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Abstract—We study the characteristic features of the detection zone for an onboard radar
station for an early radar detection system operating in the impulse–Doppler mode. We show
that due to these features, there exist covert trajectories such that objects flying along such
trajectories are not detected by this onboard radar station. We derive differential equations that
define covert trajectories, find various forms of covert trajectories, and study their properties.
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1. INTRODUCTION

Aviation early radar detection systems (ERDS), which in Russian terminology are called aviation
complexes of radar surveillance and coaching (AC RSC), are complex specialized aviation-based
informational and control systems that are able to rapidly, constantly (year-round and round-
the-clock), and independently of weather conditions provide data regarding the situation in large
regions of air space, aquatic areas, and land surface [1, 2]. Such multifunctional systems are usually
developed as double purpose systems, which means that they can be used both for civilian and
military purposes: reconstructing and increasing the radar field in zones of military conflict, natural
hazards, and industrial disasters; control over air traffic around airport hubs; surveillance over
navigation and escorting vessels on large aquatic areas etc.

The main purpose of ERDS systems that differentiates them from land-based radar systems is
to detect and track stealthy low-flying airborne objects (AO) against the background of reflections
from the surface of the Earth. In such conditions, it is possible to detect an AO due to the
difference in radial velocities of the AO and the surface with respect to the onboard radar station
in the ERDS system. To use this effect, onboard radar station uses a coherent impulse mode with
high frequency of repeating the impulses and Doppler filtering for the pack of coherent signals
reflected from the background and the AO [1–3]. In what follows we call radar stations operating
in this mode impulse–Doppler radar stations (IDRS).

An important property of the detection zone of an IDRS is that at every point of this zone
there exist directions of AO motion for which radial components of the AO and underlying surface
velocities coincide, so AO cannot be detected by radar stations with Doppler signal filtering. This
means that in the detection zone one can construct covert trajectories, i.e., such trajectories that
an object flying along them remains undetected by the onboard radar station.

In this work, we consider the properties of the detection zone of an IRDS operating in Doppler
filtering mode, derive differential equations that define covert trajectories, find and describe various
forms of covert trajectories.

1655



1656 KIRSANOV

2. FEATURES OF THE DETECTION ZONE FOR LOW-FLYING AIRBORNE OBJECTS
IN A DOPPLER RADAR STATION ERDS SYSTEM

In the Doppler operation mode of an onboard radar station, reflected signals whose frequencies
are close to the average frequency of a signal reflected from the Earth’s surface in the direction of
the principal ray of the antenna’s directional response remain undetected since the radar station’s
receiver has a special filter (resection filter) [1–3]. The frequency of the reflected signal depends
on the frequency of the emitted signal and the Doppler shift caused by the motion of the airplane
on which the radar station is installed. Doppler shift of the frequency is proportional to the
radial component of the relative velocity of the illuminated object (target or underlying surface),
i.e., projection of the object’s relative velocity on the line of sight “radar station—object” in the
coordinate system related to the moving radar station (see Fig. 1). The origin of this moving
coordinate system z1Oz2 is located at the ERDS airplane, and the Oz1 axis is directed along the
velocity vector of the ERDS airplane.
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Fig. 1. Scheme of resection sectors and SIMD.

Thus, all reflecting objects for which the radial component of the relative velocity V R
rel differs

from the radial component of the underlying surface velocity V R
us with respect to the onboard radar

station by at most some predefined value Vmin, i.e., objects that satisfy inequality
∣

∣

∣V R
rel − V R

us

∣

∣

∣ < Vmin, (1)

are invisible for the radar station. The value Vmin is a parameter of the resection filter and is chosen
depending on the bandwidth of the reflected signal’s spectrum. Velocities of the flying object Vrel

and the underlying surface Vus with respect to the ERDS airplane can be expressed via velocity
vectors of the AO V and the carrier (ERDS airplane) Vc in some Earth-based coordinate system
with the following formulas: Vrel = V−Vc, Vus = −Vc. Therefore, Vrel −Vus = V.

We denote by (x,y) the scalar product of vectors x and y. Then the radial component V R
rel − V R

us

of vector Vrel −Vus can be represented as the scalar product V R
rel − V R

us = V R =
(

V, z

|z|

)

, where

z =

(

z1
z2

)

is the vector that defines AO position in the coordinate system z1Oz2 related to

the onboard radar station (Fig. 1), and |z| is the length of vector z. Due to this representation,
inequality (1) can be transformed as

|(V, z)| 6 Vmin |z| . (2)
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Expression (2) characterizes the AO invisibility condition due to its falling into the resection
zone expressed in relative coordinates and the AO velocity vector in the Earth-based coordinate
system.

Inequality (2) implies that resection zones have the form of sectors. Boundaries of resection
sectors are shown on Fig. 1 with straight lines AH and BG intersecting at the location of the
onboard radar station on the ERDS airplane (point S on Fig. 1). Condition (2) implies that the
common bisecting line of resection sectors is always perpendicular to the direction of AO flight,
and the angular size α of each sector is given by

α = 2arcsin
Vmin

V
, (3)

where V is the AO flight velocity.

Condition (2) implies that at every point of the detection zone an AO has a sector of directions
such that the onboard IDRS of the ERDS airplane will not detect it as long as it moves in these
directions. In what follows we call this sector the sector of invisible motion directions (SIMD) of
the flying object. SIMD orientation is defined by AO location, and the orientation of resection
sectors is defined by the AO motion direction (see Fig. 1).

The apex of SIMD is located at the current AO location (point O on Fig. 1). The bisecting line
(symmetry axis) OF of the sector of invisible motion directions is perpendicular to the “ERDS
airplane—AO” line of sight SO, and the velocity vector V of the flying object is perpendicular to
the bisecting line SE of the resection sector. Therefore, the angle VOF between velocity vector V
and bisecting line of the SIMD equals the OSE angle between the line of sight SO and bisecting line
of the resection sector. In particular, if the AO velocity vector coincides with the SIMD boundary, it
means that the AO is located at the boundary of the resection zone. Our reasoning has two different
implications now. First, the angular size of the sector of invisible motion directions coincides with
the angular size of the resection sector defined by formula (3); second, when the target’s velocity
vector (in the Earth coordinate system) falls into the SIMD it is equivalent to the AO being located
in the resection zone.

Now (3) implies that the smaller is the velocity of the flying object, the wider is the corresponding
SIMD and the more options there are for covert maneuvering in the detection zone of an onboard
radar station of an ERDS airplane. The characteristic features of the detection zone for a Doppler
radar station have been considered in more detail in [4–6].

3. EQUATIONS OF COVERT MOTION TRAJECTORIES
OF AN AO IN THE IDRS DETECTION ZONE

AO motion occurs in the resection sector, and an AO is not detected by the onboard radar station
of the ERDS airplane if inequality (2) holds. We should note that if the velocity vector of the flying
object V satisfies inequality (2), this inequality is also satisfied for the opposite vector (−V).
Therefore, there are two options for the AO’s covert motion. In the first possibility, the flying
object during its motion along a covert trajectory “rotates” the onboard radar station—AO line of
sight counterclockwise. According to Fig. 1, AO velocity vector V is rotated by angle π

2 + ε with
respect to the onboard radar station—AO line of sight (the bisecting line of the SIMD is rotated
by π

2 with respect to the line of sight, and the AO velocity vector is rotated by angle ε with respect
to the bisecting line) and is given by expression

V =









v × cos

(

ϕ+ ε+
π

2

)

v × sin

(

ϕ+ ε+
π

2

)









. (4)
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We denote by ϕ the angle between the vector z and axis Oz1 counted counterclockwise.

In the second possibility, covert flying motion occurs with the opposite velocity vector

−V =











v × cos

(

ϕ+ ε−
π

2

)

v × sin

(

ϕ+ ε−
π

2

)











and the line of sight rotates clockwise.

As we will see below, families of covert trajectories corresponding to these two possibilities are
symmetric with respect to the horizontal axis Oz1 related to the onboard radar station coordinate
system. Due to this symmetry, we will only consider in detail the first of these two covert motion
possibilities.

In what follows we consider the covert motion of an AO with constant velocity v = |V| and
constant angle ε between the AO velocity vector and the SIMD bisecting line. We assume that the
ERDS airplane moves along a straight line with constant velocity vc = |Vc|.

AO motion in the coordinate system related to the Doppler radar station of the ERDS airplane
is defined by equation

ż = V −Vc. (5)

To simplify the analytic expressions, we use an Earth-based coordinate system where the velocity

vector of the ERDS airplane has the form Vc =

(

vc
0

)

. Substituting this expression and (4)

into (5), we get the AO motion equation in the coordinate system related to the ERDS airplane:
{

ż1 = −v × sin(ϕ+ ε)− vc

ż2 = v × cos(ϕ+ ε).
(6)

To solve this system of equations, we write it in polar coordinates. We express ż1 and ż2 via
polar coordinates:

ż1 =
d

dt
(ρ× cosϕ) = ρ̇× cosϕ− ϕ̇ρ× sinϕ,

ż2 =
d

dt
(ρ× sinϕ) = ρ̇× sinϕ+ ϕ̇ρ× cosϕ.

Substituting these expressions into (6) and resolving the resulting equations with respect to ρ̇
and ϕ̇, we get the following system:











ρ̇ = −v × sin ε− vc × cosϕ

ϕ̇ =
1

ρ
(v × cos ε+ vc × sinϕ),

(7)

which is equivalent to the differential equation

dρ

dϕ
= −ρ

v × sin ε+ vc × cosϕ

v × cos ε+ vc × sinϕ
.

This is an equation with separating variables, and its solution has the form

ρ =

∣

∣

∣

∣

1

µ+ sinϕ

∣

∣

∣

∣

× exp

(

−
v × sin ε

vc
×

∫

dϕ

µ+ sinϕ

)

, where µ =
v

vc
× cos ε. (8)
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The differential equation that defines the second family of covert trajectories, for which the
onboard radar station—AO line of sight rotates clockwise, has the form

dρ

dϕ
= ρ

v × sin ε− vc × cosϕ

−v × cos ε+ vc × sinϕ
,

and its solution is given by

ρ =

∣

∣

∣

∣

1

µ− sinϕ

∣

∣

∣

∣

× exp

(

−
v × sin ε

vc
×

∫

dϕ

µ− sinϕ

)

. (9)

These expressions let us find covert trajectories of AO motion for various relations of veloc-
ities v, vc, and the angle ε by which the AO velocity vector deviates from the SIMD bisecting
line.

4. COVERT MOTION TRAJECTORIES FOR THE FLYING OBJECT.
ORTHOGONAL VERSION

Trajectories of covert approach are based on expressions (8) and (9). We remind that they
have been obtained under the assumption that the IDRS moves along a straight line with constant
velocity vc.

As we have already noted, covertness of AO motion follows since the AO velocity vector is
located in the SIMD. The location and orientation of the SIMD depend on the IDRS (ERDS
airplane) and AO motion parameters, which are usually only known with certain errors. Therefore,
covert motion direction will also be determined with errors. Besides, the exact value Vmin of the
minimal admissible radial velocity of the Doppler radar station is unknown. Therefore, in order to
reliably ensure that motion is covert the flying object should stay in the center of the SIMD, i.e., it
should have the AO velocity vector coincide with the SIMD bisecting line. Trajectories that result
when the targeting AO is located at the center of the SIMD are called orthogonal since in this case
the AO velocity vector is orthogonal to the radar station—AO line of sight (ε = 0).

To get a solution for the family of orthogonal covert trajectories in polar coordinates, it suffices
to let ε = 0 in (8). Expression (8) defines not a single trajectory but rather an entire family of
trajectories due to the indeterminate integral in the right-hand side exponent of (8). Equation of
the trajectory that passes through the point (ρ0, ϕ0) has the form

ρ =
c0

sinϕ+ µ0
= ρ0

sinϕ0 + µ0

sinϕ+ µ0
, where µ0 =

v

vc
. (10)

This equation defines conical sections in polar coordinates. Depending on the relation between
velocities v and vc, sections may be either parabolas, ellipses, or hyperbolas. One focal point of
these conical sections is located at the origin of the moving coordinate system, i.e., at the location
of the onboard radar station on an ERDS airplane. This result implies an interesting analogy
to the motion of planets in a central gravitational field. The properties of invisible trajectories
that we have listed are basically Kepler’s first law [7]. Moreover, covert trajectories also satisfy
Kepler’s second law, which says that the sectoral velocity (rate of change for the area spanned
by the radius vector) of planets as they move along their trajectories remains constant. Figure 2
illustrates Kepler’s second law. Any two sectors OAB and OCD spanned by the radius vector of
an AO moving along an elliptic trajectory over equal time intervals have the same area S.

Sectoral velocity is given by the following expression from [7]: ṡ = ρ2ϕ̇.

To check that Kepler’s second law indeed holds it suffices to substitute in this formula an
expression for ϕ̇ from (7) and take (10) into account:

ṡ = ρ2ϕ̇ = vcρ(sinϕ+ v/vc) = vcc0 = const.
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Fig. 2. Constant sectoral velocity.

Since sectoral velocity is constant, we can use it to find the time of motion of the AO along
covert trajectories from one point to another and to find the moment when we can begin covert
motion in the desired direction.

Elliptical covert trajectories. Consider the case when velocity v of an AO flying along a covert
trajectory in the detection zone of a moving Doppler onboard radar station exceeds the velocity vc
with which the onboard radar station itself moves, i.e., v > vc. Substituting z1 = ρ cosϕ and
z2 = ρ sinϕ from (10), we get the trajectory equation in a rectangular coordinate system:

z21
v2c c

2

0

v2−v2c

+

(

z2+
v
2
c c

2

0

v
2
−v

2
c

)2

v2c v
2c2

0

(v2−v2c )
2

= 1, where c0 = ρ0(sinϕ0 + v/vc). (11)

This equation defines a family of ellipses with the following semiaxes:

a =
vcc0

√

v2 − v2c
, b =

vcv c0
v2 − v2c

,

where b > a and, consequently, the ellipse is elongated along the Oz2 axis. One focal point of each
ellipse from family (11) is located at the origin (i.e., at the location of the onboard radar station).
An elliptic trajectory of covert motion in the coordinate system z1Oz2 related to the ERDS airplane
is shown on Fig. 3. This trajectory corresponds to the ERDS airplane velocity vc = 650 km/h and
flying object velocity v = 1.2vc. The same trajectory is shown on Fig. 4 in the Earth coordinate
system.

The minimal ρmin e and maximal ρmax e distances from the origin to the ellipse depend on the
value c0 = ρ0(sinϕ0 + v/vc) defined by the initial position of the AO and can be computed as

ρmin e =
vcc0
v + vc

, ρmax e =
vcc0
v − vc

,

while their ratio is independent of the initial position and is given by

ρmin e

ρmax e
=

v − vc
v + vc

. (12)
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Fig. 4. Orthogonal covert trajectories in the Earth-based coordinate system.

Expression (12) implies that the smaller is the difference between the velocities of the AO and
the carrier of a Doppler onboard radar station, the closer AO’s trajectory passes to the origin for
a given initial position of the AO.

Since sectoral velocity is constant (Kepler’s second law), when flying along invisible trajectories
we can use it to calculate the time T of AO flight from the apocenter (point located at maximal
distance from the ellipse’s focal point at the origin) of an elliptical trajectory to the pericenter, i.e.,
the point nearest to the ellipse’s focal point where the Doppler onboard radar station is located.
It is obvious that when flying from the epicenter to the pericenter the radius vector spans half
the area of the ellipse which is equal to π×a×b

2 . This fact is expressed by the following equation:

ṡ× T = π×a×b
2 , where T is the time in question. Since

ṡ =
vc
2
c0 =

vcρmax

2

(

v

vc
− 1

)

,
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we can find an expression for the time in question:

T =
πρmax

(v − vc)
√

1− v2c/v
2

=
πc0vvc

(v2 − v2c )
3/2

. (13)

Let us consider a specific example. Let the velocity of IDRS be equal vc = 650 km/h, and the
velocity of the AO be v = 1.5vc. According to (12), we have ρmax e

ρmin e
=2.5

0.5 = 5. This means that
if ρmax e = 200 km then the covert trajectory lets one approach the ERDS airplane to a distance
of 40 km. The time of AO motion from the apocenter of the elliptical covert trajectory to its
pericenter can be computed with (13) and amounts to approximately 31 minutes.

As we have already noted, apart from the trajectories we consider there also exist elliptical
covert trajectories that are symmetrical to them with respect to the horizontal coordinate axis.

Parabolic covert trajectories. If the velocities of the AO and the carrier of the onboard radar
station coincide, i.e., v = vc, Eq. (10) can be written as

ρ = ρ0
sinϕ0 + 1

sinϕ+ 1
.

This equation defines a parabola passing through the point with polar coordinates (ρ0, ϕ0) and
with focal point at the origin. AO motion along such a trajectory occurs from the fourth quadrant
to the third, flying over the origin (the location of the Doppler radar station) counterclockwise.
The form of a parabolic covert trajectory in the moving coordinate system is shown on Fig. 3; in
the Earth coordinate system the same trajectory is shown on Fig. 4.

The second family of parabolic covert trajectories is given by equation

ρ =
c0

sinϕ− 1
,

which results from (9) for ε = 0. Trajectories of this family are symmetrical to trajectories from
the first family with respect to the Oz1 axis.

There are no parabolic covert trajectories passing through the origin. The minimal distance
ρmin from the origin to the parabola depends on the initial position of the AO and is given by
expression

ρmin = ρ0
1 + sinϕ0

2
.

Using the fact that sectoral velocity is constant, we can compute the time of AO flight along
a parabolic trajectory from the initial point at the right semiplane to the point of the trajectory
which is nearest to the origin. For instance, time of flight T along a parabolic trajectory from the
point with polar coordinates (ρ0, ϕ0), |ϕ0| < π/2 to the point on the trajectory nearest to the
origin is given by the following expression:

T =
ρ0 cosϕ0

vc

(

1−
ρ0
c0

sinϕ0 −
ρ20 cos

2 ϕ0

3c20

)

,

where

c0 = ρ0(1 + sinϕ0).

Hyperbolic covert trajectories. If the AO velocity is less than the velocity of the onboard radar
station carrier, i.e., v < vc, expression (10) defines a family of hyperbolas. The same family is
also defined by the canonical Eq. (11). Specific hyperbolas can be distinguished from the family
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by specifying polar coordinates ρo and ϕo of a point through which the hyperbola passes. Coor-
dinates ρo and ϕo uniquely determine the value c0 = ρo(sinϕo + v/vc), which is the numerator
in (10).

Trajectories for which c0 = ρ0(sinϕo + v/vc) < 0 are completely contained in the bottom semi-
plane bounded by the horizontal coordinate axis. Trajectories for which c0 = ρ0(sinϕo + v/vc) > 0
pass through all four quadrants of the coordinate plane. The minimal distance from a hyperbolic
covert trajectory to the origin (location of the Doppler onboard radar station) for c0 > 0 equals

c0
1+v/vc

, while for c0 < 0 it is equal to c0
−1+v/vc

. Besides, the family of hyperbolic covert trajectories

has two special trajectories for which c0 = ρo(sinϕo + v/vc) = 0. These are rays coming out of the
origin that are defined by equations

z2 =
µ0

√

1− µ2
0

× z1 for z1 < 0

and

z2 = −
µ0

√

1− µ2
0

× z1 for z1 > 0.

A useful feature of these trajectories is that motion (approach for one of them) along these
trajectories is done along straight line trajectories both in coupled and Earth coordinate system.
The approach speed with an ERDS airplane along a straight line trajectory lying in the fourth
quadrant is constant and equals

√

v2c − v2. Along this trajectory, the AO gets exactly into the
origin. Along another straight line trajectory, the AO can leave the ERDS airplane with the same
velocity.

Similar to the two previous cases (parabolic and elliptical), for each covert trajectory there exists
a trajectory symmetric to it with respect to the horizontal axis.

5. CONCLUSION

Our studies have shown that in the operation of a radar station in an ERDS airplane in impulse–
Doppler mode at every point of its detection zone there exists a sector of directions such that AOs
remain undetected while moving along them. This lets one form covert motion trajectories for an
AO. We have considered orthogonal covert trajectories tangents to which (AO velocity vectors) are
orthogonal to the line of sight to the ERDS airplane and are directed along the bisecting line of the
invisible motion direction sector. We have established that motion along such orthogonal covert
trajectories satisfies the first and second Kepler’s laws, i.e., trajectories are conical sections motion
along which is done with constant sectoral velocity. We have described a number of characteristic
features for such trajectories.

Note that orthogonal trajectories that we have considered in this work are not the only covert
trajectories possible. If one abandons orthogonality (ε 6= 0), solution (8) yields a variety of covert
trajectories. Analysis of properties for such trajectories may be a subject for further studies.
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