l − b), b > l/4, a > 0

}
∪

∪
{

(a, b) : b = 3l + a− 6
√
al, 0 6 b 6 l/4

}
;

MBR2 =

{
(a, b) : 3l + a− 6

√
al 6 b

6

√
l −
√
a√

l +
√
a
(
√
al − l − a), a > l/4, b > 0

}
∪

∪
{

(a, b) : a = 3l + b− 6
√
bl, 0 6 a 6 l/4

}
.

The set of Nash equilibria in the location subgame is the
intersection of these two sets which gives the statement of the
theorem. �

Surprisingly that the boundary of nonexistence of the price
Nash-Cournot equilibrium found in [d’Aspremont et al., 1979]
are the equilibrium solutions of the location subgame in terms of
secure strategies. However all found equilibrium locations except
the symmetrical one (10a) are not strict equilibria and they can
be unstable.
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7. Conclusions

We considered the classical model proposed in 1929 by
H.Hotelling. The considerable limitation of this model is that
for a great variety of transport functions no price equilibrium
exist. In these cases the model is not amenable to further
analysis. In particular the price Nash-Cournot equilibrium does
not exist when one player can undercut his rival’s price and
take away his entire business with profit to himself. On the one
hand this threat of ’pressing out’ is an essential factor of the
Hotelling’s game. On the other hand Nash-Cournot equilibrium
does not allow to analyze this kind of threat which implies
sharp change of strategy by players and discontinuity of the best
response functions. We have demonstrated that the concept
of equilibrium could be restored for these cases if we take an
assumption that duopolists secure themselves against being
driven out of the market by undercutting. For the first time we
suggest the complete solution of the price-setting Hotelling’s
game in its original setting with linear transport costs and
inelastic demand. Our solution coincides with the solution found
by Hotelling (1929) and d’Aspremont et al. (1979) for those
locations that permit Nash equilibria. Our approach allows to
overcome the problem of the existence of the price equilibrium
in the Hotelling’s model and open possibility for its further
study and practical applications.

Equilibrium existence and uniqueness in the price-setting
subgame allowed to obtain the correct solution of the two-stage
location-price Hotelling’s game. The equilibrium locations lie on
the boundary between the price Nash-Cournot equilibria found
by Hotelling and the ’pressing out’ price equilibria in secure
strategies. This is a natural boundary where the incentive of
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players to minimize differentiation asserted by Hotelling gives
place to the incentive to maximize differentiation under the
threat of being undercut throughout the whole market by the
rival. We consider the threat of ’pressing out’ as a key factor
which balances the tendency towards unification. Incorporating
this factor into the model provides the mechanism to balance
the degree of differentiation depending on the parameters of the
market. The original Hotelling’s model however is very simple
and in fact does not have any such parameters. Therefore the
differentiation study requires considering more complicated
model.

In our paper we provided basic definitions and simple
properties of the Equilibrium in Secure Strategies (EiSS). The
proposed concept of equilibrium offers several desired properties.
First of all it allows to take into account existing in the game
threats from the actions of other players. Secondly the EiSS
coincides with the Nash Equilibrium when Nash Equilibrium
exists. And finally it allows to exclude sharp changes in the
strategies of players and replace discontinuous best response
functions by the continuous best secure response functions.
Successful application of the EiSS to the Hotelling’s game
allowed to reveal and formalize an essential factor in the classical
problem which confirms the practical value and adequacy of the
proposed concept.
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