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Abstract. This paper addresses properties of maps of boupdeariation (p > 1) in the sense of

N. Wiener, which are defined on a subset of the real line and take values in metric or normed spaces.
We prove the structural theorem for these maps and study their continuity properties. We obtain
the existence of a Holder continuous path of minimalariation between two points and establish

the compactness theorem relative to gheariation, which is an analog of the well-known Helly
selection principle in the theory of functions of bounded variation. We prove that the space of maps
of boundedp-variation with values in a Banach space is also a Banach space. We give an example
of a Holder continuous of exponentf y < 1 set-valued map with no continuous selection. In the
casep = 1 we show that a compact absolutely continuous set-valued map from the compact interval
into subsets of a Banach space admits an absolutely continuous selection.
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1. Introduction

The purpose of this paper is to obtain properties of maps of boupeetiation
in the classical sense of Norbert Wiener (cf. Wiener, 1924, and Young, 1937).
Consider a magy : E — X of boundedp-variation (see Sec. 2) defined on the
nonempty subsek of the realsR with values in the metric or normed spa&e
If p = 1, the properties of the variation in the sense of C. Jordan (cf. Schwartz,
1967) were recently studied by the first author (Chistyakov, 1992 and 1997). Here
we concentrate mainly on the case where- 1. If X = R, p = 1 andE is a
closed bounded intervdilz, b ] or an open intervala, b [, then,f : E — Risa
function of bounded variation if and only if it is the difference of two bounded non-
decreasing functions (Jordan’s decomposition); see, e.g., Natanson (1965), Ch. 8.
However, this criterion is inapplicable jf > 1, to say nothing of the case where
X is a metric or a normed vector space.

If p > 1andX is a metric space, we show thaAt £ — X is a map of bounded
p-variation if and only if it is the composition of a bounded nondecreasing function
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¢ : E — Rand anX-valued map defined on the imagegénd satisfying a Holder
condition of exponeny = 1/p and the Holder constanrt 1 (Sec. 3). We point out

that no special structure of the domdin such as connectedness (open and closed
intervals, etc.), is needed to obtain the properties of maps of boyndedation.

In this way, we establish the general properties of these maps in Sec. 2 and the
continuity properties in Sec. 4.

With the decomposition theorem at hand, in the case of the compact metric
spaceX we prove that there always exist Holderian geodesic paths (relative to
the p-variation) between two points of if there is at least one path of finije
variation connecting these points (Sec. 5), and that any infinite family of maps of
uniformly boundedp-variation admits a sequence which converges pointwise to a
map of boundeg-variation (Helly’s selection principle, Sec. 6).

In Sec. 7 we obtain additional properties of maps of boungledriation with
values in normed vector spaces. In particular, we prove ti#isfa Banach space,
then the space of maps of boundedariation is a Banach space as well.

Finally, in Sec. 8 we treat set-valued maps (or multifunctions) of bounded
variation. We show that a Holder continuous of exponent @ < 1 set-valued
map may have no continuous selection. In the gase 1 we prove that any com-
pact absolutely continuous set-valued map from the compact interval into subsets
of a Banach space admits an absolutely continuous selection.

2. Main Properties Of The p -Variation
2.1. NOTATION AND DEFINITION

Throughout this paper we exploit the following notatiéhz E C R, E; ={s €
E:s<tlandEf ={s € E:t <s}ift € E,EL=ENE, =(E}), if
a,b € E,a < b (in particular,[a, b] = R’), X is a metric space with a fixed
metricd = d(-, -), XF is the set of all mapg : E — X from E into X. Given a
map f € X, we denote byf(E) = { f(¢t) : t € E} the image off in X and by
w(f, E) =sugd(f@), f(s)) : t, s € E } the diameter of the imagg(E) (or the
oscillation of f on E). The compositionfo¢ : E; — X oftwomapsf : E — X
andg : E; — E is defined as usual byf o ¢)(t) = f(e(z)) forall t € E;. In
what follows, p is a fixed number, k p < oco. We writeA := Bor B =: A to
indicate thatA is defined by means d.

DEFINITION 2.1 We denote by
TE)={T={#}"g CE:-meNU{0}, t;i_.1<t,i=1...,m}

the set of all partitions of by finite ordered collections of points from Given a
map f : E — X and a partitionT = {;}!", € T (E), we set

VoI, T1=Y d(f @), fv)",

i=1
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where

d(f @), f-0)" = (d(f@), £ -0))
and defineV,(f, E) by

Vo(f, E) =sup V,[f,T]: T e T(E)}.

The quantityV,(f, E) € [0, oo] is called the totalp-variation of f on E. If
V,(f, E) < oo, the mapf is said to be of boundeg-variation. The set of all maps
of boundedp-variation from E into X is denoted by ,(E; X). If ¥ # A C E,
we setV,(f, A) = V,(fla, A), Where f|, is the restriction off to A. We also
setT () = ¥ and V,(f, ¥) = 0 (so thatsupy = 0). The mapV,, : X* x 2 —
RS U {oo} is called ap-variation.

The above definition o/, (f, E) was introduced by Wiener (1924); if = 1,
it is classical and is due to C. Jordan (see Schwartz, 1967, Ch. 4, Sec. 9). Note
that this definition is also suitable for maps defined on any linearly orderdd. set
A number of results of this paper are valid in the case, wkeisa linear ordering
onE.

Now we list the general properties of tipevariation and deduce some of their
consequences (f = 1, see Chistyakov, 1997, Sec. 2).

p
’

2.2. GENERAL PROPERTIES OF THB -VARIATION
Let f : E — X be an arbitrary map. We have
(P1) minimality. if ¢, s € E, thend(f (1), f(s))? <w(f, E)’ < V,(f, E),
(P2) monotonicity if a, ¢, s,b € Eanda <t < s < b, thenV,(f, E) <
Vo (f, ED), Vo fs EN) < Vo (f, Ef), andV, (f, E}) < V,(f, ED);
(P3) semi-additivity if 1 € E, then
2PV (f, E) < Vo (fs ED) + Vi (f, EY) < V,(f, E);

(P4) change of a variableif £; ¢ Randg : E; — E is a (not necessarily
strictly) monotone function, thel,(f, ¢(E1)) = V,(f o ¢, E1);

(P5) regularity: V,(f, E) = sux V,(f, EY):a, b€ E, a < b};

(P6) limit properties if s = SUpE € R U {oo} andi = inf E € RU {—o0}, we
have

(P6) ifs ¢ E,thenV,(f, E) =limgs,, V,(f, E;),

(P&) ifi ¢ E,thenV,(f, E) =limgs,; V,(f, ED),

(P6) if s ¢ E andi ¢ E, then, in addition to (P and (P6), we have

V,(f, E)= lim V,(f,E})= lim lm V,(f,E}) =
p(f’ ) Eaz%i p(f’ a) E>b—s Esa—i p(fv a)
S0—8

= lim lim V,(f, EY);

E>a—i E>b—>s
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(P7) lower semi-continuityif the sequence of mapsf,}°>, C X converges
pointwise tof asn — oo (i.e., lim, .o d(f,(¢), f()) = Oforallr € E),
thenV,(f, E) <liminf,_, V,(f,, E).

Proof of (P1)—(P7)Properties (P1) and (P2) are obvious.
(P3): Step 1. First, we prove the following assertion:
LetT = {1}, € T(E) andt € E. We have
(@) if t <toort, <t ,thenV,[f, T1 < V,[f, T U{t}],
(b) if 1 <t <1 forsomel < k < m, then

VoI, T1 < 2772V, [f, T U {1}].

Since (a) is clear, we turn to (b). Settidy = ", d(f (%), f(#;_1))” and T, =
Yt d(f @), f (ti-1))", we have

Volfi Tl =21 +d(f (&), f(ti-1)’ + 22 <
< S+ (A0, fa) +d(fw), @) + % =
< B3+ 277 (A, D) +d(f @), fD)) + Tz <
< 277N, T U],

Here we have used the triangle inequality and the inequality8)? < 2~ 1(a? +
BP),a > 0,8 >0, p > 1. Note that in case (b) we also have the obvious equality

Volf, T U{t}] = Vol £, T1+d(f(@), f(t-1))? + (2.1)
+d(f (), f()P —d(f (), ft-1))".
Step 2. Letl' = {1;}!_, € T(E). SetS = T U {t}. We have two cases as in (a)
and (b) above. If <ty ort, <t,then

Volfs T1 < V,[f. S1 < Vo (f. ED) + V, (f. ES).
If t,_1 <t < 1, then, by virtue of the above assertion, we have

VoIf, T1 <2072V, [ f, S1 =207 (V,[f, S71+ V,[f, S']) <
<2 YV, (f, E7) + Vo (f, ED).

Taking the supremum over all € 7 (E), we arrive at the left hand side inequality
in (P3).

Now we prove the right hand side inequalityVf(f, E;") = oo or V,(f, E;t) =
oo, thenV,(f, E) = oo, since, by the monotonicityy,(f, E) is greater or equal
to V,(f, E;)andV,(f, E}Y). LetV,(f, E) < oo andV,(f, E;}) < oco. Then for
everye > 0 there are partition$, € 7 (E,”) andT> € 7 (E;") such that
&

V,(f. E7) < V,If. Tl +% and V,(f.E) < V,If. T2 + 5
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It follows that

Vo(fs ED) + Vo (f, EF) < VoI, Tl + V[ f, Tal 46 <
=Vl WU+ Volf, LU{t}] + ¢ =
=Vl TLU{r}UT] + ¢ <
= Vp(f. E) +e,

and it remains to take into account the arbitrariness of0.

(P4): We shall prove that the right hand side is not greater than the left hand
side, and vice versa. Ify = {1;}"; € T(E1) andT := {t;}/, with #; := ¢(1;),
thenT € T (¢(E1)) by the monotonicity ofy, and

Volf o, Til =Y _d(f(p(m)). f(p(ri-1))” =
i=1

=Y d(f), fti)’ = V,[f. T] <

i=1
= Vp(f’ QD(E]_))

On the other hand, if a partitiofi = {7}/, of ¢(E1) is such that;_; < ¢; for

i =1, ...,m, then there exist; € E; such thatr; = ¢(t;) and, again by the
monotonicity ofy, 71 := {r;}/., € T (E1), so that, as above, we have

Vp[f’ T] = Vp[f °cQ, Tl] < Vp(f °cQ, El)

(P5): By the monotonicity o, it is clear that the left hand side is not less
than the right hand side. On the other hand, for any nuraber V,(f, E) there
is a partitionT = {#;}/., € T(E) such thatV,[f, T] > «. Since, actuallyl e
T (Em), it follows thatV,(f, E') > V,[f, T]1 > «, which was to be proved.

(P6): Sinces = SUupE ¢ E, s is a limit point of E, so that the filter base
E >t — s is well defined. By virtue of (P2), the functiofi > t — V,(f, E[) €
[0, oo] is nondecreasing, and, hence, the limit in(Réists (in[ 0, oc]). Clearly,
this limit is < V,(f, E). On the other hand, due to (P5), for amy< V,(f, E)
there areq, b € E,a < b < s, such thatV,(f, E%) > «, which implies that
V,(f, E[) > V,(f, Eb) > o for anyt € EN]b, s [ # ¥, and the equality in (R§
follows.

(P6&) and the first equality in (R$ can be proved similarly.

(P6&s): In order to prove the second equality in gp,6ve apply (Pg) and (P8):

. I . e
Vp(f. Ey= lim V,(f.E,)= lim lm V,(f,(E,);) =
= lim lim V,(f, Eb).

E>b—s Esa—i

The last equality in (P§ can be proved similarly.
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(P7): Leta € R be such thatr < V,(f, E). From the definition oV, (f, E),
foranya < B < V,(f, E) there exists a partitiol = {1}, of E such that
Vo[ f, T1 > B. Consider the function

v,,:X’”H:Xx-“xX—HR
—— e’

m+1

defined by
U[)('xO’ xla et xm) = Zd(xh xi—l)p’ xO! xl! AR | xm E X'
i=1

Sincev, is continuous at every point of"** (to see this, it suffices to employ the
inequality |a” — b?| < pla — bla’~,a > 0,b > 0), it is continuous at the point
(X0, X1, -+, Xm) = (f(t0), f(t1), ..., f(tn)), SO that fore = B —«a > O thereis

as = 8(¢) > 0 such that if(yg, y1, ..., ym) € X"t andd(x;, y;) <68,i =0, 1,
. ,m, then
v, (X0, X1, v s Xm) — V(Y0 Y1y -+ 5 Ym)| S €= B —a.

From the pointwise convergence fyfto f one can find an intege¥ = N(§) € N
such that

d(fu@t), ft;)) <8 ¥Yn=N, Vi=01, ..., ,m.
Setting(yo, y1, -+ - » Ym) = (fu(t0), fu(t), ..., fu(tn)) @and noting that
vp(x0, X1, - .., xm) = V[, T, Vp (Y0, Y15 -+ o s Ym) = Vpl S, T,
we have
B2V, TI=Vplfu, T1+e = Vp(fu, E)+(B—a) Yn=N.
Therefore, inf.y V,(fu, E) > «, and, hence,nILrgoian(ﬁl, E) > «. Itremains to

leta gotoV,(f, E). O

REMARK 2.1 If f: E — Ris abounded monotoninction, then

Vo(f. E) = o(f, ) = (supf(o) - inf f))".

teE

To see this, let, b € E,a < b. Clearly, V,(f, E2) > | f(b) — f(a)|”, by (P1). On
the other hand, i = {#;}", € T(E?) andt € E? is such that;_; <t < ; for
somel < k < m, then, by virtue of the monotonicity ¢f we have

[ f(t) — G| =1f@) — fOI+ (@) = f(tr-1l,
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so that the equality2.1) implies thatV,[f, T U {t}] < V,[f, T]. By induction, it
follows that

VI, T1 < V[ fila, bl = 1f(b) — f(@I|” YT € T(ED),
and, hence,
Vo (f, E2) < |f(b) — f@)|" <o(f,E)’ VYa,beE,a<b.

Applying (P5), we arrive av,(f, E) < w(f, E)?, and, since the reverse inequality
is always true, by (P1), we are through.

REMARK 2.2 The constants in (P3) are sharp: indeedfif[ 0, 1] — R is defined
by f(t) = t for0 <t < 1, then we hav@'? < ¢ + (1 — )’ < 1, and
the left and right hand side equalities are attainedrat= 1/2 andr = 0, 1,
respectively. Another example is the functipn [0, 1] — R defined byf(r) =0
ifO0<t<1/3, f(t) =aif1l/3<t<2/3and f(t) =a+bif2/3 <t <1, for
appropriately chosen > 0 andb > 0.

It should be noted that, in generdV,,(f, T) > V,[f, T] for a finite setT if
p > 1. To see this, in the above example of the funcfién = ¢ on[0, 1] consider
T ={0,¢,1}with0 < r < 1. Then (see Remark 2.1):

VI TI=t" + A —0)P <1=V,(f.T).

REMARK 2.3 Property (F6;) is not true in general it € E, sinceV,(f, E) =
V,(f, E;); consider, for instancef : [0, 1] — R such thatf =0on[0, 1[ and
f (1) = 1. A similar remark applies to (&) and (FG6s).

REMARK 2.4 The inequality< in (P7) cannot be replaced by the equality even if
the convergence of, to f is uniform; for example, iff, (1) = | sin(2rnt)|/n*'?,

t € [0, 1], then £, converges uniformly t¢ = O, but V,(f,, [0, 1]) = 4. Note
that the sequencgf,} does not converge t¢g = O in the normed vector space
V,([0,1]; R), defined in section 7.

PROPOSITION 2.1 (minimality o¥,). Suppose that the map
W,,:XE x 2E = [0, 0]
satisfies, for allf : E— X and¥ # A C E, the following conditiongW,,( f, ¥)=0):

@d(f@), f(s)P <W,(f, A)forallt,s € A,
L)W, (f, A}) < W,(f, A) forall ¢, s € A suchthatr <s;
©@W,(f, A]) + W,(f, A) < W,(f, A) forall r € A.

ThenV,(f, A) < W,(f,A)forall f: E - XandA C E.



26 V.V. CHISTYAKOV AND O.E. GALKIN

Proof. Clearly, thep-variation V, satisfies the properties (a)—(c). Thusfif:
E— X, 0#ACEandT = {;,}"", € T(A), we have

VLTI =Y d(F ), f)” 2 3 Wo(f Al ) <

i=1 i=1
!
< W,(f, Ag) = W,(f, A),

and the proposition follows upon taking the supremum over all partiioasA.0

Property (P1) implies that a map of boundedariation is a bounded map in the
sense that its image has a finite diameter. The following proposition is a refinement
of this property.

PROPOSITION2.21If f e V,(E; X), then the imagef(E) C X is totally
bounded and separable. If, in additio, is complete, therf (E) is precompact
(i.e., the closure of (E) in X is compack

Proof. In order to prove thaj (F) is totally bounded, we have to show that for
everye > 0 the setf(E) can be covered by a finite number of balls fréfmof
radiuse centered atf (E). On the contrary, let > 0 be such thaif (E) cannot
be covered by finitely many balls of radigs Choose a sequende,};°, C E
inductively as follows: begin with anyy € E and setxy = f (), and having
chosenxo, x1, ..., x,-1 € f(E), pickx, € f(E)\ J_] B.(x;) whereB, (x;) =
{y e X :d(y,x;) <e}. Lett, € E be such that, = f(,), n € N. Since
d(x,,x;) > ¢ forn # k, we haver, # r.. Without loss of generality we can
suppose that,_1 < 1, for all n € N. Then, forT,, := {#;}/_, € 7 (E), we have

Vo (fs E) = V,If, Tl = ) _d(f @), f(ti-))? =) d(xi, x;1)" = me”.

i=1 i=1

Sincem € N is arbitrary, we infer thaV,(f, E) = oo, which is a contradiction.
A totally bounded set in a metric space is known to be separable, and precom-
pact if the metric space is complete. O

REMARK 2.5 If1 < p < ¢, thenVy(E; X) C V,(E; X) C V,(E; X) since, if
T = {;}", is a partition of E, then we have

m
q/p
<

VLE T =Y d(f @), fa-a)' = Y (d(f@w), fa-a)” ) =

i=1 i=1

m q/p
< (Zd(f(r», f<rl~_1>>f”) < (V,(f E)YI?.

i=1
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PROPOSITION 2.3If f € V,,(E; X) for somepy > 1, then

lim (V,(f, £))Y" = o(f, E) < cc.
p—00

Proof. Since the functionu(p) := (V,(f, E))l/”, p > po, is bounded from
below @ (p) > w(f, E), by (P1)) and nonincreasing (by Remark 2.5), it has a limit
asp — oo which we denote byw(c0), so thatv(co) > w(f, E). To prove the
reverse inequality, we note that fpr> pg and7 = {t;}/_, € 7 (E) we have:

Volf. T < (o(f. E))"° D d(f (), fti)? <

i=1
< (o(f. E))" "V,o(f. E),

which yields (after taking the supremum overe 7 (E))

V,(f, E) < (0(f, E))" V(. E).

It remains to pass to the limit gs— oo in the inequality

v(p) = (V,(f, )7 < (o(f, E)) "7 (Vo (f, E) Y.

3. A Structural Theorem

We recall that a may : E — X is Holderian of exponen® < y < 1 if there
exists a numbe€ € R such thad(f (1), f(s)) < C|t —s|” forall ¢, s € E. The
least number satisfying the above inequality is called tHélder constanof f
and is denoted byd (f).

The main result of this section is the following structural theorem.

THEOREM 3.1 The mapf : E — X is of boundedp-variation if and only if
there exist a bounded nondecreasing funcgon E — R and a Holderian map
g:9(E) — X of exponenyy =1/pandH(g) < 1suchthatf = gog@oOnkE.

Moreover, if X is a Banach space, the map: ¢(E) — X can be extended
to a Holderian mapg : R — X of the same exponemt = 1/p and the Holder
constantd (g) < 3"V H(g).

The proof of this theorem is contained in the following three lemmas. The first
lemma (sufficiency) gives a large number of examples of maps of boupded
variation.

LEMMA 3.2 If ¢ : E — Ris bounded monotone,: ¢ (E) — X is Holderian of
exponenty = 1/pandf = gog,thenf € V,(E; X).
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Proof. Suppose thap is nondecreasing. Since
p(ENla,b]) =¢p(E)N[¢a),pb)], a,beE,a=<b, (3.1)

by virtue of (P4) we have

Vo(f, ED) = Vy(g 09, ED) = V, (g, 0(ED) = V(3. 0(E)orL).
If T = {1}, is a partition of the set in (3.1), then

m

Volg, TI< H(@)" - Y (i —ti1) < H(Q)” - (9(b) — p(a)),
i=1

which implies that
V,(f, E?) < H(g)" - (p(b) — ¢(a)) Va,beE,a<b.

Now property (P5) and the monotonicity and boundednesgsyaéld

Vo(f B) < H(g)" - (Supe(n) = inf o(1)) = H(9)" - (@, E) < oc.

teE

The proof is similar ifp is nonincreasing. a

REMARK 3.1 In particular, if f : E — X is HOlderian of exponeny = 1/p
and E C Ris a bounded set, thefiis of boundedy-variation and

Vo(f, E) < H(f)? - (SUPE —inf E).

In the second lemma (necessity) we obtain the canonical decomposition of a
map of boundegb-variation.

LEMMA 3.3 Letf : E — X be a map of boundeg-variation. Then there exist
a bounded nondecreasing nonnegative funcgianE — R and a Hoélderian map
g : E1:= ¢(E) — X of exponenty = 1/p and the Holder constanti (g) < 1
such that

(@ f=gopONnE;

(b) g(E1) = f(E)in X;

(C) Vp(g’ El) = Vp(f’ E)

Proof. The functiong : E — R given bye(t) = V,(f, E[), t € E, is well-
defined, nonnegative, boundeg({) < V,(f, E)) and nondecreasing, due to (P2).
If © € Eq, denote byp=2(t) = {t € E : ¢(t) = 7} the inverse image of the
one-point sefr} under the functionp. We define the map : E; — X as follows:
if T € E; we set

g(t) = f(t) foranypoint e ¢ (7). (3.2)
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This is correct, i.e.f (¢) is one and the same elementofor all ¢ € ¢~(1), since
by virtue of (P1) and (P3), we have

d(f(s), fO)? < V,(f,E})) <@(s) —e(), tekE,sekE"; (3.3)
indeed, ift, s € ¢ (1), t < s, thenp(t) = © = @(s), so that (3.3) implies
f@) = f(s).

Now, the representation gf in (a) follows from (3.2), for ift € E, thent :=
¢(t) € E1andr € ¢~ (1), sothat (3.2) yieldg (1) = g(1) = g(¢(1)) = (gop)(1).
The assertions in (b) and (c) follow from (a) and (P4).

It remains to prove thag is Holderian. As in (3.1), we have

(E), =@(E;) forany teE; and te¢p (1),
so that applying (P4), we arrive at

V(8. (E1);) = V(8. 9(E ) =Vy(gop, EN) =V, (f. E) =) =T.
Hence, ifa, B € E1, @ < B, then, by virtue of (P1) and (P3), we infer that

d(g(B), g(@)” < V,(g, (EDE) < V,(g, (EDp) — V,(g, (E1),) = B — .

|

REMARK 3.2 Note that the mag in the proof of Lemma 3.3 satisfies the prop-
erty: ifa, B € E;andt € o (a), s € ¢~1(B), then

d(g(@), g(B)) =d(g(@(1)), g(p(s))) =d(f(1), f(5)).

REMARK 3.3 In the case, where : E — Ej is strictly increasing, it is a bijec-
tion, so that the equality = g o ¢ on E is equivalent to the equality = f o ¢!
on E, wherep~! : E; — E is the inverse function @f.

REMARK 3.4 An algebraic aspect in the construction of the map sucly &s
Lemma 3.3 was considered @histyakov(1997), Sec. 3.

LEMMA 3.4 Let X be a Banach spacg@ver the fieldR or C) andg : E; — X
be a Holderian map of exponefit< y < 1. Then there exists a Holderian map
2 : R — X ofthe same exponeptand H (g) < 37 H(g) such that the restriction
of g to E; coincides withg.

Proof. Since g is uniformly continuous orEj, it admits an extension to the
closureE, of E1, denoted by, such thag; : E; — X is Holderian of exponent
andH (g1) < H(g). We defineg to be equal tgg; on E1. The complemenR \ E;
of E1 in R is open, and, hence, it is at most a countable union of disjoint open
intervals] a, by[. On intervals] ay, b, [ with b, — a; < oo we defineg as follows:

_ g1(by) — galar)

e — an) , t€lag, bil.

gt =g1(ar) +a(t —a)”, ¢k :
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If ap = —o0, we setg(r) = g1(by) forall ¢t €] — oo, by ], and ifb, = oo, we set
2(t) = g1(ay) forall ¢t € [ay, ool.
If || - || denotes the norm X, then| ¢ || < H(g1) < H(g), and, hence, if
by — a; < oo, then for allt, s € [ ay, b, ] we have
lg®) —g@) Il =lexll -1t —a)’ —(s—a)’| < H(g) -t —sl|.
Note that ifa, = —oo (or by = 00), theng is constant orl — oo, b, ] (or on
[ak7 OO[)

It remains to verify thag is Holderian onR. There are three cases:l¥ Eq,
s € E;;2)teErs ¢ E;;3)t ¢ Er,s ¢ Eq. Case 1) is clear from the above.
In case 2), suppose thate]a, b; [ andb, < t. Using the triangle and Holder's
inequalities, we have

18 —g(s) I < Il g2(t) — g1(bi) I + 1l g1(br) — 8(s) || <
S H(@Q) (1 = b)) + (b —5)7) =
<2Y7H(g)lr —sI”.

In case 3), suppose thate]a,,, b, [, s €]lax, by [ andb, < a,,. Again, using the
triangle and Holder's inequalities, we infer that

8@ —g) Il = 181) — galam) | + Il g1(am) — g1(bi) || +
+ 1 81(be) —8(s) Il =
< H(Q) (1t —aw)” + (@n —b)" + (b — 9)") <
<3"7H(g)lt —s|".

The proof is complete. O

4. Continuity Properties

In this section we study continuity properties of maps of boungle@riation and
show that, in the large, these maps behave like maps of bounded variation with
p = 1, cf. Chistyakov (1997), Sec. 4, however, the proof technique is entirely
different.

In this section we assume th#tis a metric spacef : E — X is a fixed map of
boundedp-variation and the functiop : E — R is defined byp(r) = V,(f, E,)
fortr € E.

LEMMA 4.1 Lett € E be a limit point of the seE* (in what follows,+ and —
are concordant Thend(f(¢), f(s)) has alimitin[0,co[ asE > s — t £ 0.

If, moreover,X is complete, then, a8 > s — ¢t 0, f(s) has a one-sided limit
in X, denoted byf (¢+), andd(f(s), f(¢)) tends tad(f (tt), f(¢)) aSE > s —
t +0.
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Proof. Lett € E be a limit point of E;. If 51, 52 € E, 51 < 52 < t, then, by
virtue of (P1) and (P3), we have

d(f @), f(52) —d(f @), fs)I? < d(f (1), f(52))" < (4.1)
< V,(f, E2) < V,(f, E;) — Vo (fs E) = ¢(s2) — 9(s1).

Since the functiony is bounded and nondecreasing, the limifr—) :=
limgss——0 @ (s) exists and is equal to sGp(s) : s € E;, s # t}. The existence of
the limit of d(f(¢), f(s)) asE > s — t — 0 now follows from (4.1) and Cauchy’s
criterion in the complete metric spae

Now, let X be complete. 1%y, s, € E, s1 < s, < ¢, then, as above, we have:
d(f(s1), f(s2))? < @(s2) — ¢(s1), and, hence, Cauchy'’s criterion of the existence
of the limit f'(r—) applies in the complete metric spake It remains to note that,
askE>s —>1—0,

ld(f(s), f@) —d(f@—), fO)| =d(f(s), f(t=)) — 0.
The case, wheree E is a limit point of the seE;', is completely analogous.

REMARK 4.1 Note that ifr € E is a limit point of E;~, then, applying prop-
erty (P61) with the set; \ {¢} in place ofE;", we get

Volf ES NN = lim V(B \ (1)) =
= _lim V(L ED) = @)

E>s—t—

THEOREM 4.2 Let f : E — X be a map of boundeg-variation. Then(a) f is
continuous at the pointe E if and only if the functiorp is continuous at; (b) f is
continuous orE outside, possibly, of a subset Bfwhich is at most countable.

Proof. (a) The case, where € E is an isolated point o, is obvious (and
uninformative). Hence, in the rest of the proof we assume ahatE is a limit
point of E; moreover, we assume, in addition, that E is a limit point of each of
the sets£;” andE;".

Sufficiencyin (a) follows from the inequalities (cf. (4.1)):

d(f(@), f&)7 <V, (f, E) < @(t) —p(s), s€E,
d(f(s), ) < V,(f E)) < ¢(s) — @), s€E/ .
In particular, these inequalities imply that
LNm A0, £()) < () — =),
LNim d(f(s), f@0) < (@) — p@)™?.
35—t+0

Necessityn (a) follows from Lemma 4.3 below.

(b) This assertion is a consequence of the fact that a nondecreasing function
on E has at most countably many points of discontinuity and that, by (a), the sets
of discontinuity points off and the nondecreasing functigrare the same. 0O
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LEMMA 4.3 Letr € E be alimit point of each of the sef§ and E;". Then
0(t+) = 9a=) = p M(liMpsey0d (1), £(s) (4.2)
M o 0d (), £(1)),

whereM = M(f, p, E) i= (V,(f. )7 .
Before the proof of this Lemma a few remarks are in order.

REMARK 4.2 If X is a complete metric space, théh2) assumes the form
p+) —@—) = pMA(f (1), f(=) +d(f@+), f(?))).

If, moreover,p = 1, thenp(t+) — @(t—) < d(f @), f(t—)) +d(f(t+), f(1)).
In this case, the last inequality is, actually, the equality Ehistyakoy 1997,
Lemma 5.2(a,b)).

REMARK 4.3 If + = inf E € E is a limit point of E, then the inequality4.2)
holds if we replace the first limit by zero apdr—) by ¢(¢). If t € E is a limit point
of E;-, then(4.2) holds as well, if we replace the second limit by zero afich-)
by ¢ (¢). In particular, this remark and Lemma 4.3 imply thatfif: [a,b] — X
is a continuous map of boundegdvariation, then the functiop : [a,b] — R,
defined byp(t) = V,(f, [a,t]) fort € [a, b], is also continuous.

REMARK 4.4 The estimatg4.2) is “sharp” as the following example shows.
For0 < ¢ < ldefinef, : [0,2] — Rby: f,(#) = et if0 <t < 1and
fo) =1if1 <t < 2, and setp.(t) = V,(f.,[0,¢]) fort € [0,2]. Then
M= M(f., p,[0,2]) =1land
‘Pe(1+) - 905(1_) 1—¢?
= —
[fe(D) = [+ 1fe(AH) — fe(D]  1—¢ e>1-0

In order to prove Lemma 4.3, we need one more lemma.

p=pM.

LEMMA 4.4 If a,s, b € E, then
d(f(b), f(a)” =d(f(s), f(a)” + p Md(f(b), f(s)),

whereM is the same as in Lemn4a3.
Proof. Sinced (f (b), f(a))?~* < M by (P1), it suffices to prove that

d(f(b), f@)’ <d(f(s), f(@)” + pd(fb), (@) -d(fb), f(5)),
or, equivalently, that

d(fb), f@)P~t-1d(fb), f(@) = pd(fb), f(s))] (4.3)
=d(f(s), f@)”.
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If the expression in square brackets in (4.3)is0O, then we are through. Now
suppose that the...] > 0. We note that the left hand side in (4.3) is less than or
equal to

-1
(ar @), fe) +df6), r@)) - [df®). f6) + (4.4)
+d(£(5), f(@) = pd(f®), f(5))]:
Settingu = d(f(b), f(s)) andv = d(f(s), f(a)) and taking into account that

(u+v)—vf = fu+upé”_1d§ < pu(u+v)’
we have the inequality
u+v)P Hu+v—pu] <v?,
which, together with (4.4), proves (4.3). O
Proof of Lemma 4.35et
A= Ealsiintfod(f(t)’ f(s)), B= EalsiLnt+0d(f(S)’ f ().

Lete > O be fixed. Choosey, bg € E, agp < t < bg, such that

ld(f(@), f(s)) — Al <e Vse E,ap<s <t, (4.5)
ld(f(s), f(t)) — B| <¢ VseE, t<s <by. (4.6)
LetT ={fp <11 < ... < t,_1 < t,} be a partition of the sek, with the

property (from the definition op(bo) = V,(f, E}))

o(bo) —& < V,[f, T). 4.7)

First of all, we consider the case, whese< ¢ < t,. There are two cases:
Nr¢T,andIl)r € T.

) Letr ¢ T. Thereisa € {1, ... ,m} suchthat, ; <t < #, so that we
have

k-1

VoA T = ) _d(f(t), fi-))’ +d(f (), f(t-)’ +

i=1

+ ) d(f @), f6))’ <
i=k+1
o(ti_1) +d(f (W), 1)’ + V,(f, E) <

< oti—n) +d(f (), f(t-1)’ + @(bo) — @(t+); (4.8)

IA

A
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here we have used the},(f, E.°) < ¢(bo) — (1) < @(bo) — @(t+). We have two
cases: a)p < f;_1, and b),_1 < ao.
a) If ag < 1,_4, then, taking into account (4.5) and (4.6), we have

d(f ), ft-))? = d(f ), ft-))? ™t d(f W), f(ti-1) <
< MLA(f (@), (1) +d(f W), F()] < M(A+e+ B+e).

By virtue of (4.8), it follows that
VolfiTI < o(t—) + M(A+ B + 2¢) + ¢(bg) — ¢(t+). (4.9)

b) If #x_1 < ap, then, using Lemma 4.4 with = #,_1, s = ag andb = ¢, and
using (4.5) and (4.6), we have

d(f (), f(t-1)" = d(f(ao), f(t-1))" + p Md(f (%), f(ao)) =
=d(f(ao), f(t-1)" + p M[d(f (1), f(a0)) +d(f @), f(t)] =
= d(f(ao), f(x-1)" + p M(A + B + 2¢).

By virtue of (4.8), it follows that

A

Vplfi T] = ¢(t-1) +d(f(a0), f(t-1))" + p M(A+ B + 2¢) +
+o(bo) — ¢(t+) <

< @(ag) + p M(A + B + 2¢) + ¢(bo) — (t+) =
< @t—)+ pM(A+ B+ 2¢) + ¢p(bo) — @(t+). (4.10)
I) Now we consider the second case: suppose that 7. There is ak €
{1, ... ,m — 1} such that = ¢, so that we have
k—1

VoL, T1 = ) d(f (@), f@0))’ +d(f @), fi-1)” +

i=1

Hd(f (tes), FO)” + Y d(f(#), f(tiip)” <

i=k+2
P(tr—1) +d(f (1), ftr-1)” +
+d(f (tern), FO) T d(f(tin), £©) + @(bo) — @(t+) <
o(tr—1) +d(f (), f(ti-1)” + M(B + ¢€) + ¢(bo) — ¢(t+),
(4.11)

A

A

where in the last inequality we have used (4.6). As above, we have two cases:
a)ag < t,_1, and b)y,_1 < ao.
a) If ag < 1,_4, then, taking into account (4.5), we have

d(f@), ft—))” =d(f (), f(te_))? - d(f (1), f(tr1) < M(A +¢).
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By virtue of (4.11), it follows that
Volf, T < o(t—) + M(A+ B + 2¢) + ¢(bg) — ¢(t+). (4.12)

b) If #x_1 < ag, then, using Lemma 4.4 with = ¢, 1, s = ag andb = 1, = ¢,
and using (4.5), we have

d(f (@), f(-1)" = d(f(ao), f(t-1)" + p Md(f (1), f(ao)) =
=d(f(ao), f(tk-1)" + p M(A +¢).

By virtue of (4.11), it follows that

Vplfi T1 = @(ti-1) +d(f (a0), f(t-1))” + p M(A +¢) +
+M(B + &) + ¢(bo) — @(t+) <
< @(t—=)+pM(A+ B+ 2) + ¢(bg) — p(t+). (4.13)

Therefore, from (4.9), (4.10), (4.12), and (4.13), we infer that in both cases I)
and Il) we have the inequality

Vol £ T1 = @(bo) +¢(t—) —@(t+) + p M(A + B + 2¢).
Taking into account (4.7), we find that
p(t+) —pt—) < pM(A+B)+e(1+2pM) Ve=>0.

Now, it is clear from the above that the last inequality can be similarly proved
ifr<rore, <t. O

5. Paths Of Minimal p -Variation

Let E = [a, b ] be a compact interval iR. We denote by’ the set
{T={ti}"gCla,bl:meN a=tg<t1 <--- <ty_1<t,=>b}
of all partitions off a, b ] containing points: andb and we set
V() =sup V,[f. T]1: T e 7/}

Clearly, V7 ,(f) = V,(f.[a,b]).

We denote bye ([ a, b ]; X) the set of all continuous maps from, b ] into the
metric spaceX. A pathin X is a continuous may : [a, b] — X its trajectory
is the imagef ([a, b1) which, as is well known, is a compact subset’df The
domain[a, b ] of f is called aset of parametersn (of) the path, in which case we
also say that the path arametrizedby the intervall a, b ]. Two pointsx, y € X
are said to beonnected by a patim X if there exists a patlf : [a,b] — X such
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that f(a) = x and f(b) = y, in which case we say that is apath between
andy.

The following theorem asserts the existence of a Holderian geodesic path be-
tween two points with respect to thevariation, and it extends the results which
were previously given for paths in the cage= 1 (see Busemann, 1955, Ch. 1,
(5.18), and, for a more precise statement, Chistyakov, 1997, Theorem 6.1).

THEOREMSb5.1 Let K be a compact subset &f andx, y € K. If there is a
path in K betweenx and y of finite p-variation, then the points and y can be
connected irK by a Holderian path of exponept = 1/p of minimal p-variation.

Proof. The theorem is clear if = y. Hence we suppose that# y. Since any
path f : [a,b] — X can be replaced by a path of the sapigariation (and the
same trajectory) and the set of paramef{disl] (see (P4)), it suffices to restrict
our consideration to paths defined [ 1]. Thus, consider the set of pathsknh
defined o 0, 1] and connecting the pointsandy:

Wx,y)={f€C(0,1];K): f(O) =x, f(D) =y},
and set

e=inf{Vg,(f): f €Wyl
By the assumptionW (x, y) contains a pattyy of finite p-variation, so that <
Vofp(fo) is finite. On the other hand, by virtue of (P1), for afiye W(x, y) we
have

Vo, (f) = d(f(0), f(D)” =d(x,y)” >0, (5.1)

so that¢ > d(x, y)”. Sincel < oo, there exists a sequen¢g,}> , in W(x, y)
such that

lim ¢, =¢, where ¢,=Vy,(f,) >0 by(5.1)

n—oo

The existence of the last limit implies thatiif = sup,.y £,, thenL is finite > 0,
so that the sequendg,,} is of uniformly boundedy-variation. By Lemma 3.3, for
anyn € N there exists a path, : [0, £, ] — X with the properties

d(gn (@), .(B) <l — BIY?, &, B €[0,4,],

fa=giog, on [0,1], where ¢,(t) =V, ,(fu), t€[0,1],

and! in partiCUIar!gn(O) = fn(o) = X, gn(zn) = fn(l) = gn([oa £, ) =
fn([ovl]) C K and Voe,np(gn) = V(;I:p(fn) = gn- If we Sethn(f) = gn(fgn)v
7 € [0, 1], then we have

h, € W(x, ),
VO%p(hn) ={¢,—> € as n— oo (by(P4))
d(hn(@), hy(B)) < ()YPla — BIYP < LYP|la — BIYP,  «, B €[0,1].
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It follows that the sequencg:,};2; C C([0, 1]; K) is equicontinuous, so that by
Ascoli-Arzela’s theorem (cf. Folland, 1984, p. 131, Theorem (4.44)), it has a subse-
quencelh,, }7°, which converges uniformly op0, 1] to a maph € C([0, 1]; K).

It is clear thath € W(x,y), andh is Holderian of exponenyy = 1/p and
H(h) < LY. From (P7) we infer that

1 . . l _ . _
Vo, (h) < |I][Tllor2f Vo, p(hn) = kll_)moo Ly, = L.

It remains to note that from the definition 6fwe havel < Vofp(h), so that¢ =
Vo, ,(h), which was to be proved. O

6. Helly’'s Selection Principle

The main result of this section is the following compactness theorem relative to
the p-variation, which, in the theory of mappings of bounded variation (i.e., when
p = 1), is known asE. Helly’s selection principldcf. Natanson, 1965, Ch. 8,
Sec. 4, Helly's theorem, and more recently Chistyakov, 1997, Sec. 7, theorem 7.1).

THEOREM 6.1 Let K be a compact subset of the metric spateand ¥ C
C([a,b]; K) be an infinite family of continuous maps from the interyal b |
into K of uniformly boundeg-variation, that issup;. » Va’fp(f) < 00. Then there
exists a sequendg, }°2 ; of maps from# which converges pointwise ¢a, b ] to
amapf :[a,b] — K of boundedp-variation.

Moreover, if X is a Banach space, then the assumption of continuity of the
family £ is redundant.

Proof. Step common pait By Theorem 3.1, any map € ¥ can be written
in the form f = gr o @r 0n[a,b], wherep,(t) = ch’p(f), a <t <b,and
gr: Eif = ¢s([a,b]) — K is Holderian of exponent = 1/p andH(gs) < 1.
Note thaty ; is nondecreasing, nonnegative anda) = 0. The family of nonde-
creasing functiong ¢, : f € F} is infinite and uniformly bounded ofu, b |,
sincew(py, [a,b]) = ¢s(b) = V! (f), and, hence, by the well known fact
(Natanson, 1965, Ch. 8, Sec. 4, Lemma 2), it contains a sequence of functions
{@a}52,, corresponding to the decompositiofis = g, o ¢, (i.e., ¢, = ¢y, and
gn = &y,) foralln e N, which converges pointwise dnz, b | to a nondecreas-
ing (and bounded) functiop : [a,b] — R. Lett = V) (¢) = ¢(b). Then
0<t<oo,andift, =V, (f)) = V., (@) = ¢u(b), thent, — £ asn — oco.

Step 2 Suppose that the famil§ consists of continuous maps. Sinfee ¥
is continuous, is continuous as well, so that the Holderian mgpis defined
onEy, = ¢,((a,b]) = [0,¢,]. If £, > ¢, then we consideg, only on the
segment 0, ¢], and if¢, < £, then we exteng,, to ]1¢,, £] by settingg, () =
gL, forall T €]¢,, £]. By Ascoli-Arzela’s theorem, the sequence of Holderian
mapsg, : [0,£] — K of exponenty = 1/p and H(g,) < 1 is precompact
in €([0, ¢]; K), so that it has a uniformly convergent subsequefagelre ;. Let
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g be the uniform limit of{g,, }. Clearly,g : [0, £] — K is Holderian of exponent
y = 1/pandH(g) < 1, so that, by virtue of Lemma 3.2, the composed map
f=gog:[a b]— Xisof boundedp-variation. Now, ift € [a, b ], we have

d(fu (1), 1) = d((gn, 0 Pu) (@), (g 0 ) (1)) <
< d(8n (@n, (1)), 8n, (@(1))) + d(gn, (@(1)), g(e(1))) <
< @n, (1) — eOIMP + d(ga (1)), g(p(1))).

Since the terms in the last sum tend to zeré as oo, the sequencgf,, 172, C F
converges pointwise oz, b ] to f.

Step 3 Let X be a Banach space arfd be an infinite family of maps from
[a,b] into K of uniformly boundedp-variation. We again use the reasoning of
step 1. Note that in this cage, = ¢,([a,b]) C [0, £,]. If L = sup,.y €., then
0<L <ooand? = lim,_ ¢, < L. Denote byg, the restriction tq 0, L ]
of the mapg, given by Lemma 3.4. By Ascoli-Arzela’s theorem, the sequence of
Holderian mapsg;, : [0,L] — K of exponenty = 1/p and H(g,) < 37
has a uniformly convergent subsequefigg }72 ;, whose uniform limit we denote
by 2. It is clear thatg : [0, L] — K is Holderian of exponeny = 1/p and
H() < 37. Let E; = ¢([a, b)), and letg be the restriction of to E;. By
virtue of Lemma 3.2, the map = go ¢ : [a,b] — K is of boundedp-variation.
Now, if t € [a, b ], then, as at the end of step 2, we have

d(fu, @), f() = d (&, (@, (1)), E(p(1))) <

< 37 YPg (1) — e OIY? +d(Gn (9(1)), Z9(1))),
which completes the proof. i

REMARK 6.1 We do not know if the condition® < K[¢?! whereK c X
is compact” in Theorem 6.1 can be replaced by a weaker condition: “for every
t € [a,b]the sectionF (t) ={ f(t) € X : f € F }is precompact inK".

REMARK 6.2 Note that the continuity of the familf does not, in general, imply
that the resulting map of boundedvariation f is continuous.

7. Maps Valued In A Normed Vector Space

In this section we assume thitis a normed vector space over the fi&gld= (R or
C) with the norm|| - || and, as usualj # E C R. Naturally, X£ becomes a vector
space (oveK) with respect to the pointwise operations:

(f+@®) =fO)+g@), ) =cf@), frge X" ceK teE.
The spaceX” is endowed with the functional

IFI =1 f@ I+ (V,(f, ENY?, ac€E fixed, feX".
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PROPOSITION 7.1 (aJhe functional| - I - XE — [0, oo] is apseudonorm
on X £ (i.e., it satisfies the axioms of a norm and possibly takes infinite Jalues
(b) If (£}, € X, f € XPand|| f, — fII; — Oasn — oo, then
V,(fa, E) tends toV,,(f, E) asn — oo, if, moreover{ f,}>, C V,(E; X), then
SUR,en Vp(fn, E) <ocand f € V,(E; X).
Proof.(a) Let f, g € X andc € K. First, note that (P1) implies that

IFOI <1 f@ll+V(fL ENYP =1 fI;, VieE. (7.1)

The other two axioms of a norm are consequences of the (in)equalities

(Vplef, TDY? = |el(V,[f, TDHY?,
Vol f +& TDHY? < (V,[f, THY? + (V,[g, TDY?,

T € T(E),

the last one following from the triangle and Minkowski’s inequalities.
(b) For allz € E we have| f,(t) — f@) | < I fu — f I}, > 0asn — oo, so
that

(V,(f, ENY? < liminf(V,(f,, E)Y?, by (P7)
On the other hand, for ai ¢ N

(Vp(fus ENYP < (Vyp(fu = f ENYP + (V, (f, ENYP <
=

7.2
I fo = F 115+ (V,(f, ENYP, (7:2)

whence

lim sup(V,, (£, ENY? < im || fu = f 11} + (Vo (f. ENY? = (V, (£, ENYP.
Therefore(V,(f, E))Y? = lim, oo (V,(fu, E))Y?.
Suppose now that, € V,(E; X), n € N. From (7.2) withf = f; we have, as
n,k — oo,

|V (fur ENYP = (Vo (f ENYPL < fu = FI+ 1 f = fill = O,

so that{(V,(f,, E))¥?}>, is a Cauchy sequence & and, hence it is bounded
and convergent. The inclusiof e V,(E; X) is then obvious. O

PROPOSITION 7.2The restriction of| - I, 0V, (E; X) isanormonV,(E; X),
and V,(-, E) is a continuous functional ofv,(E; X). If, in addition, X is a
Banach space, the®,(E; X) is also a Banach space with respectjtol]},.

Proof. It suffices to prove thaV,(E; X) is complete. Le{ f,} > ; be a Cauchy
sequence iV, (E; X). From (7.1) we havé f,(t) — fi(O) || < |l fu — fx I for all
t € E andn, k € N. SinceX is complete, there exists a mgpe X£ such thatf,
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converges tgf pointwise onE asn — oo. Sincef, — fi — f, — f ask — oo,
by virtue of (P7), we have

I fo— S, < |i][lli£f I fo = ficll, = lengo I fu— fill, VneN
Thus, using the fact thdtf, }°2 , is Cauchy, we have

limsupl| £, — £ 1% < lim lim | f, — fi I, =0,
—00

100 T n—oo k

so that|| f, — fII;, — 0 asn — oo. By Proposition 7.1(b) it follows thaf e
V,(E; X). O

PROPOSITION 7.3Let f € V,([a,b]; X). Then, for allz € [0, b—a ], we have

b—h b
[usaem—rwira= [ 170 re—mira<avi, o,
a a+h
Proof.Leth € [0,b —a]. Sincea <t <t+h <bforallt € [a,b—h], by
virtue of (P1), (P3), and (P2), we have

| f@+h) = fFOIP < V) < VIR = Vi () S V2L ().

It follows that the function[a,b — h] > t — || fGt+h) — f@) P € R} is
bounded, and continuous almost everywhere (due to Theorem 4.2(b)), so that it is
Riemann integrable ofu, b — h ] thanks to Lebesgue’s criterion. Now it suffices

to integrate the second inequality above:

b—h b b—h
[isesem=sawa < [ vipa- [ v s
a a+h a

b

< / Vi, (fdi <hV! (). O

b—h

REMARK 7.1 Proposition 7.3 means that a mapf of boundedp-variation is
continuous inL?. If p = 1, the inequality in Proposition 7.3 gives weak (al-
most everywhere) differentiability of maps of bounded variation i§ a reflexive
Banach space (searbu and Precupan@978 Ch. 1, Sec. 3, andomurg 1967).
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8. Selections Of Set-Valued Maps

We start by recalling definitions of théausdorff distancendthe set-valued maps
(for detailed exposition see Aubin and Cellina, 1984, Ch. 1, Sec. 1, Sec.5, and
Castaing and Valadier, 1977, Ch. 2, Sec. 1).
Given two nonempty subsets, B C X of a metric spacé€X, d), the excess
of A over B is defined by

e(A, B) = supdist(x, B) = sup infd(x, y) € [0, c0]
x€A X€A yeB

and theHausdorff distance betweetand B is defined by
dy(A, By =maxe(A, B),e(B, A)}.

If A, B, C C X are nonempty, then we haw€A, B) = 0 if and only if A is
contained in the closure &, ande(A, B) < &(A, C) +e(C, B), and, hencedy is
apseudometrion the set of all nonempty closed subsetXof.e.,dy satisfies the
usual axioms of a metric and possibly takes infinite values. Thedpap ametric
on the set of all nonempty closed bounded subsel, o the set of all nonempty
compact subsets df and, if X is bounded, also on the set of all nonempty closed
subsets ofX.

Let E and X be two metric spaces;2be the set of all subsets af and2X =
2%\ {#}. A set-valued map front into X isamapF : E — 2X, sothatF(r) C X
for everyr € E. Thegraph of Fisthe set GtF) = {(t,x) e Ex X : x € F(¢) }
and therange of F is the setR(F) = |, F(1).

The set-valued map : E — 2% is said to be

(a) Hausdorff continuous at, € E if for any ¢ > 0 there exists$ = §(s) > 0
such thatdy (F(¢), F(tg)) < ¢ for all t € E with dg(z, to) < §; Hausdorff
continuous OrE if it is so at everyr € E;

(b) Holder continuous of exponefit< y < 1on E if, for someL > 0 and all
t,s € E,dg(F(t), F(s)) < L(dg(t,s))”; the leastL is called theHo6lder
constant ofF and is denoted by7 (F). If y = 1, F is also called_ipschitz
continuous onE and H (F) is called thelLipschitz constantind is denoted
by Lip(F);

(c) compact-valuedf F(¢) is a compact subset &f for everyr € E;

(d) compactif its graph GKF) is compact inE x X (and, hencefF is compact-
valued, but not vice versa);

(e) of boundedp-variation onE =[a,b] C Rif

VP (F) :=SUR Vy,[F.T]: T € 7} < oo,

where

m

Vi lF. T1= 3 (du(F @), F(t-1))

i=1

p
ab.
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if p =1, F is also called a mapf bounded variation
() absolutely continuous o = [a,b] C R if for eache > 0 there exists
8§ = 8(e) > 0 such that if{]1a,, b, [}, is a finite collection ofdisjoint

subintervals of a, b ] with the propertyz,’:’:l(bn —a,) <34, then

N
> " du(F(by), Flay)) <.

n=1

The mapf : E — X is said to be arégular) selectionof a set-valued map
F:E— 2Xif f(r)e F(r)forallr € E.

It is known that a compact-valued set-valued niap E — 2% is Hausdorff
continuous orE if and only if it is both upper semi-continuous and lower semi-
continuous at every poiny € E (cf. Aubin and Cellina, 1984, Ch. 1, Sec. 5,
Corollary 1).

In what follows, we assume th@ = [a,b] C R. To contrast our first result
of this section (Proposition 8.2) with the known cgse= 1, we recall the fol-
lowing theorem (in order not to break the exposition we postpone comments to
Theorem 8.1 until Remark 8.2, p. 44):

THEOREM 8.1 Let X be a Banach space; : [a,b] — 2¥ be a compact set-
valued mapiy € [a, b ], xo € F(tp) andp = 1. Then

(a) if F is Lipschitz continuous ofu, b ], there exists a Lipschitzian mgp:
[a,b] — X, aselection ofF, such thatf (rg) = xo andLip(f) < Lip(F);

(b) if F is continuous ofia, b ] of bounded variation, there exists a continuous
map f : [a,b] — X of bounded variation, a selection @, such that
f(to) =x0andVy (f) < V/1(F);

(c) if Fis of bounded variation opa, b ] and the rangeR (F) of F is contained
in a convex compact subset &f there exists a mag : [a,b] — X of
bounded variation, a selection @, such thatf (tp) = x¢ and Valtl(f) <

vjjl(F). 0

Opposite to Lipschitz continuous maps, Hoélder continuous maps of exponent
0 < y < 1do not in general, have continuous selections as the following proposi-
tion shows.

PROPOSITION 8.2 There exists a Holder continuous, of expongntor every
0 < y < 1, compact set-valued map : [—-1,1] — 2R (and, henceF is
Hausdorff continuous of boundeghvariation with p = 1/y) which admits no
continuous selection.

Proof. The example below is a modification of Example 1 from (Aubin and
Cellina, 1984, Ch. 1, Sec. 6). Lét = {(x,y) € R? : x? + y? = 1} be the unit
circumference irR? and

A@) ={(x,y) e R? : x = cosh, y = sinb, a(t) < 6 < a(r) + 28() },
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wherea(t) = 1/|t] andB(t) = e~/ for ¢ # 0. DefineF : [—1, 1] — 2% by

C\A if 0
F) = \ (t)f t #0,
C if +=0.

Fort # 0, F(¢) is the unit circumference iR? from which a section from the angle
a(r) to the anglex(r)+28(¢) is removed. As gets smaller, the arclength of the hole
decreases while the initial angle increases 4sg,li.e., the hole spins around the
origin with increasing angular speed. Any continuous selecfigh = (x(¢), y(¢))
defined or{—1, 0[ oron]0, 1] (for instancex(¢) = cog1/[t|), y(¢) = sin(1/[t]))
cannot be continuously extended to the whplel, 1]. In fact, the hole in the
circumference would force this selection to rotate around the origin with an angle
0o(t) betweenx(r) +28(r) anda (r) + 27 and the limits lim_, .o £ (¢#) cannot exist.
However,F is Holder continuous ofi-1, 1] of exponenty for every O<y < 1.
To see this, let < s < ¢ < 1. Since the length of the chord is less than the length
of an arc it spans, we have the estimate

dy(F(t), F(s)) < minfa(s) —a(t), B@) }.

The inequalityx (s)—a(t) < B(¢) is equivalent to the inequality > 7 /(1 + t8(t)) =: so(2),
so that
B) if 0 <s <s0(t),
du(F(), F(s)) < { 1

—— — if so(t) <s <t
st

If0 < s < s9(2), then we have
dy (F(1), F(s)) - B(1) - B(1)

(t—s)y 7 (t=s5)7 " (t=s0(1))” (64
1-y
= PO " atmsay.
If so(t) < s <t, then we have
dy(F(t), F(s)) < _tTs (t — so(t)™ (8.2)
(t —s) = ts(t —s) T tso(t) '
Ba)H7

= T(l‘i‘fﬂ(ﬂ)y'

The function in the right hand sides of (8.1) and (8.2) tends to zero-as—+0,
hence it is bounded for & ¢ < 1 by a constanM (y) depending ory.
Now, if 0 < ¢t < 1, then

dH(F(t),F(O))<ﬂ(t)
24 - v

< Mq(y).

The cases-1 <t <s < 0and—-1 <t < 0 are similar. O
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REMARK 8.1 It is an open question whether a set-valued map of bounded
variation withp > 1(in particular, a Holder continuous map of exponént y =
1/p < 1) admits a selection of boundgdvariation. The result of Proposition 8.2
might mean that the answer to this question is negative.

To end this section, we are going to supplement Theorem 8.1 with one more
result on the existence of selections which was not explicitly given in (Chistyakov,
1997, Sec. 9).

THEOREM 8.3 Under the conditions of Theore®l, if F is absolutely continu-
ous on[ a, b ], then there exists an absolutely continuous nfap[a,b] — X, a
selection ofF', such thatf (tg) = xo.

Proof. First, we note that ifp(r) = V, ,(F), t € [a,b], theng is absolutely
continuous o a, b]. In fact, givene > 0, there is§ = §(¢) > 0 such that
if {1an, b, [},_, is a finite collection of disjoint subintervals ¢t, »] with the
property>"™ . (b, — a,) < 8, thenY . dy (F(b,), F(a,)) < &/2. For each: €
{1, ..., N}letT, = {1,;}i"y € T.> be a partition of a,. b, ] such that

V. (F) < VyalF, T,] + (¢/2N).

SinceXN S (i — tii) = XN (b, — a,) < 8, e infer that

N N N
D o) =@l =YV, (F) <Y VyalF, T+ (6/2) =
n=1 n=1 n=1
N k,
=YY du(F(ta), F(tai 1)) + (€/2) < (e/2) + (¢/2) = &.
n=11i

=1

Now, by virtue of Lemma 3.3 (wittp = 1) we have the decompositiafi =
Gogonla,b], whereG : [0,£] = ¢([a,b]) — 2Xisa Lipschitz continuous
set-valued map such that= Valjl(F) < oo and Lip(G) < 1. SinceF is compact,
G is compact as well. Noting thaty € F(f9) = G(t0) With 19 = ¢(zp), by
Theorem 8.1(a) we find a Lipschitzian map [0, £] — X such thatg(zp) = xo,
g(t) e G(r)forallT € [0, £], and Lipg) < Lip(G) < 1.

Set f = g o ¢. Sincey is absolutely continuous ang is Lipschitzian,
f:[a,b] — X is absolutely continuousf (rg) = xo and f(t) = g(p@®)) €
G(p(t))=F(@)forallt € [a,b]. O

REMARK 8.2 Theorem 8.1 generalizes the result$ieirmeq1971) andKikuchi

and Tonita(1971) to nonconvex-valued infinite-dimensional set-valued maps. Part (a)
in Theorem 8.1 is due tdordukhovich(1988, Supplement, Theorem 1.8, where he
also proved that under conditions of part (b) there exist®atinuousselectionf

of F. Part (b) in Theorem 8.1, which refines the last assertion, and part (c) were
proved byChistyakov (1997, Theorem 9.1. Theorem 8.3 is a generalization of
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Lemma 1 byZhu Qiji (1986, which was proved in the finite-dimensional case
X = RY (d € N). Finally, recall that there are compact continuous set-valued
mapsF : [0, 1] — 2R" without continuous selections (selermes(1971), Aubin
and Cellina(1984), Ch. 1, Sec. 6, and Proposition 8.2 above).
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