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Abstract A problem of axiomatic construction of a social decision function is stud-
ied for the case when individual opinions of agents are given as m-graded preferences
with arbitrary integer m ≥ 3. It is shown that the only rule satisfying the introduced axi-
oms of Pairwise Compensation, Pareto Domination and Noncompensatory Threshold
and Contraction is the threshold rule.

1 Introduction

The aim of this article is to investigate the following problem of construction of a social
decision function. Given a set of n agents, each agent evaluates alternatives from a
finite set X using complete and transitive preferences (rankings), and we look for a
complete and transitive social preference over the alternatives. This kind of aggrega-
tion has been considered in many publications, beginning with the seminal work by
Arrow (1963). In order to solve the problem, two ways have been proposed. Arrow’s
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628 F. T. Aleskerov et al.

kind of axiomatics can be described as the local aggregation, cf. Aleskerov (1999);
in other words, the aggregation is done on the basis of pairwise comparisons of alter-
natives. Another way is to use certain non-local procedures, e.g. positional rules, for
which only a few works with very well-constructed axiomatics exist, cf. Austen-Smith
and Banks (1999), May (1952), Moulin (1988), Smith (1973) and Young (1974a,b,
1975).

One of the non-local rules is the Borda voting rule (Young (1974b)). An application
of Borda’s rule is often not adequate, since any summation of ranks has a ‘compen-
satory nature’: a low evaluation of some alternative by an agent can be compensated
by high evaluations of the other agents. Thus, if we would like to take carefully into
account low evaluations of alternatives when the quality or perfectness of alternatives
is important, the Borda rule or its counterparts cannot be applied.

Let us consider two examples (see also Sect. 3).

Example 1 1 Suppose that a committee of four members 1, 2, 3 and 4 evaluates three
candidates x, y and z to elect for a position. The commitee’s evaluations of candidates
are given by the following linear preferences:

1 2 3 4
x x z z
y y y y
z z x x

The summation of ranks of the candidates gives the same number of scores 8 for
every candidate, and it is impossible to make a choice. However, very often the com-
promise choice is the candidate y. Such decision is suggested, for instance, by the
approval voting procedure, cf. Brams and Fishburn (2002). In what follows other
rules describing this decision will be proposed.

Example 2 It is a common practice for scientific journals to accept or reject manu-
scripts submitted for publication on the basis of reports of two referees. If at least one
referee evaluates the manuscript as ‘bad’ in a certain sense, the manuscript is rejected.
The manuscript is usually accepted if the two referees provide ‘positive’ opinions.
Clearly, this kind of a situation is of noncompensatory nature, and so, the question is:
what rule(s) describe(s) the journal’s choice to accept a manuscipt?

In a recent series of three articles by Aleskerov and Yakuba (2003, 2007) and
Aleskerov et al. (2007), an axiomatic construction of the new aggregation procedure,
called the threshold rule, has been presented for three-graded rankings, i.e. when the
evaluations of alternatives are made by grades 1, 2 and 3 meaning ‘bad’, ‘average’ and
‘good’, respectively. The axioms used are Pairwise Compensation, Pareto Domination,
Noncompensatory Threshold and Contraction.

The Pairwise Compensation axiom means that if all agents, but two, evaluate two
alternatives equally, and the two agents put ‘mutually inverse’ grades, then the two
alternatives have the same rank in the social decision (which may also be interpreted
as ‘anonymity of grades’).

1 The idea of this example was proposed by Professor P. Pattanaik.
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The Pareto Domination axiom states that if the grades of all agents for one alter-
native are not less than for the second alternative and the grade of at least one agent
for the first alternative is strictly greater than that of the second one, then in the social
ranking the first alternative has a higher rank than the second alternative.

The Noncompensatory Threshold axiom reveals the main idea of the threshold
aggregation: if at least one agent evaluates an alternative as ‘bad’, then, no matter how
many ‘good’ grades it admits, in the social ranking this alternative is ranked lower
than any alternative evaluated as ‘average’ by all agents.

In this context, the Contraction means that if for two alternatives the evaluations of
some agent are equal, then the agent may be ‘excluded’ from the consideration when
the social ranking is constructed, and the social decision is achieved by remaining
agents’ evaluations.

It was shown by Aleskerov and Yakuba (2003, 2007) and Aleskerov et al. (2007)
that the threshold rule is the only rule satisfying the above axioms. In the context
of three-graded rankings, the threshold rule aggregates individual preferences in the
following way: if the number of ‘bad’ evaluations of the first alternative is greater than
that of the second one, then the first alternative has lower rank in the social ranking,
and if the numbers of ‘bads’ for both alternatives are equal and the number of ‘average’
evaluations of the first alternative is greater than that of the second alternative, then
the second alternative is socially more preferable.

In this article, we extend the notion of the threshold rule to the case when the agents’
evaluations are represented by the m-valued grades with an arbitrary integer m ≥ 3
and show that the threshold rule is the only rule, which satisfies the abovementioned
appropriately interpreted axioms. In this model, low evaluations of some agents are
of main concern: they cannot be compensated by high grades of the other agents. This
concerns the situation when the quality or perfectness of alternatives is of great value
and interest. On the other hand, an aggregation procedure can be made taking carefully
into account high grades of agents: this is the case when we are interested in at least
one good feature of alternatives. It is exactly the dual model, and it has all advantages
of the dual model including the axiomatic construction of a social decision function.

Yet, one more remark ought to be made concerning an interpretation of the Noncom-
pensatory property. Under this property, any agent giving a low grade to an alternative
puts it down in the social decision as compared to an alternative with average grades.
Thus, marginal opinions may strongly influence the social decision.

The main results of this article have been presented in Aleskerov and Chistyakov
(2008); Aleskerov et al. (2010) and part of them is published without proofs in Sections
1–3 from Chistyakov and Kalyagin (2008).

The article is organized as follows. In Sect. 2, we present necessary definitions
and the main result, Theorem 1. In Sect. 3, we compare the threshold rule, the simple
majority rule and Borda’s rule and show that they produce in general different social
rankings on the same individual profile. In Sect. 4, we show that the equivalence clas-
ses of the weak order P , generated by the threshold rule, and the indifference classes
generated by P coincide and establish the key properties of monotone representatives
of the indifference classes which play a crucial role in the proof of the main result. In
Sect. 5, we develop the dual threshold aggregation axiomatics. Section 6 contains the
proofs of all results including Theorem 1.
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2 The main result

Let X be a finite set of alternatives of cardinality |X | ≥ 2, N ={1, 2, . . . , n} be a set
of n ≥ 2 agents and M = {1, 2, . . . ,m} be a set of ordered grades 1 < 2 < · · · < m
with m ≥ 3. An evaluation procedure for alternatives from X is a map of the form
E : X × N → M , which assigns to each alternative x ∈ X and each agent i ∈ N a
grade xi = E(x, i) ∈ M . As a result of the evaluation procedure E each alternative
x ∈ X is characterized by a collection of n grades x1, . . . , xn , that is

X � x �−→ x̂ = E(x, ·) = (x1, . . . , xn) ∈ Mn,

where Mn = {(x1, . . . , xn) : xi ∈ Mfor each i ∈ N } is the set of all n-dimensional
vectors with components from M . In practice the vector-grades x̂ = (x1, . . . , xn) for
the alternative x may represent expert grades, questionnaire data, test data, etc.

The set ̂X = {̂x : x ∈ X} ⊂ Mn is an individual profile on X . The problem is
to rank the elements of X making use of the individual profile ̂X . By a ranking of X
we mean a complete and transitive binary relation on X . Since ̂X ⊂ Mn and each
alternative x ∈ X is completely characterized by its profile vector x̂ , with no loss of
generality throughout the paper we assume that X = ̂X = Mn , and so,

x ∈ X iff x = x̂ = (x1, . . . , xn) ∈ Mn with xi ∈ M,

where ‘iff’ means as usual ‘if and only if’.
The following notation will be used throughout the article. Given x, y ∈ X , we write

x � y to denote the condition xi ≥ yi for all i ∈ N , and we write x � y to mean
that x � y and there is an i0 ∈ N such that xi0 > yi0 . Note that the partial order
relations � and � on X do not solve the problem of ranking of X , because not all
profile vectors from X are comparable using these relations. Also, given x ∈ X and
j ∈ M , we denote by v j (x) the number of grades j in the vector x = (x1, . . . , xn):

v j (x) = |{i ∈ N : xi = j}|. (1)

Note that 0 ≤ v j (x) ≤ n for all x ∈ X and j ∈ M and

m
∑

j=1

v j (x) = v1(x)+ v2(x)+ · · · + vm(x) = n for all x ∈ X. (2)

Finally, given x ∈ X , we set

Vk(x) =
k

∑

j=1

v j (x) if 1 ≤ k ≤ m and V0(x) = 0, (3)

so that equality (2) can be simply written as Vm(x) = n, x ∈ X .
By a social decision function on X we mean a function ϕ : X → R satisfying the

following properties: given x, y ∈ X , we have: (a) the inequality ϕ(x) > ϕ(y) holds
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iff the alternative x is socially (strictly) more preferable than the alternative y (in the
sense to be made precise below), and (b) ϕ(x) = ϕ(y) iff the alternatives x and y are
socially indifferent.

We look for a social decision function ϕ : X → R, which satisfies the following
three axioms (A.1), (A.2) and (A.3).

(A.1) (Pairwise Compensation): if x, y ∈ X and v j (x) = v j (y) for all 1 ≤ j ≤ m−1,
then ϕ(x) = ϕ(y).

(A.2) (Pareto Domination): if x, y ∈ X and x � y, then ϕ(x) > ϕ(y).
(A.3) (Noncompensatory Threshold and Contraction): for each natural number 3 ≤

k ≤ m the following condition holds:
(A.3.k) if x, y ∈ X, v j (x) = v j (y) for all 1 ≤ j ≤ m −k (if k = m, this condi-
tion is omitted), vm−k+1(x)+1 = vm−k+1(y) 
=n − Vm−k(y), Vm−k+2(x) = n
and Vm−k+1(y)+ vm(y) = n, then ϕ(x) > ϕ(y).

Recall that the binary relation 
 = 
 k on the set R
k of all k-dimensional vectors with

real components is said to be the lexicographic ordering if, given u = (u1, . . . , uk)

and v = (v1, . . . , vk) from R
k , we have: u 
 v in R

k iff there exists an 1 ≤ i ≤ k
such that u j = v j for all 1 ≤ j ≤ i − 1 (with no condition if i = 1) and ui < vi .
It is well known (e.g. Fishburn (1973)) that 
 is a linear order on R

k ; more precisely,

 is transitive (i.e. if u 
 v and v 
 w, then u 
 w), the negation of 
 is of the form:
¬(u 
 v) iff v 
 u or v = u, and 
 is trichotomous (i.e. either u = v, or u 
 v, or v 
 u).

Setting

v(x) = (v1(x), . . . , vm−1(x)) ∈ {0, 1, . . . , n}m−1 for x ∈ X, (4)

the property v(x) 
 v(y) in R
m−1 will be called the threshold rule for the comparison

of alternatives x and y (with respect to the number of low grades). We say that a
binary relation P on X is generated by the threshold rule if P = {(x, y) ∈ X × X :
v(x) 
 v(y)}. In other words, given x, y ∈ X , we have (x, y) ∈ P iff v(x) 
 v(y),
which can be interpreted in the sense that the alternative x is socially (strictly) more
preferable than the alternative y.

The main properties of P are straightforward consequences of the properties of the
lexicographic ordering: given x, y, z ∈ X , we have:

(P.1) if (x, y) ∈ P and (y, z) ∈ P , then (x, z) ∈ P (transitivity of P);
(P.2) (x, y) 
∈ P is equivalent to (y, x) ∈ P or v(y) = v(x) (negation of P);
(P.3) either v(x) = v(y), or (x, y) ∈ P , or (y, x) ∈ P (generalized ‘connectedness’

of P);
(P.4) (x, x) 
∈ P (irreflexivity of P);
(P.5) if (x, y) 
∈ P and (y, z) 
∈ P , then (x, z) 
∈ P (negative transitivity of P);
(P.6) (x, y) 
∈ P or (y, x) 
∈ P (completeness of Pc = X2\P).

A binary relation P satisfying properties (P.1), (P.4) and (P.5) is commonly known
as a weak order on X . It is also known (cf. Aleskerov (1999)) that any weak order
P on X is characterized by the family of its equivalence classes, whose construction
is recalled now. Set X ′

1 = π(X) where, given nonempty A ⊂ X, π(A) = {x ∈ A :
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(y, x) 
∈ P for ally ∈ A} is the choice function for P (cf. (Aizerman and Aleskerov,
1995, Section 2.3)). Inductively, if � ≥ 2 and nonempty subsets X ′

1, . . . , X ′
�−1 of X

such that
⋃�−1

k=1 X ′
k 
= X are already defined, we put X ′

� = π
(

X\(⋃�−1
k=1 X ′

k)
)

. Since X
is finite, there exists a unique positive integer s = s(X) such that X = ⋃s

�=1 X ′
�. Now,

setting X� = X ′
s−�+1 for � = 1, 2, . . . , s, the disjoint collection {X�}s

�=1 is said to be
the family of equivalence classes of the weak order P , and has the following property:
given x, y ∈ X, (x, y) ∈ P iff there exist two integers k and � with 1 ≤ k < � ≤ s
such that x ∈ X� and y ∈ Xk . This property shows that the alternative x is more
preferable than the alternative y iff x lies in an equivalence class with a greater ordinal
number, and so, this defines the canonical (strict) ranking of X . The value s = s(X) for
the relation P generated by the threshold rule will be calculated below in Lemma 1(b).

We say that a function ϕ : X → R is coherent with the family {X�}s
�=1 of equiva-

lence classes of the weak order P on X if, given x, y ∈ X , the inequality ϕ(x) > ϕ(y)
holds iff there exist 1 ≤ k < � ≤ s such that x ∈ X� and y ∈ Xk .

The main result of this article is the following.

Theorem 1 A social decision function ϕ : X → R satisfies axioms (A.1), (A.2) and
(A.3) iff it is coherent with the family of equivalence classes of the weak order P on
X generated by the threshold rule v(x) 
 v(y) in R

m−1.

This theorem will be proved in Sect. 6. A certain interpretation of it is in order.
Given a binary relation P on X and a function ϕ : X → R, if for all x, y ∈ X we have

(x, y) ∈ P iff ϕ(x) > ϕ(y), (5)

then P is said to be representable by means of ϕ or, shortly, ϕ-representable, and
ϕ is said to be a preference function for P . Taking this into account as well as the
definitions preceding Theorem 1, we can reformulate Theorem 1 as follows: a social
decision function on X satisfies the axioms Pairwise Compensation, Pareto Domina-
tion, Noncompensatory Threshold and Contraction iff it is a preference function for
the binary relation on X generated by the threshold rule.

3 A comparison with the known rules

In this section, we construct an example, for which the simple majority rule, the Borda
voting rule and the threshold rule produce different social decisions.

Let X = {x, y, z} be a set of three different alternatives, N = {1, . . . , 13} a set of
n = 13 voters and M = {1, 2, 3} the set of grades (i.e. m = 3). Consider the following
linear orders of voters from N :

3 voters 4 voters 6 voters rank
x x y 3
y z z 2
z y x 1

This means that for the first three voters x is the most preferable alternative, y is the
next one and z is the less preferable alternative, and likewise for the other voters. The
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problem of voting is to construct a (linear) binary relation on X corresponding to the
social decision of the society N .

(a) According to the simple majority rule the pair of alternatives (x, y) is included
into the social decision (relation) if the preference of the form ‘x is more pref-
erable than y’ occurs among the simple majority of voters. In our example we
have: for 3 + 4 = 7 voters x is more preferable than y, for 3 + 6 = 9 voters y
is more preferable than z and for 3 + 4 = 7 voters x is more preferable than z
(and there is no simple majority among the other possibilities). Thus, the social
decision is x � y � z, where � means ‘is preferred to’.

(b) In the Borda voting procedure to each alternative x from X each voter i ∈ N
associates some rank ρi (x) in such a way that the more preferable the alternative
the higher the rank. In our example for the first voter among the first three voters
we have: ρ1(x) = 3, ρ1(y) = 2 and ρ1(z) = 1, and likewise for the remaining
voters. Then we set ρ(x) = ∑

i∈N ρi (x) for all x ∈ X . According to the Borda
voting rule an alternative x is socially more preferable than an alternative y if
ρ(x) > ρ(y). For the example above we have:

ρ(y) = 3 · 2 + 4 · 1 + 6 · 3 = 28 > ρ(x) = (3 + 4) · 3 + 6 · 1 = 27 >

> ρ(z) = 3 · 1 + (4 + 6) · 2 = 23.

Thus, the social decision is y � x � z.
(c) Interpreting the ranks of alternatives from (b) as the grades, for the example

above we have (the asterisk denotes the ordered vector grades):

v1(x)=6, v2(x)=0, v3(x)=7, or x∗=( 1, 1, 1, 1, 1, 1
︸ ︷︷ ︸

6

, 3, 3, 3, 3, 3, 3, 3
︸ ︷︷ ︸

7

),

v1(y)=4, v2(y)=3, v3(y)=6, or y∗=( 1, 1, 1, 1
︸ ︷︷ ︸

4

, 2, 2, 2
︸ ︷︷ ︸

3

, 3, 3, 3, 3, 3, 3
︸ ︷︷ ︸

6

),

v1(z)=3, v2(z)=10, v3(z)=0, or z∗=( 1, 1, 1
︸ ︷︷ ︸

3

, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
︸ ︷︷ ︸

10

).

Since v1(z) = 3 < v1(y) = 4 < v1(x) = 6, then v(z) 
 2v(y) 
 2v(x), and so,
according to the threshold rule the social decision is z � y � x .

4 Monotone representatives and indifference classes

Since the binary relation P on X generated by the threshold rule is a weak order, the
indifference relation I is defined as

I = {(x, y) ∈ X × X : (x, y) 
∈ P and (y, x) 
∈ P}. (6)
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Clearly, I is an equivalence relation on X (i.e. it is reflexive, symmetric and transitive)
and, by virtue of the properties (P.2) and (P.3), we have:

I = {(x, y) ∈ X × X : v(x) = v(y)}. (7)

Then the indifference class of an alternative x ∈ X is the set

Ix = {y ∈ X : (y, x) ∈ I } = {y ∈ X : v(y) = v(x)}, (8)

and, as usual, given x, y ∈ X , we find: Ix = Iy iff (x, y) ∈ I, Ix ∩ Iy = ∅ iff
(x, y) 
∈ I , and X = ⋃

x∈X Ix (disjoint union). We denote by X/I the quotient set
{Ix : x ∈ X} of all the indifference classes with respect to I .

In this way the binary relation R = P ∪ I is a canonical ranking of X : R is transitive
((x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R) and complete (given x, y ∈ X, (x, y) ∈
R or (y, x) ∈ R). However, throughout the paper we prefer to deal with the strict
preference relation P .

Given Ix ∈ X/I for some x ∈ X , by virtue of (8), the vector v(Ix ) = v(y) = v(x)
is well defined for any y ∈ Ix . Then the quotient binary relation P/I given by

P/I = {(Ix , Iy) ∈ (X/I )× (X/I ) : v(Ix ) 
 v(Iy) in R
m−1}

is a linear order on X/I . In fact, since the transitivity and irreflexivity of P/I are clear,
it suffices to verify only the connectedness of P/I , i.e. if Ix , Iy ∈ X/I and Ix 
= Iy ,
then (Ix , Iy) ∈ P/I or (Iy, Ix ) ∈ P/I . Indeed, Ix 
= Iy implies Ix ∩ Iy = ∅ and
(x, y) 
∈ I . Thus, v(x) 
= v(y), which gives v(Ix ) 
= v(Iy), and by the completeness
of the lexicographic ordering 
 = 
 m−1 we obtain v(Ix ) 
 v(Iy) or v(Iy) 
 v(Ix ).

We note that, by virtue of (4) and (2), the equality v(y) = v(x) in (8) actually
means that v j (y) = v j (x) for all j ∈ M , that is, the vector y can be obtained from
the vector x (and vice versa) by a permutation of its coordinates:

Ix = {y ∈ X : ∃ a permutation σ of N such that y = x ◦ σ },

where the equality y = x ◦ σ involving the composition x ◦ σ means as usual that
yi = xσ(i) for all i ∈ N .

In order to facilitate the treatment of indifference classes Ix from X/I , in each
class Ix we select a ‘principal’ representative x∗ = (x∗

1 , x∗
2 , . . . , x∗

n ) ∈ Ix , whose
coordinates are ordered in ascending order: x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n or

x∗ = (

n
︷ ︸︸ ︷

1, . . . , 1
︸ ︷︷ ︸

v1(x)

, 2, . . . , 2
︸ ︷︷ ︸

v2(x)

, . . . , m − 1, . . . ,m − 1
︸ ︷︷ ︸

vm−1(x)

, m, . . . ,m
︸ ︷︷ ︸

vm (x)

), (9)

where the numbers v j (x) under the braces denote the lengths of the corresponding
underbraced subvectors. The alternative x∗, called the monotone representative of
the class Ix (or simply of the vector x), is uniquely determined, although it can be
obtained from x by different permutations of its coordinates. It is clear from the above
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that v j (x∗) = v j (x) for all j ∈ M , or v(x∗) = v(x), and so, Ix = Ix∗ for all x ∈ X .
We denote by X∗ = {x∗ : x ∈ X} the subset of X of all monotone representatives and
by P∗—the restriction of P to X∗ × X∗.

Let us note that, given x, y ∈ X , we have:

(x, y) ∈ P iff (Ix , Iy) ∈ P/I iff (x∗, y∗) ∈ P∗

and

(x, y) ∈ I iff Ix = Iy iff x∗ = y∗. (10)

It follows from (P.1), (P.4) and (P.3) that P∗ is a linear order on X∗ and that the bijec-
tion b : X/I → X∗, defined by b(Ix ) = x∗ for all x ∈ X , is linear order preserving
in the sense that (Ix , Iy) ∈ P/I iff (b(Ix ), b(Iy)) ∈ P∗; in other words, the pairs
(X/I, P/I ) and (X∗, P∗) are linear order isomorphic.

Thus, we can work with the set X∗ equipped with the linear order P∗ instead of
the quotient linear order set (X/I, P/I ).

In Lemma 1 we evaluate the number of elements in X∗, i.e. the number of monotone
representatives of classes from the quotient set X/I .

Lemma 1 (a) |X/I | = |X∗| = C m−1
n+m−1 = C n

n+m−1, where Ck
n = n!

k!(n−k)! is the
usual binomial coefficient and |A| denotes the number of elements in the set A
under consideration.

(b) {X�}s
�=1 = X/I , i.e. the family of all equivalence classes of the weak order P

coincides with the quotient set of all the indifference classes with respect to I ;
hence, s = s(X) = C m−1

n+m−1.

5 The dual threshold aggregation

If the utmost perfection (quality) of alternatives is of main concern, we can apply the
threshold rule to rank the set of alternatives. However, if we are interested in at least
one good feature of alternatives, we should employ a different, but related, aggregation
procedure, which will be called the dual threshold aggregation. Such a dual model for
three-graded rankings had already been mentioned by Aleskerov and Yakuba (2007).
In this section, we develop an axiomatic theory of the dual threshold aggregation in
the general case.

Given an alternative x ∈ X = Mn , we set

v(x) = (vm(x), vm−1(x), . . . , v2(x)) ∈ {0, 1, . . . , n}m−1.

The property v(y) 
 v(x) in R
m−1 will be called the dual threshold rule for the com-

parison of alternatives x, y ∈ X (with respect to the number of high grades), and a
binary relation on X of the form

P = {(x, y) ∈ X × X : v(y) 
 v(x) in R
m−1}
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636 F. T. Aleskerov et al.

is said to be generated by the dual threshold rule. In other words, given two alternatives
x, y ∈ X , we have (x, y) ∈ P iff v(y) 
 v(x), and we say that x is (dually) strictly
more preferable than y.

We are going to reduce the dual aggregation theory to the aggregation theory devel-
oped above. In order to do this, we introduce a permutation r of the set M as follows:

r( j) = m − j + 1 for all j ∈ {1, 2, . . . ,m}.

Note that r is a bijection between {1, 2, . . . ,m − 1} and {m,m − 1, . . . , 2}, revers-
ing the order of the numbers, and so, its self composition r2 = r ◦ r is the iden-
tity on {1, 2, . . . ,m − 1} and on {m,m − 1, . . . , 2}: r(r( j)) = j for all j . Given
x = (x1, . . . , xn) ∈ X = {1, 2, . . . ,m}n , we set

r(x) = (r(x1), r(x2), . . . , r(xn)) = (m − x1 + 1,m − x2 + 1, . . . ,m − xn + 1),

and note that r(r(x)) = x , i.e. r(x ′) = x iff x ′ = r(x).
The following two properties (11) and (12) of r will be of significance:

v j (r(x)) = vr( j)(x) for all x ∈ X and 1 ≤ j ≤ m. (11)

In fact, we have:

v j (r(x)) = |{i ∈ N : r(xi ) = j}| = |{i ∈ N : m − xi + 1 = j}|
= |{i ∈ N : xi = m − j + 1}| = |{i ∈ N : xi = r( j)}| = vr( j)(x).

It follows that v j (x) = vr( j)(r(x)) and

v(x) = v(r(x)) and v(r(x)) = v(x) for all x ∈ X , (12)

because

v(x) = (vm(x), vm−1(x), . . . , v2(x)) = (vr(1)(x), vr(2)(x), . . . , vr(m−1)(x))

= (v1(r(x)), v2(r(x)), . . . , vm−1(r(x))) = v(r(x)).

Now, given x, y ∈ X , we have:

(x, y) ∈ P iff v(y) 
 v(x) iff v(r(y)) 
 v(r(x)) iff (r(y), r(x)) ∈ P (13)

or, equivalently, (x, y) ∈ P iff (r(y), r(x)) ∈ P .
By virtue of (13), the relation P on X satisfies the properties (P.1)–(P.6) (if we

replace P in these properties by P), and so, P is a weak order on X . For instance, the
negation of P is of the form: given x, y ∈ X, (x, y) 
∈ P iff (y, x) ∈ P or v(y) = v(x);
in fact, it follows from (13) that

(x, y) 
∈ P iff (r(y), r(x)) 
∈ P iff [(r(x), r(y)) ∈ P or v(r(x)) = v(r(y))]
iff [(y, x) ∈ P or v(x) = v(y)],
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and it remains to note that, in view of (2), the condition ‘v j (x) = v j (y) for all
2 ≤ j ≤ m’ is equivalent to the condition ‘v j (x) = v j (y) for all 1 ≤ j ≤ m − 1’.
This observation also shows that the indifference relation I on X generated by P
coincides with the indifference relation I :

I = {(x, y) : (x, y) 
∈ P and (y, x) 
∈ P} = {(x, y) : v(x) = v(y)} = I.

In order to treat the axiomatics of preference functions for the relation P , we note
that if ϕ is a preference function for P and ψ is a preference function for P , then,
given x, y ∈ X , we have:

ψ(x) > ψ(y) iff (x, y) ∈ P iff (r(y), r(x)) ∈ P iff ϕ(r(y)) > ϕ(r(x))

iff [−ϕ(r(x)) > −ϕ(r(y))]. (14)

We conclude that ϕ is a preference function for P iff the function ϕ, defined by
ϕ(x) = −ϕ(r(x)) for all x ∈ X , is a preference function for P , and vice versa: ϕ is a
preference function for P iff the function ϕ, defined for x ∈ X by ϕ(x) = −ϕ(r(x)),
is a preference function for P . It follows from Theorem 1 that a function ϕ : X → R

is a preference function for P iff the function ϕ(x) = −ϕ(r(x)) satisfies axioms
(A.1)–(A.3), and by virtue of (14) with ψ replaced by ϕ, given x, y ∈ X , we have:

ϕ(x) > ϕ(y) iff ϕ(x ′) > ϕ(y′), where x ′ = r(y) and y′ = r(x).

So, replacing x by r(y) and y by r(x) in axioms (A.1)–(A.3) and taking into account
equalities (11) and (12), we obtain the following (dual) axioms for function ϕ. Axioms
(A.1) and (A.2) remain the same, because conditions ‘v(x) = v(y)’ and ‘v(x) = v(y)’
are equivalent, and if x � y, then r(y) � r(x), and so, ϕ(r(y)) > ϕ(r(x)) implying
ϕ(x) > ϕ(y). The third dual axiom assumes the following form:

(A.3) (Noncompensatory Dual Threshold and Contraction): for each integer 3 ≤
k ≤ m the following condition holds:

(A.3.k) if x, y ∈ X, v j (x) = v j (y) for all k + 1 ≤ j ≤ m (if k = m, this condition
is absent), vk(y) + 1 = vk(x) 
= Vk(x), Vk−2(y) = 0 and Vk−1(x) = v1(x), then
ϕ(x) > ϕ(y).

The observations above lead to the following corollary of Theorem 1.

Theorem 2 A social decision function ϕ : X → R satisfies axioms (A.1), (A.2) and
(A.3) iff it is coherent with the family of equivalence classes of the weak order P on
X generated by the dual threshold rule v(y) 
 v(x) in R

m−1.

6 Proofs of the results

Proof of Lemma 1. (a) Since the sets X/I and X∗ are bijective, we have |X/I | =
|X∗|. Let us show that

|X∗
n,m | = C m−1

n+m−1, (15)
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where X∗
n,m = {(x∗

1 , . . . , x∗
n ) ∈ Mn : x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n } is a more refined
notation (just for the sake of this proof) of the set X∗. We apply induction argu-
ment on n for each natural m. If n = 1, for each natural m there are m = C m−1

m
possibilities to choose an element x∗ = x∗

1 ∈ M = {1, 2, . . . ,m}. If n = 2 and
x∗ = (x∗

1 , x∗
2 ) ∈ X∗

2,m , then we have m possibilities to choose x∗
1 = i ∈ M and,

by virtue of the inequality x∗
1 ≤ x∗

2 , we have m − i + 1 possibilities to choose
x∗

2 ∈ {i, i + 1, . . . ,m}, and it follows that

|X∗
2,m | =

m
∑

i=1

(m − i + 1) = m(m + 1)

2
= C m−1

m+1 = C m−1
2+m−1

for each natural m. Now suppose that (15) holds for some natural n and each
natural m. Consider an element x∗ = (x∗

1 , x∗
2 , . . . , x∗

n+1) ∈ X∗
n+1,m . There are

m possibilities to choose the first coordinate x∗
1 = i ∈ M and, by the induc-

tion hypothesis and (15), there are C (m−i+1)−1
n+(m−i+1)−1 = C m−i

n+m−i possibilities to
choose the rest n coordinates (x∗

2 , . . . , x∗
n+1) ∈ {i, i + 1, . . . ,m}n such that

x∗
2 ≤ x∗

3 ≤ · · · ≤ x∗
n+1. By the summation by both indices formula, (see, e.g.

Graham, Knuth and Patashnik (Graham et al., 1994, Section 5.1)), we obtain

|X∗
n+1,m | =

m
∑

i=1

C m−i
n+m−i = C m−1

n+m = C m−1
(n+1)+m−1

for each natural m, which is to be proved.
(b) First, let us verify that {X�}s

�=1 ⊂ X/I . Given 1 ≤ � ≤ s, we fix an x ∈ X� and
show that X� = Ix . In fact, by virtue of the definition of the set X� = X ′

s−�+1, for
each y ∈ X� we have x, y ∈ X\(X ′

1 ∪ · · · ∪ X ′
s−�), where X ′

1 ∪ · · · ∪ X ′
s−� = ∅

for � = s, and

(z, x) 
∈ P and (z, y) 
∈ P for all z ∈ X\(X ′
1 ∪ · · · ∪ X ′

s−�). (16)

Setting z = y and z = x in (16), we get (y, x) 
∈ P and (x, y) 
∈ P . It follows
from (6) and (7) that v(y) = v(x), which according to (8) means that y ∈ Ix and
proves that X� ⊂ Ix . To prove the inverse inclusion, let y ∈ Ix . Since y ∈ X ,
we have y ∈ Xk for some 1 ≤ k ≤ s. If we suppose that k 
= �, then the prop-
erty of the family of equivalence classes of the weak order P characterizing the
relation P implies (x, y) ∈ P or (y, x) ∈ P , and so, by property (P.3) we have
v(y) 
= v(x) or, by (8), y 
∈ Ix . This contradiction shows that actually y ∈ X�
for all y ∈ Ix implying Ix ⊂ X�. Thus, we have proved that X� = Ix , and so,
X� ∈ X/I for all 1 ≤ � ≤ s.
The reverse inclusion X/I ⊂ {X�}s

�=1 follows from the fact that if Ix is in X/I
for some x ∈ X , then the representative x of the indifference class Ix lies in X�
for some 1 ≤ � ≤ s, which by the arguments above implies that Ix = X�.
Finally, equality s = C m−1

n+m−1 follows from equality s = |X/I | and (a). ��
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The following two lemmas are of fundamental importance for the whole subsequent
material. In Lemma 2 we show that the operation of taking the monotone representa-
tive X � x �→ x∗ ∈ X∗ preserves the natural partial order relations � and � on X ,
and in Lemma 3 we show that the relations x∗ � y∗ and x∗ � y∗ can be characterized
in terms of quantities from (1) and (3).

Lemma 2 Given x, y ∈ X, we have:
(a) if x � y, then x∗ � y∗;
(b) if x � y, then x∗ � y∗.

Proof of Lemma 2. (a) By the assumption, xi ≥ yi for all i ∈ N . If x∗ = x ◦ σ
and y∗ = y ◦ θ are monotone representatives of x and y (more precisely, of
the classes Ix and Iy), respectively, where σ and θ are some permutations of
N , then x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n and y∗
1 ≤ y∗

2 ≤ · · · ≤ y∗
n . We have to show that

x∗
i ≥ y∗

i for all i ∈ N . On the contrary, suppose that x∗
k < y∗

k for some k ∈ N .
Then x∗

1 ≤ · · · ≤ x∗
k < y∗

k ≤ · · · ≤ y∗
n or, equivalently, xσ(1) ≤ · · · ≤ xσ(k) <

yθ(k) ≤ · · · ≤ yθ(n). Therefore,

xi < y� for all i ∈ {σ(1), . . . , σ (k)} and � ∈ {θ(k), . . . , θ(n)}. (17)

Since σ and θ are permutations (i.e. bijections of N into itself), then

{σ(1), . . . , σ (k)} ∩ {θ(k), . . . , θ(n)}={σ(1), . . . , σ (k)}\{θ(1), . . . , θ(k−1)}
(18)

is a nonempty set, where {θ(1), . . . , θ(k − 1)} = ∅ if k = 1. Taking an element
i = � from the intersection of the sets at the left hand side of (18), by virtue of
(17) we get x� < y�, which contradicts the condition x� ≥ y�.

(b) Suppose that x � y. Then xi ≥ yi for all i ∈ N and there exists an i0 ∈ N such
that xi0 > yi0 . Since x∗ is obtained from x by a permutation of coordinates (and
likewise for y∗), we find

∑

i∈N

x∗
i =

∑

i∈N

xi >
∑

i∈N

yi =
∑

i∈N

y∗
i .

By (a), we have: x � y implies x∗ � y∗, i.e. x∗
i ≥ y∗

i for all i ∈ N . The
inequality above shows that x∗

k > y∗
k for some k ∈ N , and so, x∗ � y∗. ��

Lemma 3 Given x, y ∈ X, we have:
(a) x∗ � y∗ iff Vk(x) ≤ Vk(y) for all 1 ≤ k ≤ m − 1;
(b) x∗ � y∗ iff there exists a 1 ≤ k ≤ m − 1 such that v j (x) = v j (y) for all

1 ≤ j ≤ k − 1 (no condition if k = 1), vk(x) < vk(y) and Vp(x) ≤ Vp(y) for all
k + 1 ≤ p ≤ m − 1 (with no last condition if k = m − 1).

Proof of Lemma 3. To start with, several remarks concerning monotone representa-
tives x∗ of vectors x ∈ X are in order. Recall that v j (x∗) = v j (x) for all j ∈ M ,
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and (9) and condition x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
n imply that, given i ∈ N and k ∈ M , we

have:

x∗
i = k iff

k−1
∑

j=1

v j (x)+ 1 ≤ i ≤
k

∑

j=1

v j (x), (19)

or, more precisely,

x∗
i ≥ k iff i ≥ Vk−1(x)+ 1, and x∗

i ≤ k iff i ≤ Vk(x). (20)

(a) Necessity On the contrary, suppose that Vk(x) > Vk(y) for some 1 ≤ k ≤
m − 1. If 1 ≤ k ≤ m − 2, we set i = Vk(x). Then, by virtue of (19), x∗

i = k. On
the other hand, the inequality i ≥ Vk(y)+ 1 and the assertion on the left in (20)
imply y∗

i ≥ k +1, and so, x∗
i < y∗

i . Now, if k = m −1, we set i = Vm−1(y)+1.
Then (19) implies y∗

i = m, and the inequality Vm−1(x) ≥ i and the assertion
on the right in (20) give x∗

i ≤ m − 1, and so, x∗
i < y∗

i . In both cases we get a
contradiction with the assumption x∗ � y∗.
Sufficiency Let us fix i ∈ N arbitrarily. Then for some uniquely defined num-
ber 1 ≤ k ≤ m we have the inequalities Vk−1(x) + 1 ≤ i ≤ Vk(x), and so,
according to (19), x∗

i = k. If k = m, then x∗
i = m ≥ y∗

i . Now, if 1 ≤ k ≤ m −1,
then, by the assumption, Vk(x) ≤ Vk(y), and so, i ≤ Vk(y). It follows from the
right hand side assertion in (20) that y∗

i ≤ k = x∗
i . Thus, we have shown that

x∗
i ≥ y∗

i for all i ∈ N , i.e. x∗ � y∗.
(b) Sufficiency The assumptions on the right hand side of the assertion imply

Vp(x) = Vp(y) for all 1 ≤ p ≤ k −1 (or no condition if k = 1), Vk(x) < Vk(y)
and Vp(x) ≤ Vp(y) for all k+1 ≤ p ≤ m−1 (or no last condition if k = m−1).
By item (a) of this lemma, x∗ � y∗. The equality x∗ = y∗ cannot hold for, oth-
erwise, by (10) we would have v(x) = v(y), which contradicts the inequality
vk(x) < vk(y).
Necessity. Suppose x∗ � y∗. Then x∗ � y∗, and by item (a) of this lemma we
find that

Vp(x) ≤ Vp(y) for all 1 ≤ p ≤ m − 1. (21)

However, since x∗ � y∗, then x∗ 
= y∗, and so, (10) implies v(x) 
= v(y). It
follows that the number k = min{1 ≤ j ≤ m − 1 : v j (x) 
= v j (y)} is well
defined. If k = 1, then v1(x) 
= v1(y), and at the same time we know from (21)
with p = 1 that v1(x) ≤ v1(y). Thus, v1(x) < v1(y) and Vp(x) ≤ Vp(y) for all
k + 1 = 2 ≤ p ≤ m − 1, as asserted in this case. If 2 ≤ k ≤ m − 2, then by the
definition of k we find v j (x) = v j (y) for all 1 ≤ j ≤ k − 1 and vk(x) 
= vk(y).
Setting p = k in (21), we get

k−1
∑

j=1

v j (x)+ vk(x) ≤
k−1
∑

j=1

v j (y)+ vk(y),
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and so, vk(x) ≤ vk(y). Therefore, vk(x) < vk(y) and Vp(x) ≤ Vp(y) for all
k + 1 ≤ p ≤ m − 1, as desired. Finally, if k = m − 1, then v j (x) = v j (y) for
all 1 ≤ j ≤ m − 2 = k − 1 and vm−1(x) 
= vm−1(y). At the same time (21)
with p = m −1 implies vm−1(x) ≤ vm−1(y), and so, vm−1(x) < vm−1(y). This
argument completes the proof of Lemma 3. ��

The interpretation following Theorem 1 shows that in the proof of this theorem
we can argue in terms of the ϕ-representability (5) of the relation P generated by the
threshold rule.

In order to prove Theorem 1, we need two more lemmas.

Lemma 4 The relation P on X generated by the threshold rule is representable by
means of a function ϕ : X → R iff the function ϕ satisfies the following m conditions:
given x, y ∈ X,

(a1) if v j (x) = v j (y) for all 1 ≤ j ≤ m − 1, then ϕ(x) = ϕ(y);
(a2) if v j (x) = v j (y) for all 1 ≤ j ≤ m − 2 and vm−1(x) < vm−1(y), then ϕ(x) >

ϕ(y);
and for each integer 3 ≤ k ≤ m also the condition:

(ak) if v j (x) = v j (y) for all 1 ≤ j ≤ m − k (no condition if k = m), vm−k+1(x) <
vm−k+1(y) and Vm−k+2(x) = n, then ϕ(x) > ϕ(y).

Lemma 4 in its turn relies on the following.

Lemma 5 If the function ϕ : X → R satisfies conditions (a1)–(am) of Lemma 4, then
for each 3 ≤ k ≤ m it also satisfies the following condition:

(bk) given x, y ∈ X, if v j (x) = v j (y) for all 1 ≤ j ≤ m − k (with no condition if
k = m) and vm−k+1(x) < vm−k+1(y), then ϕ(x) > ϕ(y),

as well as one more condition:

(c) given x, y ∈ X, if ϕ(x) = ϕ(y), then v j (x) = v j (y) for all 1 ≤ j ≤ m − 1.

Proof of Lemma 5 Step 1 We start with establishing condition (b3). In order to do
this, suppose that v j (x) = v j (y) for all 1 ≤ j ≤ m − 3 (no condition if
m = 3) and vm−2(x) < vm−2(y). It follows from (2), where x is replaced by
y, that

v1(x)+ · · · +vm−3(x)+vm−2(x) < v1(y)+ · · · +vm−3(y)+vm−2(y) ≤ n.

Consider an auxiliary vector z ∈ X such that

v j (z) = v j (x) = v j (y) for all 1 ≤ j ≤ m − 3 (no condition if m = 3),

vm−2(z) = vm−2(x) and vm−1(z) = n − Vm−2(x).

Let us compare the values ϕ(x) and ϕ(z). By virtue of (2), we have v1(x)+
· · · + vm−1(x) ≤ n, and so, vm−1(x) ≤ n − Vm−2(x) = vm−1(z) implying

v j (x) = v j (z) for all 1 ≤ j ≤ m − 2 and vm−1(x) ≤ vm−1(z).
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If vm−1(x) = vm−1(z), then, by virtue of the assumption (a1) from Lemma 4,
we find that ϕ(x) = ϕ(z), and if vm−1(x) < vm−1(z), then according to (a2)
we have ϕ(x) > ϕ(z). Thus, ϕ(x) ≥ ϕ(z). Now we compare the values ϕ(z)
and ϕ(y). Since

v j (z) = v j (y) for all 1 ≤ j ≤ m − 3 (no condition if m = 3),

vm−2(z) = vm−2(x) < vm−2(y) and Vm−1(z) = n,

then applying assumption (a3) from Lemma 4, where x is replaced by z, we
arrive at the inequality ϕ(z) > ϕ(y). Therefore, ϕ(x) ≥ ϕ(z) > ϕ(y), as was
asserted in (b3).

Step 2 Now suppose that the assertion (bk) is already established for some 3 ≤
k ≤ m − 1 and show that the assertion (bk+1) holds as well. For this, given
x, y ∈ X , assume that v j (x) = v j (y) for all 1 ≤ j ≤ m − k − 1 (no condi-
tion if m = k + 1) and vm−k(x) < vm−k(y). This and (2) imply Vm−k(x) =
∑m−k

j=1 v j (x) <
∑m−k

j=1 v j (y) ≤ n. Then a vector z ∈ X with the following
properties is well defined:

v j (z)=v j (x)=v j (y) for all 1 ≤ j ≤ m − k − 1 (no condition if m=k + 1),

vm−k(z)=vm−k(x) and vm−k+1(z)=n − Vm−k(x).

In order to compare the values ϕ(x) and ϕ(z), we note that the inequality
∑m−k+1

j=1 v j (x) ≤ n implies vm−k+1(x) ≤ n − Vm−k(x) = vm−k+1(z), and
so,

v j (x) = v j (z) for all 1 ≤ j ≤ m − k and vm−k+1(x) ≤ vm−k+1(z).

If vm−k+1(x) = vm−k+1(z), then
∑m−k+1

j=1 v j (x) = ∑m−k+1
j=1 v j (z) = n, and

so, v j (x) = v j (z) = 0 for all m−k+2 ≤ j ≤ m. By (a1) of Lemma 4, we get
ϕ(x) = ϕ(z). Now, if vm−k+1(x) < vm−k+1(z), then applying the (already
established!) assertion (bk) with y replaced by z we find ϕ(x) > ϕ(z). Thus,
ϕ(x) ≥ ϕ(z). In order to compare ϕ(z) and ϕ(y), note that

v j (z) = v j (y) for all 1 ≤ j ≤ m − k − 1 (no condition if m = k + 1),

vm−k(z) = vm−k(x) < vm−k(y) and Vm−k+1(z) = n.

Applying the assumption (ak+1) of Lemma 4 with x replaced by z, we get
ϕ(z) > ϕ(y). It follows that ϕ(x) ≥ ϕ(z) > ϕ(y) implying (bk+1).
Setting successively k = 3, k = 4, . . . , k = m − 1 and applying Step 2 we
establish all assertions (b3)–(bm).

Step 3 Assertion (c) follows by contradiction from the properties presented in
Lemma 4 (a2) and Lemma 5 (b3)–(bm). ��
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Proof of Lemma 4 Necessity Suppose that P is ϕ-representable, i.e. condition (5)
holds, and let x, y ∈ X . Taking into account (4), property (P.3) and (5), we find

ϕ(x) 
= ϕ(y) iff [ϕ(x)>ϕ(y) or ϕ(y)>ϕ(x)] iff [(x, y)∈ P or (y, x)∈ P]

iff v(x) 
= v(y),

and so,

v(x) = v(y) iff [¬(v(x) 
= v(y))] iff [¬(ϕ(x) 
= ϕ(y))] iff ϕ(x) = ϕ(y),

which proves (a1). Now, let 2 ≤ k ≤ m be arbitrary. If the assumptions in (ak) hold,
then it follows from the definition of P that (x, y) ∈ P , and so, by virtue of (5), we
have ϕ(x) > ϕ(y).

Sufficiency. We show that if ϕ : X → R satisfies conditions (a1)–(am), then (5)
holds. Given x, y ∈ X , the implication ‘⇒’ (necessity in (5)) is a straightforward
consequence of the definition of P , items (bm), (bm−1), …, (b3) of Lemma 5 and item
(a2) of Lemma 4. In order to prove the reverse implication in (5), we apply property
(P.2), (4), the just established implication ‘⇒’ and the assumption (a1):

(x, y) 
∈ P iff [(y, x) ∈ P or v(y) = v(x)] implies

[ϕ(y) > ϕ(x) or ϕ(y) = ϕ(x)] iff ϕ(y) ≥ ϕ(x),

and so,

ϕ(x) > ϕ(y) iff [¬(ϕ(y) ≥ ϕ(x))] implies [¬((x, y) 
∈ P)] iff (x, y) ∈ P ,

which was to be proved. ��

Proof of Theorem 1 Sufficiency Suppose that ϕ : X → R is a preference function
for the binary relation P on X generated by the threshold rule, and x, y ∈ X . Then
axiom (A.1) follows in the same way as condition (a1) of Lemma 4. In order to verify
axiom (A.2), assume that x � y. Then Lemma 2 (b) implies x∗ � y∗, and so, by
virtue of Lemma 3 (b) there exists a 1 ≤ k ≤ m − 1 such that v j (x) = v j (y) for
all 1 ≤ j ≤ k − 1 (no condition if k = 1) and vk(x) < vk(y). It follows from the
definition of P that (x, y) ∈ P , which together with (5) gives ϕ(x) > ϕ(y) and estab-
lishes (A.2). Now, if 3 ≤ k ≤ m and the assumptions of condition (A.3.k) in axiom
(A.3) hold, then v j (x) = v j (y) for all 1 ≤ j ≤ m − k (with no condition if k = m)
and vm−k+1(x) < vm−k+1(y), and so, once again (x, y) ∈ P . The desired inequality
ϕ(x) > ϕ(y) is now a consequence of (5).
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Necessity It sufficies to verify that, given a social decision function ϕ from X into
R, axioms (A.1), (A.2) and (A.3) imply conditions (a1)–(am) of Lemma 4; in fact,
Lemma 4 implies the ϕ-representability of P , which is equivalent to the coherence of
ϕ with the family of equivalence classes {X�}s

�=1 of the weak order P on X generated
by the threshold rule v(x) 
 v(y) in R

m−1.
Clearly, axiom (A.1) coincides with condition (a1) of Lemma 4.
Let us show that (A.1) and (A.2) imply (a2). For this, we suppose that x, y ∈ X

are such that v j (x) = v j (y) for all 1 ≤ j ≤ m − 2 and vm−1(x) < vm−1(y). By
Lemma 3 (b) (with k = m − 1), we have x∗ � y∗. Then axiom (A.2) implies ϕ(x∗) >
ϕ(y∗). Noting that v j (x) = v j (x∗) and v j (y) = v j (y∗) for all 1 ≤ j ≤ m −1, and so,
by virtue of axiom (A.1), ϕ(x) = ϕ(x∗) and ϕ(y) = ϕ(y∗), which gives ϕ(x) > ϕ(y).

Now we show that, for each 3 ≤ k ≤ m, axioms (A.1) and (A.2) and condition
(A.3.k) of axiom (A.3) imply property (ak) of Lemma 4. Before we do it, let us note
that the conclusion in (A.3.k) is valid also in the case when vm−k+1(y) = n−Vm−k(y):
in fact, if this is the case, we have

x∗ = ( 1, . . . , 1
︸ ︷︷ ︸

v1(x)

, . . . , m−k, . . . ,m−k
︸ ︷︷ ︸

vm−k(x)

, m−k+1, . . . ,m−k+1
︸ ︷︷ ︸

vm−k+1(x)

, m−k+2
︸ ︷︷ ︸

1

)

� ( 1, . . . , 1
︸ ︷︷ ︸

v1(x)

, . . . , m−k, . . . ,m−k
︸ ︷︷ ︸

vm−k(x)

, m − k + 1, . . . ,m − k + 1
︸ ︷︷ ︸

vm−k+1(x)+1

) = y∗,

and so, as above, (A.1) and (A.2) imply ϕ(x) = ϕ(x∗) > ϕ(y∗) = ϕ(y).
Suppose that the assumptions in (ak) hold, i.e. x, y ∈ X are such that v j (x) = v j (y)

for all 1 ≤ j ≤ m − k (this condition is absent if k = m), vm−k+1(x) < vm−k+1(y)
and Vm−k+2(x) = n. We have to show that ϕ(x) > ϕ(y). For this, we consider two
auxiliary vectors x ′, y′ ∈ X such that

v j (y′) = v j (y) = v j (x) for all 1 ≤ j ≤ m − k (no condition if k = m),

vm−k+1(y′) = vm−k+1(y) and vm(y′) = n − Vm−k+1(y),

v j (x ′) = v j (y′) for all 1 ≤ j ≤ m − k (again no condition if k = m),

vm−k+1(x ′) = vm−k+1(y′)− 1 = n − Vm−k(y′)− vm(y′)− 1

and vm−k+2(x ′) = vm(y′)+ 1.

First, by Lemma 3 (a) we have x∗ � x ′∗; in fact, the inequalities Vp(x) ≤ Vp(x ′)
for all 1 ≤ p ≤ m − 1 are consequences of the following: v j (x) = v j (y) = v j (x ′)
for all 1 ≤ j ≤ m − k (no condition if k = m),

vm−k+1(x) ≤ vm−k+1(y)− 1 = vm−k+1(y
′)− 1 = vm−k+1(x

′),

Vm−k+2(x) = n and Vm−k+2(x ′) = n, and so, vl(x) = vl(x ′) = 0 for all m − k + 3 ≤
l ≤ m. So, the inequality x∗ � x ′∗ and axioms (A.1) and (A.2) imply (in the already
standard manner) that ϕ(x) = ϕ(x∗) ≥ ϕ(x ′∗) = ϕ(x ′).
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Second, since v j (x ′) = v j (y′) for all 1 ≤ j ≤ m − k (with no condition if k = m),
vm−k+1(x ′)+ 1 = vm−k+1(y′),

Vm−k+2(x ′) = n and Vm−k+1(y′)+ vm(y′) = n,

then the assumptions of condition (A.3.k) are satisfied for x ′ and y′, and so, we get
ϕ(x ′) > ϕ(y′).

Third, y′∗ � y∗, because (cf. Lemma 3 (a)) v j (y′) = v j (y) for all 1 ≤ j ≤
m − k + 1, v j (y′) = 0 for all m − k + 2 ≤ j ≤ m − 1 and

vm(y
′) = n − Vm−k+1(y) =

m
∑

j=m−k+2

v j (y) ≥ vm(y).

By the standard procedure as above, (A.1) and (A.2), we have ϕ(y′) = ϕ(y′∗) ≥
ϕ(y∗) = ϕ(y).

Thus, ϕ(x) ≥ ϕ(x ′) > ϕ(y′) ≥ ϕ(y), and so, condition (ak) follows.
This completes the proof of Theorem 1. ��
Finally, we note that axioms (A.1), (A.2) and (A.3) are logically independent. In fact,

Theorem 1 can also be interpreted as follows: a function ϕ : X → R satisfies axioms
(A.1)–(A.3) iff the ϕ-generated binary relation Pϕ = {(x, y) ∈ X × X : ϕ(x) > ϕ(y)}
is generated by the threshold rule (i.e. Pϕ = P). However, if ϕ satisfies only either
1) (A.1) and (A.2), or 2) (A.1) and (A.3), or 3) (A.2) and (A.3), then Pϕ 
= P , in
general. This shows also that all axioms (A.1)–(A.3) are essential for the validity of
Theorem 1. For instance, if ϕ : X → R is given by ϕ(x) = ∑m

j=1 jv j (x) = ∑m
i=1 xi

for x ∈ X , then ϕ satisfies (A.1) and (A.2) and does not satisfy (A.3), and Pϕ 
= P .
The verification of possibilities 2) or 3) is left to the interested reader.
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