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Abstract. This paper addresses properties of maps of boundedp-variation (p > 1) in the sense of
N. Wiener, which are defined on a subset of the real line and take values in metric or normed spaces.
We prove the structural theorem for these maps and study their continuity properties. We obtain
the existence of a Hölder continuous path of minimalp-variation between two points and establish
the compactness theorem relative to thep-variation, which is an analog of the well-known Helly
selection principle in the theory of functions of bounded variation. We prove that the space of maps
of boundedp-variation with values in a Banach space is also a Banach space. We give an example
of a Hölder continuous of exponent 0< γ < 1 set-valued map with no continuous selection. In the
casep = 1 we show that a compact absolutely continuous set-valued map from the compact interval
into subsets of a Banach space admits an absolutely continuous selection.
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1. Introduction

The purpose of this paper is to obtain properties of maps of boundedp-variation
in the classical sense of Norbert Wiener (cf. Wiener, 1924, and Young, 1937).
Consider a mapf : E → X of boundedp-variation (see Sec. 2) defined on the
nonempty subsetE of the realsR with values in the metric or normed spaceX.
If p = 1, the properties of the variation in the sense of C. Jordan (cf. Schwartz,
1967) were recently studied by the first author (Chistyakov, 1992 and 1997). Here
we concentrate mainly on the case wherep > 1. If X = R , p = 1 andE is a
closed bounded interval[ a, b ] or an open interval] a, b [, then,f : E → R is a
function of bounded variation if and only if it is the difference of two bounded non-
decreasing functions (Jordan’s decomposition); see, e.g., Natanson (1965), Ch. 8.
However, this criterion is inapplicable ifp > 1, to say nothing of the case where
X is a metric or a normed vector space.

If p > 1 andX is a metric space, we show thatf : E→ X is a map of bounded
p-variation if and only if it is the composition of a bounded nondecreasing function
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20 V.V. CHISTYAKOV AND O.E. GALKIN

ϕ : E→ R and anX-valued map defined on the image ofϕ and satisfying a Hölder
condition of exponentγ = 1/p and the Hölder constant≤ 1 (Sec. 3). We point out
that no special structure of the domainE, such as connectedness (open and closed
intervals, etc.), is needed to obtain the properties of maps of boundedp-variation.
In this way, we establish the general properties of these maps in Sec. 2 and the
continuity properties in Sec. 4.

With the decomposition theorem at hand, in the case of the compact metric
spaceX we prove that there always exist Hölderian geodesic paths (relative to
the p-variation) between two points ofX if there is at least one path of finitep-
variation connecting these points (Sec. 5), and that any infinite family of maps of
uniformly boundedp-variation admits a sequence which converges pointwise to a
map of boundedp-variation (Helly’s selection principle, Sec. 6).

In Sec. 7 we obtain additional properties of maps of boundedp-variation with
values in normed vector spaces. In particular, we prove that ifX is a Banach space,
then the space of maps of boundedp-variation is a Banach space as well.

Finally, in Sec. 8 we treat set-valued maps (or multifunctions) of boundedp-
variation. We show that a Hölder continuous of exponent 0< γ < 1 set-valued
map may have no continuous selection. In the casep = 1 we prove that any com-
pact absolutely continuous set-valued map from the compact interval into subsets
of a Banach space admits an absolutely continuous selection.

2. Main Properties Of The p -Variation

2.1. NOTATION AND DEFINITION

Throughout this paper we exploit the following notation:∅ 6= E ⊂ R , E−t = { s ∈
E : s ≤ t } andE+t = { s ∈ E : t ≤ s } if t ∈ E, Eb

a = E+a ∩E−b = (E+a )−b if
a, b ∈ E, a ≤ b (in particular,[ a, b ] = R

b
a ), X is a metric space with a fixed

metricd = d( · , · ), XE is the set of all mapsf : E → X from E into X. Given a
mapf ∈ XE, we denote byf (E) = { f (t) : t ∈ E } the image off in X and by
ω(f,E) = sup{ d(f (t), f (s)) : t, s ∈ E } the diameter of the imagef (E) (or the
oscillation off onE). The compositionf ◦ϕ : E1→ X of two mapsf : E → X

andϕ : E1 → E is defined as usual by(f ◦ ϕ)(τ) = f (ϕ(τ)) for all τ ∈ E1. In
what follows,p is a fixed number, 1< p < ∞. We writeA := B or B =: A to
indicate thatA is defined by means ofB.

DEFINITION 2.1 We denote by

T (E) = { T = {ti}mi=0 ⊂ E : m ∈ N ∪ {0}, ti−1 ≤ ti , i = 1, . . . ,m }
the set of all partitions ofE by finite ordered collections of points fromE. Given a
mapf : E→ X and a partitionT = {ti}mi=0 ∈ T (E), we set

Vp[f, T ] =
m∑

i=1

d
(
f (ti), f (ti−1)

)p
,
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ON MAPS OF BOUNDEDP -VARIATION WITH P > 1 21

where

d
(
f (ti), f (ti−1)

)p =
(
d
(
f (ti), f (ti−1)

))p

,

and defineVp(f,E) by

Vp(f,E) = sup{Vp[f, T ] : T ∈ T (E) }.
The quantityVp(f,E) ∈ [0,∞] is called the totalp-variation of f on E. If
Vp(f,E) <∞, the mapf is said to be of boundedp-variation. The set of all maps
of boundedp-variation fromE into X is denoted byVp(E;X). If ∅ 6= A ⊂ E,
we setVp(f,A) = Vp(f |A,A), wheref |A is the restriction off to A. We also
setT (∅) = ∅ andVp(f,∅) = 0 (so thatsup∅ = 0). The mapVp : XE × 2E →
R
+
0 ∪ {∞} is called ap-variation.

The above definition ofVp(f,E) was introduced by Wiener (1924); ifp = 1,
it is classical and is due to C. Jordan (see Schwartz, 1967, Ch. 4, Sec. 9). Note
that this definition is also suitable for maps defined on any linearly ordered setE.
A number of results of this paper are valid in the case, where≤ is a linear ordering
onE.

Now we list the general properties of thep-variation and deduce some of their
consequences (ifp = 1, see Chistyakov, 1997, Sec. 2).

2.2. GENERAL PROPERTIES OF THEp -VARIATION

Let f : E→ X be an arbitrary map. We have

(P1) minimality: if t , s ∈ E, thend(f (t), f (s))p ≤ ω(f,E)p ≤ Vp(f,E);

(P2) monotonicity: if a, t , s, b ∈ E anda ≤ t ≤ s ≤ b, thenVp(f,E−t ) ≤
Vp(f,E−s ), Vp(f,E+s ) ≤ Vp(f,E+t ), andVp(f,Es

t ) ≤ Vp(f,Eb
a);

(P3) semi-additivity: if t ∈ E, then
21−pVp(f,E) ≤ Vp(f,E−t )+ Vp(f,E+t ) ≤ Vp(f,E);

(P4) change of a variable: if E1 ⊂ R andϕ : E1 → E is a (not necessarily
strictly) monotone function, thenVp(f, ϕ(E1)) = Vp(f ◦ ϕ,E1);

(P5) regularity: Vp(f,E) = sup{Vp(f,Eb
a) : a, b ∈ E, a ≤ b };

(P6) limit properties: if s = supE ∈ R ∪ {∞} andi = inf E ∈ R ∪ {−∞}, we
have

(P61) if s /∈ E, thenVp(f,E) = limE3t→s Vp(f,E−t ),

(P62) if i /∈ E, thenVp(f,E) = limE3t→i Vp(f,E+t ),

(P63) if s /∈ E andi /∈ E, then, in addition to (P61) and (P62), we have

Vp(f,E) = lim
E3a→i
E3b→s

Vp(f,Eb
a) = lim

E3b→s
lim

E3a→i
Vp(f,Eb

a) =

= lim
E3a→i

lim
E3b→s

Vp(f,Eb
a);
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22 V.V. CHISTYAKOV AND O.E. GALKIN

(P7) lower semi-continuity: if the sequence of maps{fn}∞n=1 ⊂ XE converges
pointwise tof asn → ∞ (i.e., limn→∞ d(fn(t), f (t)) = 0 for all t ∈ E),
thenVp(f,E) ≤ lim inf n→∞ Vp(fn,E).

Proof of (P1)–(P7).Properties (P1) and (P2) are obvious.

(P3): Step 1. First, we prove the following assertion:
LetT = {ti}mi=0 ∈ T (E) and t ∈ E. We have

(a) if t ≤ t0 or tm ≤ t , thenVp[f, T ] ≤ Vp[f, T ∪ {t}];
(b) if tk−1 ≤ t ≤ tk for some1≤ k ≤ m, then

Vp[f, T ] ≤ 2p−1Vp[f, T ∪ {t}].

Since (a) is clear, we turn to (b). Setting61 =∑k−1
i=1 d(f (ti), f (ti−1))

p and62 =∑m
i=k+1 d(f (ti), f (ti−1))

p, we have

Vp[f, T ] = 61+ d(f (tk), f (tk−1))
p +62 ≤

≤ 61+
(

d(f (t), f (tk−1))+ d(f (tk), f (t))
)p +62 ≤

≤ 61+ 2p−1
(

d(f (t), f (tk−1))
p + d(f (tk), f (t))p

)
+62 ≤

≤ 2p−1Vp[f, T ∪ {t}].
Here we have used the triangle inequality and the inequality(α+β)p ≤ 2p−1(αp+
βp), α ≥ 0, β ≥ 0, p ≥ 1. Note that in case (b) we also have the obvious equality

Vp[f, T ∪ {t}] = Vp[f, T ] + d(f (t), f (tk−1))
p + (2.1)

+ d(f (tk), f (t))p − d(f (tk), f (tk−1))
p.

Step 2. LetT = {ti}mi=0 ∈ T (E). SetS = T ∪ {t}. We have two cases as in (a)
and (b) above. Ift ≤ t0 or tm ≤ t , then

Vp[f, T ] ≤ Vp[f, S] ≤ Vp(f,E−t )+ Vp(f,E+t ).

If tk−1 ≤ t ≤ tk, then, by virtue of the above assertion, we have

Vp[f, T ] ≤ 2p−1Vp[f, S] = 2p−1( Vp[f, S−t ] + Vp[f, S+t ] ) ≤
≤ 2p−1( Vp(f,E−t )+ Vp(f,E+t ) ).

Taking the supremum over allT ∈ T (E), we arrive at the left hand side inequality
in (P3).

Now we prove the right hand side inequality. IfVp(f,E−t ) = ∞ orVp(f,E+t ) =
∞, thenVp(f,E) = ∞, since, by the monotonicity,Vp(f,E) is greater or equal
to Vp(f,E−t ) andVp(f,E+t ). Let Vp(f,E−t ) <∞ andVp(f,E+t ) <∞. Then for
everyε > 0 there are partitionsT1 ∈ T (E−t ) andT2 ∈ T (E+t ) such that

Vp(f,E−t ) ≤ Vp[f, T1] + ε

2
and Vp(f,E+t ) ≤ Vp[f, T2] + ε

2
.
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It follows that

Vp(f,E−t )+ Vp(f,E+t ) ≤ Vp[f, T1] + Vp[f, T2] + ε ≤
≤ Vp[f, T1 ∪ {t}] + Vp[f, T2 ∪ {t}] + ε =
= Vp[f, T1 ∪ {t} ∪ T2] + ε ≤
≤ Vp(f,E)+ ε,

and it remains to take into account the arbitrariness ofε > 0.
(P4): We shall prove that the right hand side is not greater than the left hand

side, and vice versa. IfT1 = {τi}mi=0 ∈ T (E1) andT := {ti}mi=0 with ti := ϕ(τi),
thenT ∈ T (ϕ(E1)) by the monotonicity ofϕ, and

Vp[f ◦ ϕ, T1] =
m∑

i=1

d(f (ϕ(τi)), f (ϕ(τi−1)))
p =

=
m∑

i=1

d(f (ti), f (ti−1))
p = Vp[f, T ] ≤

≤ Vp(f, ϕ(E1)).

On the other hand, if a partitionT = {ti}mi=0 of ϕ(E1) is such thatti−1 < ti for
i = 1, . . . ,m, then there existτi ∈ E1 such thatti = ϕ(τi) and, again by the
monotonicity ofϕ, T1 := {τi}mi=0 ∈ T (E1), so that, as above, we have

Vp[f, T ] = Vp[f ◦ ϕ, T1] ≤ Vp(f ◦ ϕ,E1).

(P5): By the monotonicity ofVp, it is clear that the left hand side is not less
than the right hand side. On the other hand, for any numberα < Vp(f,E) there
is a partitionT = {ti}mi=0 ∈ T (E) such thatVp[f, T ] ≥ α. Since, actually,T ∈
T (E

tm
t0

), it follows thatVp(f,E
tm
t0

) ≥ Vp[f, T ] ≥ α, which was to be proved.
(P61): Sinces = supE /∈ E, s is a limit point of E, so that the filter base

E 3 t → s is well defined. By virtue of (P2), the functionE 3 t 7→ Vp(f,E−t ) ∈
[0,∞] is nondecreasing, and, hence, the limit in (P61) exists (in[0,∞]). Clearly,
this limit is ≤ Vp(f,E). On the other hand, due to (P5), for anyα < Vp(f,E)

there area, b ∈ E, a ≤ b < s, such thatVp(f,Eb
a) ≥ α, which implies that

Vp(f,E−t ) ≥ Vp(f,Eb
a) ≥ α for any t ∈ E∩] b, s [ 6= ∅, and the equality in (P61)

follows.
(P62) and the first equality in (P63) can be proved similarly.
(P63): In order to prove the second equality in (P63), we apply (P61) and (P62):

Vp(f,E) = lim
E3b→s

Vp(f,E−b ) = lim
E3b→s

lim
E3a→i

Vp(f, (E−b )+a ) =
= lim

E3b→s
lim

E3a→i
Vp(f,Eb

a).

The last equality in (P63) can be proved similarly.
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(P7): Letα ∈ R be such thatα < Vp(f,E). From the definition ofVp(f,E),
for any α < β < Vp(f,E) there exists a partitionT = {ti}mi=0 of E such that
Vp[f, T ] ≥ β. Consider the function

vp : Xm+1 = X × · · · ×X︸ ︷︷ ︸
m+1

→ R

defined by

vp(x0, x1, . . . , xm) =
m∑

i=1

d(xi, xi−1)
p, x0, x1, . . . , xm ∈ X.

Sincevp is continuous at every point ofXm+1 (to see this, it suffices to employ the
inequality|ap − bp| ≤ p|a − b|ap−1, a ≥ 0, b ≥ 0), it is continuous at the point
(x0, x1, . . . , xm) = (f (t0), f (t1), . . . , f (tm)), so that forε = β − α > 0 there is
a δ = δ(ε) > 0 such that if(y0, y1, . . . , ym) ∈ Xm+1 andd(xi, yi) ≤ δ, i = 0, 1,
. . . , m, then

|vp(x0, x1, . . . , xm)− vp(y0, y1, . . . , ym)| ≤ ε = β − α.

From the pointwise convergence offn to f one can find an integerN = N(δ) ∈ N
such that

d(fn(ti), f (ti)) ≤ δ ∀ n ≥ N, ∀ i = 0, 1, . . . ,m.

Setting(y0, y1, . . . , ym) = (fn(t0), fn(t1), . . . , fn(tm)) and noting that

vp(x0, x1, . . . , xm) = Vp[f, T ], vp(y0, y1, . . . , ym) = Vp[fn, T ],
we have

β ≤ Vp[f, T ] ≤ Vp[fn, T ] + ε ≤ Vp(fn,E)+ (β − α) ∀ n ≥ N.

Therefore, infn≥N Vp(fn,E) ≥ α, and, hence, lim inf
n→∞ Vp(fn,E) ≥ α. It remains to

let α go toVp(f,E). 2

REMARK 2.1 If f : E→ R is a bounded monotonefunction, then

Vp(f,E) = ω(f,E)p =
(

sup
t∈E

f (t)− inf
t∈E

f (t)
)p

.

To see this, leta, b ∈ E, a ≤ b. Clearly,Vp(f,Eb
a) ≥ |f (b)− f (a)|p, by (P1). On

the other hand, ifT = {ti}mi=0 ∈ T (Eb
a) and t ∈ Eb

a is such thattk−1 ≤ t ≤ tk for
some1≤ k ≤ m, then, by virtue of the monotonicity off , we have

|f (tk)− f (tk−1)| = |f (tk)− f (t)| + |f (t)− f (tk−1)|,
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ON MAPS OF BOUNDEDP -VARIATION WITH P > 1 25

so that the equality(2.1) implies thatVp[f, T ∪ {t}] ≤ Vp[f, T ]. By induction, it
follows that

Vp[f, T ] ≤ Vp[f, {a, b}] = |f (b)− f (a)|p ∀ T ∈ T (Eb
a),

and, hence,

Vp(f,Eb
a) ≤ |f (b)− f (a)|p ≤ ω(f,E)p ∀ a, b ∈ E, a ≤ b.

Applying (P5), we arrive atVp(f,E) ≤ ω(f,E)p, and, since the reverse inequality
is always true, by (P1), we are through.

REMARK 2.2 The constants in (P3) are sharp: indeed, iff : [0, 1 ]→R is defined
by f (t) = t for 0 ≤ t ≤ 1, then we have21−p ≤ tp + (1 − t)p ≤ 1, and
the left and right hand side equalities are attained att = 1/2 and t = 0, 1,
respectively. Another example is the functionf : [0, 1 ] → R defined byf (t) = 0
if 0 ≤ t < 1/3, f (t) = a if 1/3 ≤ t ≤ 2/3 andf (t) = a + b if 2/3 < t ≤ 1, for
appropriately chosena > 0 andb > 0.

It should be noted that, in general,Vp(f, T ) > Vp[f, T ] for a finite setT if
p > 1. To see this, in the above example of the functionf (t) = t on [0, 1] consider
T = { 0, t , 1 } with 0 < t < 1. Then (see Remark 2.1):

Vp[f, T ] = tp + (1− t)p < 1= Vp(f, T ).

REMARK 2.3 Property (P61) is not true in general ifs ∈ E, sinceVp(f,E) =
Vp(f,E−s ); consider, for instance,f : [0, 1 ] → R such thatf = 0 on [0, 1 [ and
f (1) = 1. A similar remark applies to (P62) and (P63).

REMARK 2.4 The inequality≤ in (P7) cannot be replaced by the equality even if
the convergence offn to f is uniform; for example, iffn(t) = | sin(2πnt)|/n1/p,
t ∈ [0, 1 ], thenfn converges uniformly tof ≡ 0, but Vp(fn, [0, 1 ]) = 4. Note
that the sequence{fn} does not converge tof = 0 in the normed vector space
Vp([0, 1 ];R), defined in section 7.

PROPOSITION 2.1 (minimality ofVp). Suppose that the map

Wp : XE × 2E → [0,∞]
satisfies, for allf : E→X and∅ 6=A⊂E, the following conditions(Wp(f,∅)=0):

(a)d(f (t), f (s))p ≤ Wp(f,A) for all t , s ∈ A;
(b)Wp(f,As

t ) ≤ Wp(f,A) for all t , s ∈ A such thatt ≤ s;
(c)Wp(f,A−t )+Wp(f,A+t ) ≤ Wp(f,A) for all t ∈ A.

ThenVp(f,A) ≤ Wp(f,A) for all f : E→ X andA ⊂ E.
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Proof. Clearly, thep-variationVp satisfies the properties (a)–(c). Thus, iff :
E→ X, ∅ 6= A ⊂ E andT = {ti}mi=0 ∈ T (A), we have

Vp[f, T ] =
m∑

i=1

d(f (ti), f (ti−1))
p

(a)≤
m∑

i=1

Wp(f,A
ti
ti−1

)
(c)≤

≤ Wp(f,A
tm
t0

)
(b)≤ Wp(f,A),

and the proposition follows upon taking the supremum over all partitionsT of A.2

Property (P1) implies that a map of boundedp-variation is a bounded map in the
sense that its image has a finite diameter. The following proposition is a refinement
of this property.

PROPOSITION 2.2 If f ∈ Vp(E;X), then the imagef (E) ⊂ X is totally
bounded and separable. If, in addition,X is complete, thenf (E) is precompact
(i.e., the closure off (E) in X is compact).

Proof. In order to prove thatf (E) is totally bounded, we have to show that for
everyε > 0 the setf (E) can be covered by a finite number of balls fromX of
radiusε centered atf (E). On the contrary, letε > 0 be such thatf (E) cannot
be covered by finitely many balls of radiusε. Choose a sequence{xn}∞n=0 ⊂ E

inductively as follows: begin with anyt0 ∈ E and setx0 = f (t0), and having
chosenx0, x1, . . . , xn−1 ∈ f (E), pick xn ∈ f (E) \⋃n−1

j=1 Bε(xj ) whereBε(xj ) =
{ y ∈ X : d(y, xj ) < ε }. Let tn ∈ E be such thatxn = f (tn), n ∈ N. Since
d(xn, xk) ≥ ε for n 6= k, we havetn 6= tk. Without loss of generality we can
suppose thattn−1 < tn for all n ∈ N. Then, forTm := {ti}mi=0 ∈ T (E), we have

Vp(f,E) ≥ Vp[f, Tm] =
m∑

i=1

d(f (ti), f (ti−1))
p =

m∑
i=1

d(xi, xi−1)
p ≥ mεp.

Sincem ∈ N is arbitrary, we infer thatVp(f,E) = ∞, which is a contradiction.
A totally bounded set in a metric space is known to be separable, and precom-

pact if the metric space is complete. 2

REMARK 2.5 If 1 ≤ p ≤ q, thenV1(E;X) ⊂ Vp(E;X) ⊂ Vq(E;X) since, if
T = {ti}mi=0 is a partition ofE, then we have

Vq[f, T ] =
m∑

i=1

d(f (ti), f (ti−1))
q =

m∑
i=1

(
d(f (ti), f (ti−1))

p
)q/p ≤

≤
( m∑

i=1

d(f (ti), f (ti−1))
p

)q/p

≤ (Vp(f,E))q/p.
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PROPOSITION 2.3If f ∈ Vp0(E;X) for somep0 ≥ 1, then

lim
p→∞

(
Vp(f,E)

)1/p = ω(f,E) <∞.

Proof. Since the functionv(p) := (
Vp(f,E)

)1/p
, p ≥ p0, is bounded from

below (v(p) ≥ ω(f,E), by (P1)) and nonincreasing (by Remark 2.5), it has a limit
asp → ∞ which we denote byv(∞), so thatv(∞) ≥ ω(f,E). To prove the
reverse inequality, we note that forp > p0 andT = {ti}mi=0 ∈ T (E) we have:

Vp[f, T ] ≤ (
ω(f,E)

)p−p0

m∑
i=1

d(f (ti), f (ti−1))
p0 ≤

≤ (
ω(f,E)

)p−p0
Vp0(f,E),

which yields (after taking the supremum overT ∈ T (E))

Vp(f,E) ≤ (
ω(f,E)

)p−p0
Vp0(f,E).

It remains to pass to the limit asp→∞ in the inequality

v(p) = (
Vp(f,E)

)1/p ≤ (
ω(f,E)

)1−(p0/p) · (Vp0(f,E)
)1/p

.

2

3. A Structural Theorem

We recall that a mapf : E → X is Hölderian of exponent0 < γ ≤ 1 if there
exists a numberC ∈ R+0 such thatd(f (t), f (s)) ≤ C|t − s|γ for all t , s ∈ E. The
least numberC satisfying the above inequality is called theHölder constantof f

and is denoted byH(f ).
The main result of this section is the following structural theorem.

THEOREM 3.1 The mapf : E → X is of boundedp-variation if and only if
there exist a bounded nondecreasing functionϕ : E → R and a Hölderian map
g : ϕ(E)→ X of exponentγ = 1/p andH(g) ≤ 1 such thatf = g ◦ ϕ onE.

Moreover, if X is a Banach space, the mapg : ϕ(E) → X can be extended
to a Hölderian mapg : R → X of the same exponentγ = 1/p and the Hölder
constantH(g) ≤ 31−γ H(g).

The proof of this theorem is contained in the following three lemmas. The first
lemma (sufficiency) gives a large number of examples of maps of boundedp-
variation.

LEMMA 3.2 If ϕ : E → R is bounded monotone,g : ϕ(E)→ X is Hölderian of
exponentγ = 1/p andf = g ◦ ϕ, thenf ∈ Vp(E;X).
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Proof.Suppose thatϕ is nondecreasing. Since

ϕ(E ∩ [ a, b ]) = ϕ(E) ∩ [ϕ(a), ϕ(b) ], a, b ∈ E, a ≤ b, (3.1)

by virtue of (P4) we have

Vp(f,Eb
a) = Vp(g ◦ ϕ,Eb

a) = Vp(g, ϕ(Eb
a)) = Vp(g, ϕ(E)

ϕ(b)

ϕ(a)).

If T = {ti}mi=0 is a partition of the set in (3.1), then

Vp[g, T ] ≤ H(g)p ·
m∑

i=1

(ti − ti−1) ≤ H(g)p · (ϕ(b)− ϕ(a)),

which implies that

Vp(f,Eb
a) ≤ H(g)p · (ϕ(b)− ϕ(a)) ∀ a, b ∈ E, a ≤ b.

Now property (P5) and the monotonicity and boundedness ofϕ yield

Vp(f,E) ≤ H(g)p ·
(
sup
t∈E

ϕ(t)− inf
t∈E

ϕ(t)
)
= H(g)p · ω(ϕ,E) <∞.

The proof is similar ifϕ is nonincreasing. 2

REMARK 3.1 In particular, if f : E → X is Hölderian of exponentγ = 1/p

andE ⊂ R is a bounded set, thenf is of boundedp-variation and

Vp(f,E) ≤ H(f )p · (supE − inf E).

In the second lemma (necessity) we obtain the canonical decomposition of a
map of boundedp-variation.

LEMMA 3.3 Letf : E → X be a map of boundedp-variation. Then there exist
a bounded nondecreasing nonnegative functionϕ : E → R and a Hölderian map
g : E1 := ϕ(E) → X of exponentγ = 1/p and the Hölder constantH(g) ≤ 1
such that

(a) f = g ◦ ϕ onE;
(b) g(E1) = f (E) in X;
(c) Vp(g,E1) = Vp(f,E).

Proof. The functionϕ : E → R given byϕ(t) = Vp(f,E−t ), t ∈ E, is well-
defined, nonnegative, bounded (ϕ(t) ≤ Vp(f,E)) and nondecreasing, due to (P2).
If τ ∈ E1, denote byϕ−1(τ) = { t ∈ E : ϕ(t) = τ } the inverse image of the
one-point set{τ } under the functionϕ. We define the mapg : E1→ X as follows:
if τ ∈ E1 we set

g(τ) = f (t) for any point t ∈ ϕ−1(τ). (3.2)
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This is correct, i.e.,f (t) is one and the same element ofX for all t ∈ ϕ−1(τ), since
by virtue of (P1) and (P3), we have

d(f (s), f (t))p ≤ Vp(f,Es
t ) ≤ ϕ(s)− ϕ(t), t ∈ E, s ∈ E+t ; (3.3)

indeed, if t , s ∈ ϕ−1(τ), t ≤ s, thenϕ(t) = τ = ϕ(s), so that (3.3) implies
f (t) = f (s).

Now, the representation off in (a) follows from (3.2), for ift ∈ E, thenτ :=
ϕ(t) ∈ E1 andt ∈ ϕ−1(τ), so that (3.2) yieldsf (t) = g(τ) = g(ϕ(t)) = (g◦ϕ)(t).
The assertions in (b) and (c) follow from (a) and (P4).

It remains to prove thatg is Hölderian. As in (3.1), we have

(E1)
−
τ = ϕ(E−t ) for any τ ∈ E1 and t ∈ ϕ−1(τ),

so that applying (P4), we arrive at

Vp(g, (E1)
−
τ ) = Vp(g, ϕ(E−t )) = Vp(g ◦ ϕ,E−t ) = Vp(f,E−t ) = ϕ(t) = τ.

Hence, ifα, β ∈ E1, α ≤ β, then, by virtue of (P1) and (P3), we infer that

d(g(β), g(α))p ≤ Vp(g, (E1)
β
α) ≤ Vp(g, (E1)

−
β )− Vp(g, (E1)

−
α ) = β − α.

2

REMARK 3.2 Note that the mapg in the proof of Lemma 3.3 satisfies the prop-
erty: if α, β ∈ E1 and t ∈ ϕ−1(α), s ∈ ϕ−1(β), then

d(g(α), g(β)) = d(g(ϕ(t)), g(ϕ(s))) = d(f (t), f (s)).

REMARK 3.3 In the case, whereϕ : E → E1 is strictly increasing, it is a bijec-
tion, so that the equalityf = g ◦ ϕ onE is equivalent to the equalityg = f ◦ ϕ−1

onE1 whereϕ−1 : E1→ E is the inverse function ofϕ.

REMARK 3.4 An algebraic aspect in the construction of the map such asg in
Lemma 3.3 was considered byChistyakov(1997), Sec. 3.

LEMMA 3.4 Let X be a Banach space(over the fieldR or C ) andg : E1 → X

be a Hölderian map of exponent0 < γ ≤ 1. Then there exists a Hölderian map
g : R → X of the same exponentγ andH(g) ≤ 31−γ H(g) such that the restriction
of g to E1 coincides withg.

Proof. Sinceg is uniformly continuous onE1, it admits an extension to the
closureE1 of E1, denoted byg1, such thatg1 : E1→ X is Hölderian of exponentγ
andH(g1) ≤ H(g). We defineg to be equal tog1 onE1. The complementR \ E1

of E1 in R is open, and, hence, it is at most a countable union of disjoint open
intervals] ak, bk[. On intervals] ak, bk [ with bk − ak <∞ we defineg as follows:

g(t) = g1(ak)+ ck(t − ak)
γ , ck := g1(bk)− g1(ak)

(bk − ak)γ
, t ∈] ak, bk [.
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If ak = −∞, we setg(t) = g1(bk) for all t ∈] − ∞, bk ], and if bk = ∞, we set
g(t) = g1(ak) for all t ∈ [ ak,∞[.

If ‖ · ‖ denotes the norm inX, then‖ ck ‖ ≤ H(g1) ≤ H(g), and, hence, if
bk − ak <∞, then for allt , s ∈ [ ak, bk ] we have

‖ g(t)− g(s) ‖ = ‖ ck ‖ · |(t − ak)
γ − (s − ak)

γ | ≤ H(g) · |t − s|γ .

Note that ifak = −∞ (or bk = ∞), theng is constant on] − ∞, bk ] (or on
[ ak,∞[).

It remains to verify thatg is Hölderian onR. There are three cases: 1)t ∈ E1,
s ∈ E1; 2) t ∈ E1, s /∈ E1; 3) t /∈ E1, s /∈ E1. Case 1) is clear from the above.
In case 2), suppose thats ∈] ak, bk [ andbk ≤ t . Using the triangle and Hölder’s
inequalities, we have

‖ g(t)− g(s) ‖ ≤ ‖ g1(t)− g1(bk) ‖ + ‖ g1(bk)− g(s) ‖ ≤
≤ H(g) · ((t − bk)

γ + (bk − s)γ ) ≤
≤ 21−γ H(g)|t − s|γ .

In case 3), suppose thatt ∈] am, bm [, s ∈] ak, bk [ andbk ≤ am. Again, using the
triangle and Hölder’s inequalities, we infer that

‖ g(t)− g(s) ‖ ≤ ‖ g(t)− g1(am) ‖ + ‖ g1(am)− g1(bk) ‖ +
+ ‖ g1(bk)− g(s) ‖ ≤
≤ H(g) · ((t − am)γ + (am − bk)

γ + (bk − s)γ ) ≤
≤ 31−γ H(g)|t − s|γ .

The proof is complete. 2

4. Continuity Properties

In this section we study continuity properties of maps of boundedp-variation and
show that, in the large, these maps behave like maps of bounded variation with
p = 1, cf. Chistyakov (1997), Sec. 4, however, the proof technique is entirely
different.

In this section we assume thatX is a metric space,f : E→ X is a fixed map of
boundedp-variation and the functionϕ : E → R is defined byϕ(t) = Vp(f,E−t )

for t ∈ E.

LEMMA 4.1 Let t ∈ E be a limit point of the setE±t (in what follows,+ and−
are concordant). Thend(f (t), f (s)) has a limit in[0,∞[ asE 3 s → t ± 0.

If, moreover,X is complete, then, asE 3 s → t ±0, f (s) has a one-sided limit
in X, denoted byf (t±), andd(f (s), f (t)) tends tod(f (t±), f (t)) asE 3 s →
t ± 0.
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Proof. Let t ∈ E be a limit point ofE−t . If s1, s2 ∈ E, s1 ≤ s2 < t, then, by
virtue of (P1) and (P3), we have

|d(f (t), f (s1))− d(f (t), f (s2))|p ≤ d(f (s1), f (s2))
p ≤ (4.1)

≤ Vp(f,Es2
s1

) ≤ Vp(f,E−s2
)− Vp(f,E−s1

) = ϕ(s2)− ϕ(s1).

Since the functionϕ is bounded and nondecreasing, the limitϕ(t−) :=
limE3s→t−0 ϕ(s) exists and is equal to sup{ϕ(s) : s ∈ E−t , s 6= t}. The existence of
the limit of d(f (t), f (s)) asE 3 s → t − 0 now follows from (4.1) and Cauchy’s
criterion in the complete metric spaceR.

Now, let X be complete. Ifs1, s2 ∈ E, s1 ≤ s2 < t, then, as above, we have:
d(f (s1), f (s2))

p ≤ ϕ(s2)− ϕ(s1), and, hence, Cauchy’s criterion of the existence
of the limit f (t−) applies in the complete metric spaceX. It remains to note that,
asE 3 s → t − 0,

|d(f (s), f (t))− d(f (t−), f (t))| ≤ d(f (s), f (t−))→ 0.

The case, wheret ∈ E is a limit point of the setE+t , is completely analogous.2

REMARK 4.1 Note that if t ∈ E is a limit point of E−t , then, applying prop-
erty (P61) with the setE−t \ {t} in place ofE−t , we get

Vp(f,E−t \ {t}) = lim
E3s→t−0

Vp(f, (E−t \ {t})−s ) =
= lim

E3s→t−0
Vp(f,E−s ) = ϕ(t−).

THEOREM 4.2 Let f : E → X be a map of boundedp-variation. Then(a) f is
continuous at the pointt ∈ E if and only if the functionϕ is continuous att ; (b)f is
continuous onE outside, possibly, of a subset ofE which is at most countable.

Proof. (a) The case, wheret ∈ E is an isolated point ofE, is obvious (and
uninformative). Hence, in the rest of the proof we assume thatt ∈ E is a limit
point ofE; moreover, we assume, in addition, thatt ∈ E is a limit point of each of
the setsE−t andE+t .

Sufficiencyin (a) follows from the inequalities (cf. (4.1)):

d(f (t), f (s))p ≤ Vp(f,Et
s) ≤ ϕ(t)− ϕ(s), s ∈ E−t ,

d(f (s), f (t))p ≤ Vp(f,Es
t ) ≤ ϕ(s)− ϕ(t), s ∈ E+t .

In particular, these inequalities imply that

lim
E3s→t−0

d(f (t), f (s)) ≤ (ϕ(t)− ϕ(t−))1/p,

lim
E3s→t+0

d(f (s), f (t)) ≤ (ϕ(t+)− ϕ(t))1/p.

Necessityin (a) follows from Lemma 4.3 below.
(b) This assertion is a consequence of the fact that a nondecreasing function

on E has at most countably many points of discontinuity and that, by (a), the sets
of discontinuity points off and the nondecreasing functionϕ are the same. 2
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LEMMA 4.3 Let t ∈ E be a limit point of each of the setsE−t andE+t . Then

ϕ(t+)− ϕ(t−) ≤ p M
(
limE3s→t−0 d(f (t), f (s)) (4.2)

+ limE3s→t+0 d(f (s), f (t))
)
,

whereM = M(f, p,E) := (Vp(f,E))
p−1
p .

Before the proof of this Lemma a few remarks are in order.

REMARK 4.2 If X is a complete metric space, then(4.2) assumes the form

ϕ(t+)− ϕ(t−) ≤ p M( d(f (t), f (t−))+ d(f (t+), f (t)) ).

If, moreover,p = 1, thenϕ(t+) − ϕ(t−) ≤ d(f (t), f (t−)) + d(f (t+), f (t)).
In this case, the last inequality is, actually, the equality (cf.Chistyakov, 1997,
Lemma 5.2(a,b)).

REMARK 4.3 If t = inf E ∈ E is a limit point ofE, then the inequality(4.2)
holds if we replace the first limit by zero andϕ(t−) byϕ(t). If t ∈ E is a limit point
of E−t , then(4.2) holds as well, if we replace the second limit by zero andϕ(t+)

by ϕ(t). In particular, this remark and Lemma 4.3 imply that iff : [ a, b ] → X

is a continuous map of boundedp-variation, then the functionϕ : [ a, b ] → R ,
defined byϕ(t) = Vp(f, [ a, t ]) for t ∈ [ a, b ], is also continuous.

REMARK 4.4 The estimate(4.2) is “sharp” as the following example shows.
For 0 < ε < 1 definefε : [0, 2 ] → R by: fε(t) = εt if 0 ≤ t < 1 and
fε(t) = 1 if 1 ≤ t ≤ 2, and setϕε(t) = Vp(fε, [0, t ]) for t ∈ [0, 2 ]. Then
M = M(fε, p, [0, 2 ]) = 1 and

ϕε(1+)− ϕε(1−)

|fε(1)− fε(1−)| + |fε(1+)− fε(1)| =
1− εp

1− ε
−→

ε→1−0
p = p M.

In order to prove Lemma 4.3, we need one more lemma.

LEMMA 4.4 If a, s, b ∈ E, then

d(f (b), f (a))p ≤ d(f (s), f (a))p + p Md(f (b), f (s)),

whereM is the same as in Lemma4.3.
Proof.Sinced(f (b), f (a))p−1 ≤ M by (P1), it suffices to prove that

d(f (b), f (a))p ≤ d(f (s), f (a))p + p d(f (b), f (a))p−1 · d(f (b), f (s)),

or, equivalently, that

d(f (b), f (a))p−1 · [ d(f (b), f (a))− p d(f (b), f (s)) ] (4.3)

≤ d(f (s), f (a))p.
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If the expression in square brackets in (4.3) is< 0, then we are through. Now
suppose that the[ . . . ] ≥ 0. We note that the left hand side in (4.3) is less than or
equal to(

d(f (b), f (s))+ d(f (s), f (a))
)p−1 ·

[
d(f (b), f (s))+ (4.4)

+d(f (s), f (a))− p d(f (b), f (s))
]
.

Settingu = d(f (b), f (s)) andv = d(f (s), f (a)) and taking into account that

(u+ v)p − vp =
∫ u+v

v

p ξp−1 dξ ≤ p u (u+ v)p−1,

we have the inequality

(u+ v)p−1[u+ v − p u ] ≤ vp,

which, together with (4.4), proves (4.3). 2

Proof of Lemma 4.3.Set

A = lim
E3s→t−0

d(f (t), f (s)), B = lim
E3s→t+0

d(f (s), f (t)).

Let ε > 0 be fixed. Choosea0, b0 ∈ E, a0 < t < b0, such that

|d(f (t), f (s))−A| ≤ ε ∀ s ∈ E, a0 ≤ s < t , (4.5)

|d(f (s), f (t))− B| ≤ ε ∀ s ∈ E, t < s ≤ b0. (4.6)

Let T = { t0 < t1 < . . . < tm−1 < tm } be a partition of the setE−b0
with the

property (from the definition ofϕ(b0) = Vp(f,E−b0
) )

ϕ(b0)− ε ≤ Vp[f, T ]. (4.7)

First of all, we consider the case, wheret0 < t < tm. There are two cases:
I) t /∈ T , and II) t ∈ T .

I) Let t /∈ T . There is ak ∈ { 1, . . . ,m } such thattk−1 < t < tk, so that we
have

Vp[f, T ] =
k−1∑
i=1

d(f (ti), f (ti−1))
p + d(f (tk), f (tk−1))

p +

+
m∑

i=k+1

d(f (ti), f (ti−1))
p ≤

≤ ϕ(tk−1)+ d(f (tk), f (tk−1))
p + Vp(f,E

b0
tk ) ≤

≤ ϕ(tk−1)+ d(f (tk), f (tk−1))
p + ϕ(b0)− ϕ(t+); (4.8)
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here we have used thatVp(f,E
b0
tk ) ≤ ϕ(b0)−ϕ(tk) ≤ ϕ(b0)−ϕ(t+). We have two

cases: a)a0 ≤ tk−1, and b)tk−1 < a0.
a) If a0 ≤ tk−1, then, taking into account (4.5) and (4.6), we have

d(f (tk), f (tk−1))
p = d(f (tk), f (tk−1))

p−1 · d(f (tk), f (tk−1)) ≤
≤ M[ d(f (t), f (tk−1))+ d(f (tk), f (t)) ] ≤M(A+ ε + B + ε).

By virtue of (4.8), it follows that

Vp[f, T ] ≤ ϕ(t−)+M(A+ B + 2ε)+ ϕ(b0)− ϕ(t+). (4.9)

b) If tk−1 < a0, then, using Lemma 4.4 witha = tk−1, s = a0 andb = tk, and
using (4.5) and (4.6), we have

d(f (tk), f (tk−1))
p ≤ d(f (a0), f (tk−1))

p + p Md(f (tk), f (a0)) ≤
≤ d(f (a0), f (tk−1))

p + p M[ d(f (t), f (a0))+ d(f (tk), f (t)) ] ≤
≤ d(f (a0), f (tk−1))

p + p M(A+ B + 2ε).

By virtue of (4.8), it follows that

Vp[f, T ] ≤ ϕ(tk−1)+ d(f (a0), f (tk−1))
p + p M(A+ B + 2ε)+

+ϕ(b0)− ϕ(t+) ≤
≤ ϕ(a0)+ p M(A+ B + 2ε)+ ϕ(b0)− ϕ(t+) ≤
≤ ϕ(t−)+ p M(A+ B + 2ε)+ ϕ(b0)− ϕ(t+). (4.10)

II) Now we consider the second case: suppose thatt ∈ T . There is ak ∈
{ 1, . . . ,m− 1} such thatt = tk, so that we have

Vp[f, T ] =
k−1∑
i=1

d(f (ti), f (ti−1))
p + d(f (t), f (tk−1))

p +

+d(f (tk+1), f (t))p +
m∑

i=k+2

d(f (ti), f (ti−1))
p ≤

≤ ϕ(tk−1)+ d(f (t), f (tk−1))
p +

+d(f (tk+1), f (t))p−1 · d(f (tk+1), f (t))+ ϕ(b0)− ϕ(t+) ≤
≤ ϕ(tk−1)+ d(f (t), f (tk−1))

p +M(B + ε)+ ϕ(b0)− ϕ(t+),

(4.11)

where in the last inequality we have used (4.6). As above, we have two cases:
a)a0 ≤ tk−1, and b)tk−1 < a0.

a) If a0 ≤ tk−1, then, taking into account (4.5), we have

d(f (t), f (tk−1))
p = d(f (t), f (tk−1))

p−1 · d(f (t), f (tk−1)) ≤ M(A+ ε).
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By virtue of (4.11), it follows that

Vp[f, T ] ≤ ϕ(t−)+M(A+ B + 2ε)+ ϕ(b0)− ϕ(t+). (4.12)

b) If tk−1 < a0, then, using Lemma 4.4 witha = tk−1, s = a0 andb = tk = t ,
and using (4.5), we have

d(f (t), f (tk−1))
p ≤ d(f (a0), f (tk−1))

p + p Md(f (t), f (a0)) ≤
≤ d(f (a0), f (tk−1))

p + p M(A+ ε).

By virtue of (4.11), it follows that

Vp[f, T ] ≤ ϕ(tk−1)+ d(f (a0), f (tk−1))
p + p M(A+ ε)+

+M(B + ε)+ ϕ(b0)− ϕ(t+) ≤
≤ ϕ(t−)+ p M(A+ B + 2ε)+ ϕ(b0)− ϕ(t+). (4.13)

Therefore, from (4.9), (4.10), (4.12), and (4.13), we infer that in both cases I)
and II) we have the inequality

Vp[f, T ] ≤ ϕ(b0)+ ϕ(t−)− ϕ(t+)+ p M(A+ B + 2ε).

Taking into account (4.7), we find that

ϕ(t+)− ϕ(t−) ≤ p M(A+ B)+ ε(1+ 2p M) ∀ ε > 0.

Now, it is clear from the above that the last inequality can be similarly proved
if t ≤ t0 or tm ≤ t . 2

5. Paths Of Minimal p -Variation

Let E = [ a, b ] be a compact interval inR. We denote byT b
a the set

{ T = {ti}mi=0 ⊂ [ a, b ] : m ∈ N, a = t0 < t1 < · · · < tm−1 < tm = b }
of all partitions of[ a, b ] containing pointsa andb and we set

V b
a,p(f ) = sup{Vp[f, T ] : T ∈ T b

a }.
Clearly,V b

a,p(f ) = Vp(f, [ a, b ]).
We denote byC([ a, b ];X) the set of all continuous maps from[ a, b ] into the

metric spaceX. A path in X is a continuous mapf : [ a, b ] → X; its trajectory
is the imagef ([ a, b ]) which, as is well known, is a compact subset ofX. The
domain[ a, b ] of f is called aset of parameterson (of) the path, in which case we
also say that the path isparametrizedby the interval[ a, b ]. Two pointsx, y ∈ X

are said to beconnected by a pathin X if there exists a pathf : [ a, b ] → X such
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that f (a) = x andf (b) = y, in which case we say thatf is a path betweenx
andy.

The following theorem asserts the existence of a Hölderian geodesic path be-
tween two points with respect to thep-variation, and it extends the results which
were previously given for paths in the casep = 1 (see Busemann, 1955, Ch. 1,
(5.18), and, for a more precise statement, Chistyakov, 1997, Theorem 6.1).

THEOREM 5.1 Let K be a compact subset ofX and x, y ∈ K. If there is a
path in K betweenx and y of finite p-variation, then the pointsx and y can be
connected inK by a Hölderian path of exponentγ = 1/p of minimalp-variation.

Proof.The theorem is clear ifx = y. Hence we suppose thatx 6= y. Since any
pathf : [ a, b ] → X can be replaced by a path of the samep-variation (and the
same trajectory) and the set of parameters[0, 1 ] (see (P4)), it suffices to restrict
our consideration to paths defined on[0, 1 ]. Thus, consider the set of paths inK

defined on[0, 1 ] and connecting the pointsx andy:

W(x, y) = { f ∈ C([0, 1 ];K) : f (0) = x, f (1) = y },
and set

` = inf{V 1
0,p(f ) : f ∈ W(x, y) }.

By the assumption,W(x, y) contains a pathf0 of finite p-variation, so that̀ ≤
V 1

0,p(f0) is finite. On the other hand, by virtue of (P1), for anyf ∈ W(x, y) we
have

V 1
0,p(f ) ≥ d(f (0), f (1))p = d(x, y)p > 0, (5.1)

so that` ≥ d(x, y)p . Since` < ∞, there exists a sequence{fn}∞n=1 in W(x, y)

such that

lim
n→∞ `n = `, where `n = V 1

0,p(fn) > 0 by (5.1).

The existence of the last limit implies that ifL = supn∈N `n, thenL is finite > 0,
so that the sequence{fn} is of uniformly boundedp-variation. By Lemma 3.3, for
anyn ∈ N there exists a pathgn : [0, `n ] → X with the properties

d(gn(α), gn(β)) ≤ |α − β|1/p, α, β ∈ [0, `n],

fn = gn ◦ ϕn on [0, 1 ], where ϕn(t) = V t
0,p(fn), t ∈ [0, 1 ],

and, in particular,gn(0) = fn(0) = x, gn(`n) = fn(1) = y, gn([0, `n ]) =
fn([0, 1 ]) ⊂ K and V

`n

0,p(gn) = V 1
0,p(fn) = `n. If we sethn(τ) = gn(τ`n),

τ ∈ [0, 1 ], then we have

hn ∈ W(x, y),

V 1
0,p(hn) = `n→ ` as n→∞ (by (P4)),

d(hn(α), hn(β)) ≤ (`n)
1/p|α − β|1/p ≤ L1/p|α − β|1/p, α, β ∈ [0, 1 ].
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It follows that the sequence{hn}∞n=1 ⊂ C([0, 1 ];K) is equicontinuous, so that by
Ascoli-Arzelà’s theorem (cf. Folland, 1984, p. 131, Theorem (4.44)), it has a subse-
quence{hnk

}∞k=1 which converges uniformly on[0, 1 ] to a maph ∈ C([0, 1 ];K).
It is clear thath ∈ W(x, y), and h is Hölderian of exponentγ = 1/p and
H(h) ≤ L1/p. From (P7) we infer that

V 1
0,p(h) ≤ lim inf

k→∞ V 1
0,p(hnk

) = lim
k→∞ `nk

= `.

It remains to note that from the definition of` we have` ≤ V 1
0,p(h), so that̀ =

V 1
0,p(h), which was to be proved. 2

6. Helly’s Selection Principle

The main result of this section is the following compactness theorem relative to
thep-variation, which, in the theory of mappings of bounded variation (i.e., when
p = 1), is known asE. Helly’s selection principle(cf. Natanson, 1965, Ch. 8,
Sec. 4, Helly’s theorem, and more recently Chistyakov, 1997, Sec. 7, theorem 7.1).

THEOREM 6.1 Let K be a compact subset of the metric spaceX and F ⊂
C([ a, b ];K) be an infinite family of continuous maps from the interval[ a, b ]
into K of uniformly boundedp-variation, that is,supf∈F V b

a,p(f ) <∞. Then there
exists a sequence{fn}∞n=1 of maps fromF which converges pointwise on[ a, b ] to
a mapf : [ a, b ] → K of boundedp-variation.

Moreover, ifX is a Banach space, then the assumption of continuity of the
familyF is redundant.

Proof. Step 1(common part). By Theorem 3.1, any mapf ∈ F can be written
in the formf = gf ◦ ϕf on [ a, b ], whereϕf (t) = V t

a,p(f ), a ≤ t ≤ b, and
gf : E1f = ϕf ([ a, b ])→ K is Hölderian of exponentγ = 1/p andH(gf ) ≤ 1.
Note thatϕf is nondecreasing, nonnegative andϕf (a) = 0. The family of nonde-
creasing functions{ϕf : f ∈ F } is infinite and uniformly bounded on[ a, b ],
sinceω(ϕf , [ a, b ]) = ϕf (b) = V b

a,p(f ), and, hence, by the well known fact
(Natanson, 1965, Ch. 8, Sec. 4, Lemma 2), it contains a sequence of functions
{ϕn}∞n=1, corresponding to the decompositionsfn = gn ◦ ϕn (i.e., ϕn = ϕfn

and
gn = gfn

) for all n ∈ N, which converges pointwise on[ a, b ] to a nondecreas-
ing (and bounded) functionϕ : [ a, b ] → R. Let ` = V b

a,p(ϕ) = ϕ(b). Then
0≤ ` <∞, and if`n = V b

a,p(fn) = V b
a,p(ϕn) = ϕn(b), then`n→ ` asn→∞.

Step 2. Suppose that the familyF consists of continuous maps. Sincefn ∈ F
is continuous,ϕn is continuous as well, so that the Hölderian mapgn is defined
on E1n = ϕn([ a, b ]) = [0, `n ]. If `n ≥ `, then we considergn only on the
segment[0, ` ], and if `n < `, then we extendgn to ] `n, ` ] by settinggn(τ) =
gn(`n) for all τ ∈] `n, ` ]. By Ascoli-Arzelà’s theorem, the sequence of Hölderian
mapsgn : [0, ` ] → K of exponentγ = 1/p and H(gn) ≤ 1 is precompact
in C([0, ` ];K), so that it has a uniformly convergent subsequence{gnk

}∞k=1. Let
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g be the uniform limit of{gnk
}. Clearly,g : [0, ` ] → K is Hölderian of exponent

γ = 1/p and H(g) ≤ 1, so that, by virtue of Lemma 3.2, the composed map
f = g ◦ ϕ : [ a, b ] → X is of boundedp-variation. Now, ift ∈ [ a, b ], we have

d(fnk
(t), f (t)) = d((gnk

◦ ϕnk
)(t), (g ◦ ϕ)(t)) ≤

≤ d(gnk
(ϕnk

(t)), gnk
(ϕ(t)))+ d(gnk

(ϕ(t)), g(ϕ(t))) ≤
≤ |ϕnk

(t)− ϕ(t)|1/p + d(gnk
(ϕ(t)), g(ϕ(t))).

Since the terms in the last sum tend to zero ask→∞, the sequence{fnk
}∞k=1 ⊂ F

converges pointwise on[ a, b ] to f .
Step 3. Let X be a Banach space andF be an infinite family of maps from

[ a, b ] into K of uniformly boundedp-variation. We again use the reasoning of
step 1. Note that in this caseE1n = ϕn([ a, b ]) ⊂ [0, `n]. If L = supn∈N `n, then
0 ≤ L < ∞ and` = limn→∞ `n ≤ L. Denote byg̃n the restriction to[0, L ]
of the mapgn given by Lemma 3.4. By Ascoli-Arzelà’s theorem, the sequence of
Hölderian maps̃gn : [0, L ] → K of exponentγ = 1/p and H(g̃n) ≤ 31−γ

has a uniformly convergent subsequence{g̃nk
}∞k=1, whose uniform limit we denote

by g̃. It is clear that̃g : [0, L ] → K is Hölderian of exponentγ = 1/p and
H(̃g) ≤ 31−γ . Let E1 = ϕ([ a, b ]), and letg be the restriction of̃g to E1. By
virtue of Lemma 3.2, the mapf = g ◦ ϕ : [ a, b ] → K is of boundedp-variation.
Now, if t ∈ [ a, b ], then, as at the end of step 2, we have

d(fnk
(t), f (t)) = d(g̃nk

(ϕnk
(t)), g̃(ϕ(t))) ≤

≤ 31−(1/p)|ϕnk
(t)− ϕ(t)|1/p + d(g̃nk

(ϕ(t)), g̃(ϕ(t))),

which completes the proof. 2

REMARK 6.1 We do not know if the condition “F ⊂ K [ a,b ] whereK ⊂ X

is compact” in Theorem 6.1 can be replaced by a weaker condition: “for every
t ∈ [ a, b ] the sectionF (t) = { f (t) ∈ X : f ∈ F } is precompact inX”.

REMARK 6.2 Note that the continuity of the familyF does not, in general, imply
that the resulting map of boundedp-variation f is continuous.

7. Maps Valued In A Normed Vector Space

In this section we assume thatX is a normed vector space over the fieldK = (R or
C ) with the norm‖ · ‖ and, as usual,∅ 6= E ⊂ R. Naturally,XE becomes a vector
space (overK ) with respect to the pointwise operations:

(f + g)(t) = f (t)+ g(t), (cf )(t) = cf (t), f , g ∈ XE, c ∈ K , t ∈ E.

The spaceXE is endowed with the functional

‖f ‖∗p = ‖f (a) ‖ + (Vp(f,E))1/p, a ∈ E fixed, f ∈ XE.
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PROPOSITION 7.1 (a)The functional‖ · ‖∗p : XE → [0,∞] is a pseudonorm
onXE (i.e., it satisfies the axioms of a norm and possibly takes infinite values);

(b) If {fn}∞n=1 ⊂ XE, f ∈ XE and ‖fn − f ‖∗p → 0 as n → ∞, then
Vp(fn,E) tends toVp(f,E) asn→∞ ; if, moreover,{fn}∞n=1 ⊂ Vp(E;X), then
supn∈N Vp(fn,E) <∞ andf ∈ Vp(E;X).

Proof. (a) Letf , g ∈ XE andc ∈ K . First, note that (P1) implies that

‖f (t) ‖ ≤ ‖f (a) ‖ + (Vp(f,E))1/p = ‖f ‖∗p ∀ t ∈ E. (7.1)

The other two axioms of a norm are consequences of the (in)equalities

(Vp[cf, T ])1/p = |c|(Vp[f, T ])1/p,

(Vp[f + g, T ])1/p ≤ (Vp[f, T ])1/p + (Vp[g, T ])1/p,
T ∈ T (E),

the last one following from the triangle and Minkowski’s inequalities.
(b) For all t ∈ E we have‖fn(t) − f (t) ‖ ≤ ‖fn − f ‖∗p → 0 asn→∞, so

that

(Vp(f,E))1/p ≤ lim inf
n→∞ (Vp(fn,E))1/p, by (P7).

On the other hand, for alln ∈ N
(Vp(fn,E))1/p ≤ (Vp(fn − f,E))1/p + (Vp(f,E))1/p ≤

≤ ‖fn − f ‖∗p + (Vp(f,E))1/p,
(7.2)

whence

lim sup
n→∞

(Vp(fn,E))1/p ≤ lim
n→∞‖fn − f ‖∗p + (Vp(f,E))1/p = (Vp(f,E))1/p.

Therefore,(Vp(f,E))1/p = limn→∞(Vp(fn,E))1/p.
Suppose now thatfn ∈ Vp(E;X), n ∈ N. From (7.2) withf = fk we have, as

n, k→∞,

|(Vp(fn,E))1/p − (Vp(fk,E))1/p| ≤ ‖fn − f ‖∗p + ‖f − fk ‖∗p → 0,

so that{(Vp(fn,E))1/p}∞n=1 is a Cauchy sequence inR, and, hence it is bounded
and convergent. The inclusionf ∈ Vp(E;X) is then obvious. 2

PROPOSITION 7.2The restriction of‖ · ‖∗p to Vp(E;X) is a norm onVp(E;X),
and Vp( · , E) is a continuous functional onVp(E;X). If, in addition, X is a
Banach space, thenVp(E;X) is also a Banach space with respect to‖ · ‖∗p.

Proof. It suffices to prove thatVp(E;X) is complete. Let{fn}∞n=1 be a Cauchy
sequence inVp(E;X). From (7.1) we have‖fn(t)− fk(t) ‖ ≤ ‖fn− fk ‖∗p for all
t ∈ E andn, k ∈ N. SinceX is complete, there exists a mapf ∈ XE such thatfn
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converges tof pointwise onE asn→∞. Sincefn − fk → fn − f ask →∞,
by virtue of (P7), we have

‖fn − f ‖∗p ≤ lim inf
k→∞

‖fn − fk ‖∗p = lim
k→∞
‖fn − fk ‖∗p ∀ n ∈ N.

Thus, using the fact that{fn}∞n=1 is Cauchy, we have

lim sup
n→∞

‖fn − f ‖∗p ≤ lim lim
n→∞ k→∞‖fn − fk ‖∗p = 0,

so that‖fn − f ‖∗p → 0 asn → ∞. By Proposition 7.1(b) it follows thatf ∈
Vp(E;X). 2

PROPOSITION 7.3Letf ∈ Vp([ a, b ];X). Then, for allh ∈ [0, b−a ], we have

b−h∫
a

‖f (t + h)− f (t) ‖p dt =
b∫

a+h

‖f (t)− f (t − h) ‖p dt ≤ hV b
a,p(f ).

Proof.Let h ∈ [0, b − a ]. Sincea ≤ t ≤ t + h ≤ b for all t ∈ [ a, b − h ], by
virtue of (P1), (P3), and (P2), we have

‖f (t + h)− f (t) ‖p ≤ V t+h
t,p (f ) ≤ V t+h

a,p (f )− V t
a,p(f ) ≤ V b

a,p(f ).

It follows that the function[ a, b − h ] 3 t 7→ ‖f (t + h) − f (t) ‖p ∈ R
+
0 is

bounded, and continuous almost everywhere (due to Theorem 4.2(b)), so that it is
Riemann integrable on[ a, b − h ] thanks to Lebesgue’s criterion. Now it suffices
to integrate the second inequality above:

b−h∫
a

‖f (t + h)− f (t) ‖p dt ≤
b∫

a+h

V t
a,p(f ) dt −

b−h∫
a

V t
a,p(f ) dt ≤

≤
b∫

b−h

V t
a,p(f ) dt ≤ hV b

a,p(f ). 2

REMARK 7.1 Proposition 7.3 means that a mapf of boundedp-variation is
continuous inLp. If p = 1, the inequality in Proposition 7.3 gives weak (al-
most everywhere) differentiability of maps of bounded variation ifX is a reflexive
Banach space (seeBarbu and Precupanu, 1978, Ch. 1, Sec. 3, andKomura, 1967).
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8. Selections Of Set-Valued Maps

We start by recalling definitions of theHausdorff distanceandthe set-valued maps
(for detailed exposition see Aubin and Cellina, 1984, Ch. 1, Sec. 1, Sec.5, and
Castaing and Valadier, 1977, Ch. 2, Sec. 1).

Given two nonempty subsetsA, B ⊂ X of a metric space(X, d), theexcess
of A overB is defined by

e(A,B) = sup
x∈A

dist(x, B) = sup inf
x∈A y∈B

d(x, y) ∈ [0,∞]

and theHausdorff distance betweenA andB is defined by

dH (A,B) = max{ e(A,B), e(B,A) }.
If A, B, C ⊂ X are nonempty, then we havee(A,B) = 0 if and only if A is
contained in the closure ofB, ande(A,B) ≤ e(A,C)+e(C,B), and, hence,dH is
apseudometricon the set of all nonempty closed subsets ofX, i.e.,dH satisfies the
usual axioms of a metric and possibly takes infinite values. The mapdH is ametric
on the set of all nonempty closed bounded subsets ofX, on the set of all nonempty
compact subsets ofX and, ifX is bounded, also on the set of all nonempty closed
subsets ofX.

Let E andX be two metric spaces, 2X be the set of all subsets ofX and2̇X =
2X \ {∅}. A set-valued map fromE into X is a mapF : E→ 2X, so thatF(t) ⊂ X

for everyt ∈ E. Thegraph of F is the set Gr(F ) = { (t, x) ∈ E ×X : x ∈ F(t) }
and therange ofF is the setR(F) = ⋃

t∈E F(t).
The set-valued mapF : E → 2̇X is said to be

(a) Hausdorff continuous att0 ∈ E if for any ε > 0 there existsδ = δ(ε) > 0
such thatdH (F(t), F (t0)) ≤ ε for all t ∈ E with dE(t, t0) ≤ δ; Hausdorff
continuous onE if it is so at everyt0 ∈ E;

(b) Hölder continuous of exponent0 < γ ≤ 1 on E if, for someL ≥ 0 and all
t , s ∈ E, dH (F(t), F (s)) ≤ L(dE(t, s))γ ; the leastL is called theHölder
constant ofF and is denoted byH(F). If γ = 1, F is also calledLipschitz
continuous onE andH(F) is called theLipschitz constantand is denoted
by Lip(F );

(c) compact-valuedif F(t) is a compact subset ofX for everyt ∈ E;
(d) compactif its graph Gr(F ) is compact inE × X (and, hence,F is compact-

valued, but not vice versa);
(e) of boundedp-variation onE = [ a, b ] ⊂ R if

V b
a,p(F ) := sup{VH,p[F, T ] : T ∈ T b

a } <∞,

where

VH,p[F, T ] =
m∑

i=1

(
dH(F(ti), F (ti−1))

)p

, T = {ti}mi=0 ∈ T b
a ;
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if p = 1, F is also called a mapof bounded variation;
(f) absolutely continuous onE = [ a, b ] ⊂ R if for each ε > 0 there exists

δ = δ(ε) > 0 such that if{ ] an, bn [ }Nn=1 is a finite collection ofdisjoint
subintervals of[ a, b ] with the property

∑N
n=1(bn − an) ≤ δ, then

N∑
n=1

dH (F(bn), F (an)) ≤ ε.

The mapf : E → X is said to be a (regular) selectionof a set-valued map
F : E→ 2̇X if f (t) ∈ F(t) for all t ∈ E.

It is known that a compact-valued set-valued mapF : E → 2̇X is Hausdorff
continuous onE if and only if it is both upper semi-continuous and lower semi-
continuous at every pointt0 ∈ E (cf. Aubin and Cellina, 1984, Ch. 1, Sec. 5,
Corollary 1).

In what follows, we assume thatE = [ a, b ] ⊂ R. To contrast our first result
of this section (Proposition 8.2) with the known casep = 1, we recall the fol-
lowing theorem (in order not to break the exposition we postpone comments to
Theorem 8.1 until Remark 8.2, p. 44):

THEOREM 8.1 Let X be a Banach space,F : [ a, b ] → 2̇X be a compact set-
valued map,t0 ∈ [ a, b ], x0 ∈ F(t0) andp = 1. Then

(a) if F is Lipschitz continuous on[ a, b ], there exists a Lipschitzian mapf :
[ a, b ] → X, a selection ofF , such thatf (t0) = x0 andLip(f ) ≤ Lip(F ) ;

(b) if F is continuous on[ a, b ] of bounded variation, there exists a continuous
map f : [ a, b ] → X of bounded variation, a selection ofF , such that
f (t0) = x0 andV b

a,1(f ) ≤ V b
a,1(F ) ;

(c) if F is of bounded variation on[ a, b ] and the rangeR(F) ofF is contained
in a convex compact subset ofX, there exists a mapf : [ a, b ] → X of
bounded variation, a selection ofF , such thatf (t0) = x0 and V b

a,1(f ) ≤
V b

a,1(F ). 2

Opposite to Lipschitz continuous maps, Hölder continuous maps of exponent
0 < γ < 1 do not, in general, have continuous selections as the following proposi-
tion shows.

PROPOSITION 8.2 There exists a Hölder continuous, of exponentγ for every
0 < γ < 1, compact set-valued mapF : [−1, 1 ] → 2̇R

2
(and, hence,F is

Hausdorff continuous of boundedp-variation with p = 1/γ ) which admits no
continuous selection.

Proof. The example below is a modification of Example 1 from (Aubin and
Cellina, 1984, Ch. 1, Sec. 6). LetC = { (x, y) ∈ R

2 : x2 + y2 = 1} be the unit
circumference inR2 and

A(t) = { (x, y) ∈ R2 : x = cosθ , y = sinθ , α(t) < θ < α(t)+ 2β(t) },
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whereα(t) = 1/|t| andβ(t) = e−1/|t | for t 6= 0. DefineF : [−1, 1 ] → 2̇R
2

by

F(t) =
{

C \A(t) if t 6= 0,

C if t = 0.

Fort 6= 0,F(t) is the unit circumference inR2 from which a section from the angle
α(t) to the angleα(t)+2β(t) is removed. Ast gets smaller, the arclength of the hole
decreases while the initial angle increases as 1/|t|, i.e., the hole spins around the
origin with increasing angular speed. Any continuous selectionf (t) = (x(t), y(t))

defined on[−1, 0 [ or on]0, 1 ] (for instance,x(t) = cos(1/|t|), y(t) = sin(1/|t|) )
cannot be continuously extended to the whole[−1, 1 ]. In fact, the hole in the
circumference would force this selection to rotate around the origin with an angle
θ0(t) betweenα(t)+2β(t) andα(t)+2π and the limits limt→±0 f (t) cannot exist.

However,F is Hölder continuous on[−1, 1 ] of exponentγ for every 0<γ <1.
To see this, let 0< s < t ≤ 1. Since the length of the chord is less than the length
of an arc it spans, we have the estimate

dH (F(t), F (s)) ≤ min{α(s)− α(t), β(t) }.
The inequalityα(s)−α(t) ≤ β(t) is equivalent to the inequalitys ≥ t/(1+ tβ(t)) =: s0(t),
so that

dH (F(t), F (s)) ≤


β(t) if 0 < s ≤ s0(t),

1

s
− 1

t
if s0(t) ≤ s ≤ t.

If 0 < s ≤ s0(t), then we have

dH (F(t), F (s))

(t − s)γ
≤ β(t)

(t − s)γ
≤ β(t)

(t − s0(t))
γ

(8.1)

= (β(t))1−γ

t2γ
(1+ tβ(t))γ .

If s0(t) ≤ s ≤ t , then we have

dH (F(t), F (s))

(t − s)γ
≤ t − s

ts(t − s)γ
≤ (t − s0(t))

1−γ

ts0(t)
(8.2)

= (β(t))1−γ

t2γ
(1+ tβ(t))γ .

The function in the right hand sides of (8.1) and (8.2) tends to zero ast → +0,
hence it is bounded for 0< t ≤ 1 by a constantM(γ ) depending onγ .

Now, if 0 < t ≤ 1, then

dH (F(t), F (0))

tγ
≤ β(t)

tγ
≤M1(γ ).

The cases−1≤ t < s < 0 and−1≤ t < 0 are similar. 2
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REMARK 8.1 It is an open question whether a set-valued map of boundedp-
variation withp > 1 (in particular, a Hölder continuous map of exponent0 < γ =
1/p < 1) admits a selection of boundedp-variation. The result of Proposition 8.2
might mean that the answer to this question is negative.

To end this section, we are going to supplement Theorem 8.1 with one more
result on the existence of selections which was not explicitly given in (Chistyakov,
1997, Sec. 9).

THEOREM 8.3 Under the conditions of Theorem8.1, if F is absolutely continu-
ous on[ a, b ], then there exists an absolutely continuous mapf : [ a, b ] → X, a
selection ofF , such thatf (t0) = x0.

Proof. First, we note that ifϕ(t) = V t
a,1(F ), t ∈ [ a, b ], thenϕ is absolutely

continuous on[ a, b ]. In fact, givenε > 0, there isδ = δ(ε) > 0 such that
if { ] an, bn [ }nn=1 is a finite collection of disjoint subintervals of[ a, b ] with the
property

∑N
n=1(bn − an) ≤ δ, then

∑N
n=1 dH (F(bn), F (an)) ≤ ε/2. For eachn ∈

{1, . . . , N} let Tn = {tn,i}kn

i=0 ∈ T bn
an

be a partition of[ an, bn ] such that

V
bn

an,1(F ) ≤ VH,1[F, Tn] + (ε/2N).

Since
∑N

n=1

∑kn

i=1(tn,i − tn,i−1) =∑N
n=1(bn − an) ≤ δ, we infer that

N∑
n=1

|ϕ(bn)− ϕ(an)| =
N∑

n=1

V
bn

an,1(F ) ≤
N∑

n=1

VH,1[F, Tn] + (ε/2) =

=
N∑

n=1

kn∑
i=1

dH(F(tn,i), F (tn,i−1))+ (ε/2) ≤ (ε/2)+ (ε/2) = ε.

Now, by virtue of Lemma 3.3 (withp = 1) we have the decompositionF =
G ◦ ϕ on [ a, b ], whereG : [0, ` ] = ϕ([ a, b ]) → 2̇X is a Lipschitz continuous
set-valued map such that` = V b

a,1(F ) <∞ and Lip(G) ≤ 1. SinceF is compact,
G is compact as well. Noting thatx0 ∈ F(t0) = G(τ0) with τ0 = ϕ(t0), by
Theorem 8.1(a) we find a Lipschitzian mapg : [0, ` ] → X such thatg(τ0) = x0,
g(τ) ∈ G(τ) for all τ ∈ [0, ` ], and Lip(g) ≤ Lip(G) ≤ 1.

Set f = g ◦ ϕ. Since ϕ is absolutely continuous andg is Lipschitzian,
f : [ a, b ] → X is absolutely continuous,f (t0) = x0 and f (t) = g(ϕ(t)) ∈
G(ϕ(t)) = F(t) for all t ∈ [ a, b ]. 2

REMARK 8.2 Theorem 8.1 generalizes the results ofHermes(1971) andKikuchi
and Tonita(1971) to nonconvex-valued infinite-dimensional set-valued maps. Part (a)
in Theorem 8.1 is due toMordukhovich(1988), Supplement, Theorem 1.8, where he
also proved that under conditions of part (b) there exists acontinuousselectionf
of F . Part (b) in Theorem 8.1, which refines the last assertion, and part (c) were
proved byChistyakov(1997), Theorem 9.1. Theorem 8.3 is a generalization of
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Lemma 1 byZhu Qiji (1986), which was proved in the finite-dimensional case
X = R

d (d ∈ N). Finally, recall that there are compact continuous set-valued
mapsF : [0, 1] → 2̇R

d
without continuous selections (seeHermes(1971), Aubin

and Cellina(1984), Ch. 1, Sec. 6, and Proposition 8.2 above).
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