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Abstract

We present some properties of real valued functions of bounded gen-
eralized variation of Riesz-Orlicz type including weight and characterize
Lipschitzian superposition Nemytskii operators which map between spaces
(in fact, Banach algebras) of these functions.

1 Introduction

Let I ⊂ R be an interval, R
I the algebra of all functions f : I → R under the

usual pointwise operations and h : I ×R → R a given function of two variables,
h = h(t, x). The mapping H = Hh : R

I → R
I defined by

(Hf)(t) ≡ H(f)(t) = h(t, f(t)), t ∈ I, f ∈ R
I , (1)

is called a h-generated superposition Nemytskii operator. Let F (I) ⊂ R
I be a

Banach function space with the norm | · |F . In order to solve the functional
equation f(t) = h(t, f(t)), t ∈ I, also written as f = Hf , with respect to
f ∈ F (I), one can try the classical Banach fixed point theorem, in which case
the operator H : F (I) → F (I) should satisfy the following Lipschitz condition:

|Hf − Hg|F ≤ µ|f − g|F , f , g ∈ F (I), (2)

where µ is a constant, 0 < µ < 1. However, as was observed by Matkowski [10]
in the case of Lipschitz functions F (I) = Lip(I) with I = [a, b], condition (2)
implies that the generating function h of the operator H has to be of the form:

h(t, x) = h0(t) + h1(t)x, t ∈ I, x ∈ R, (3)
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where h0, h1 ∈ F (I). Consequently, Banach’s contraction principle cannot be
applied directly in F (I) if h is a “nonlinear” function in the second variable (and
hence a more powerful tool must be invoked, such as the Schauder fixed point
theorem). Subsequently, similar results have been established by Matkowski and
Mís [10], Merentes [13] and Merentes and Rivas [14] in the spaces of functions
of bounded variation in the sense of C. Jordan and F. Riesz.

In this paper we characterize Lipschitzian superposition operators of the
above kind (see Sec. 3) in the space of functions of bounded generalized variation
of Riesz-Orlicz type including weight as a continuation of the studies in [4]
and [5]. The presence of the weight function σ in the definition of the variation
(see Sec. 2) implies that functions of bounded variation in this sense can be
defined on unbounded intervals and that they are no longer of bounded Jordan
variation and a fortiori absolutely continuous in general. We have chosen the
basic case of real valued functions since normed linear space valued functions
(and even set-valued functions) and superposition operators on them can be
studied following the general outline of [3] and [5].

2 Generalized variation with weight

Let N be the set of all convex continuous functions Φ from R
+ = [0,∞) into

itself such that Φ(ρ) = 0 if and only if ρ = 0, and limρ→∞ Φ(ρ)/ρ = ∞. Let
I ⊂ R be an arbitrary (i.e. closed, half-closed, open, bounded or unbounded)
fixed interval and σ : I → R a fixed continuous strictly increasing function
called a weight. If Φ ∈ N , we define the (total) generalized Φ-variation VΦ(f) ≡
VΦ(f, I, σ) of the function f : I → R with respect to the weight function σ in
two steps as follows (cf. [3]). If I = [a, b] is a closed interval and T = {ti}m

i=0 is
a partition of I (i.e. m ∈ N and a = t0 < t1 < . . . < tm−1 < tm = b), we set

VΦ(f, T, σ) =
m∑

i=1

(
σ(ti) − σ(ti−1)

)
Φ

(
|f(ti) − f(ti−1)|
σ(ti) − σ(ti−1)

)

and, denoting by T b
a the set of all partitions of [a, b], we set

VΦ(f) ≡ VΦ(f, [a, b], σ) = sup {VΦ(f, T, σ) | T ∈ T b
a }.

If I is any interval in R, we put

VΦ(f) ≡ VΦ(f, I, σ) = sup {VΦ(f, [a, b], σ) | [a, b] ⊂ I }.

The set of all functions of bounded generalized Φ-variation with weight σ will
be denoted by BVΦ(I) ≡ BVΦ(I, σ) = { f : I → R | VΦ(f, I, σ) < ∞}.

If σ(t) = id(t) = t, t ∈ I = [a, b], and Φ(ρ) = ρq, ρ ≥ 0, q > 1, the Φ-var-
iation VΦ(f, I, σ), also written as Vq(f), is the classical q-variation of f in the
sense of Riesz [16], who has proved that Vq(f) < ∞ if and only if f ∈ AC(I)



Superposition operators and functions of bounded generalized variation 3

(i.e. f : I → R is absolutely continuous) and its almost everywhere derivative f ′

is Lebesgue q-summable on I. Recall that, as is well known, the space BVΦ(I)
with I, Φ and σ as above endowed with the norm |f |q = |f(a)| +

(
Vq(f)

)1/q is
a Banach algebra for all q ≥ 1.

Riesz’s criterion was extended by Medvedev [12]: if Φ ∈ N , then f ∈ BVΦ(I)
if and only if f ∈ AC(I) and

∫
I Φ(|f ′(t)|) dt < ∞. Functions of bounded gen-

eralized Φ-variation with Φ ∈ N and σ = id (also called functions of bounded
Riesz-Orlicz Φ-variation) were studied by Cybertowicz and Matuszewska [6].
They showed that if f ∈ BVΦ(I), then VΦ(f) =

∫
I

Φ
(
|f ′(t)|

)
dt, and that the

space GVΦ(I) = {f ∈ R
I such that limλ→+0 VΦ(λf) = 0} is a semi-normed lin-

ear space with the Luxemburg-Nakano seminorm given by pΦ(f) = inf{r > 0 |
VΦ(f/r) ≤ 1}. Later Maligranda and Orlicz [9] proved that the space GVΦ(I)
equipped with the norm ‖f‖Φ = supt∈I |f(t)| + pΦ(f) is a Banach algebra.

The notion of the generalized Φ-variation of a function is interesting due
to the following result which is also valid for metric space valued functions
[2, Theorem 6.7]: f ∈ AC(I) if and only if there exists Φ ∈ N such that
f ∈ BVΦ(I); in other words, AC(I) =

⋃
Φ∈N BVΦ(I, id).

Throughout this paper the weight function σ will be fixed, and so, as a rule,
it won’t be explicitly written.

In what follows we will use some facts which we present now as lemmas. The
first lemma lists the main properties of the (generalized) Φ-variation.

Lemma 1 ([2, 3]) Let f : I → R and Φ ∈ N . We have:
(a) if J is a subinterval of I, then VΦ(f, J) ≤ VΦ(f, I);
(b) if t ∈ I, then VΦ(f, I) = VΦ(f, (−∞, t] ∩ I) + VΦ(f, [t,∞) ∩ I);
(c) if fn : I → R, n ∈ N, and limn→∞ fn(t) = f(t) for all t ∈ I, then

VΦ(f) ≤ lim inf
n→∞ VΦ(fn);

(d) if f ∈ BVΦ(I, σ), then f is absolutely continuous with respect to σ, and
hence, continuous on I.

Sets BVΦ(I) corresponding to different functions Φ are related as follows.

Lemma 2 Suppose that Φ, Ψ ∈ N and the function σ is bounded. Then
BVΦ(I) ⊂ BVΨ(I) if and only if lim supρ→∞ Ψ(ρ)/Φ(ρ) < ∞.

Proof. First we note that the condition of Lemma including the limit superior
is equivalent to the following one: there exist constants C > 0 and ρ0 > 0
such that Ψ(ρ) ≤ Φ(ρ) for all ρ ≥ ρ0. Taking this into account, we find that
sufficiency follows from the inequality:

VΨ(f) ≤ Ψ(ρ0)|σ(I)| + C VΦ(f), f ∈ BVΦ(I),

where |σ(I)| = supt∈I σ(t) − inft∈I σ(t) is finite by the assumption.
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If the necessity part is wrong, then there exists an increasing sequence
{ρn}∞n=1 of positive numbers such that limn→∞ ρn = ∞ and Ψ(ρn) > 2nΦ(ρn)
for all n ∈ N. Set t0 = inf I and σ(t0) = inft∈I σ(t). Define the increasing
sequence {tn}∞n=1 ⊂ I inductively as follows:

σ(tn) − σ(tn−1) = 2−n|σ(I)|Φ(ρ1)/Φ(ρn), n ∈ N.

Denote by σ(I) = {σ(t) | t ∈ I} the image of σ (which is an interval) and
define the function χ : σ(I) → R by χ(s) = ρn if σ(tn−1) ≤ s < σ(tn), n ∈ N,
and χ(s) = 0 otherwise. Setting f(t) =

∫ σ(t)

σ(t0) χ(s) ds, t ∈ I, we claim that
f ∈ BVΦ(I) and f /∈ BVΨ(I). Indeed, using Lemma 1(b) we have:

VΦ(f) =
∞∑

n=1

(
σ(tn) − σ(tn−1)

)
Φ(ρn) = |σ(I)|Φ(ρ1).

On the other hand, for any m ∈ N we have:

VΨ(f) ≥
m∑

n=1

(
σ(tn) − σ(tn−1)

)
Ψ

(
|f(tn) − f(tn−1)|
σ(tn) − σ(tn−1)

)
=

= |σ(I)|Φ(ρ1)
m∑

n=1

2−nΨ(ρn)/Φ(ρn) ≥ m|σ(I)|Φ(ρ1). �

Lemma 3 For Φ ∈ N and bounded σ, BVΦ(I, σ) is a linear space if and only
if Φ satisfies the ∆2-condition near infinity, i.e. lim supρ→∞ Φ(2ρ)/Φ(ρ) < ∞.

Proof of Lemma 3 is the same as that of Proposition 6.1 in [2]. �
By Lemma 3, the convex set BVΦ(I) is not a linear space in general: more

precisely, it may happen so that 2f /∈ BVΦ(I) for some f ∈ BVΦ(I). For
instance, let Φ(ρ) = eρ − 1, ρ ≥ 0, σ = id, and define f : [0, 1] → R by
f(t) = t(1 − log t)/2 if 0 < t ≤ 1 and f(0) = 0. Then we have:

VΦ(f) =
∫ 1

0

Φ
(
|f ′(t)|

)
dt = 1 and VΦ(2f) = ∞.

We introduce the space GVΦ(I) = GVΦ(I, σ) as follows: f ∈ GVΦ(I) if there
exists a constant r > 0 (depending on f) such that f/r ∈ BVΦ(I). Clearly,

BVΦ(I) ⊂ GVΦ(I) ⊂ (space of continuous functions I → R).

Moreover, the set GVΦ(I) is a linear space. In fact, if fj ∈ GVΦ(I), then
VΦ(fj/rj) < ∞ for some rj > 0, j = 1, 2, so that the convexity of the functional
VΦ( · ) implies

VΦ

(
f1 + f2

r1 + r2

)
≤ r1

r1 + r2
VΦ(f1/r1) +

r2

r1 + r2
VΦ(f2/r2),
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whence f1 + f2 ∈ GVΦ(I). Obviously, λf ∈ GVΦ(I) if λ ∈ R and f ∈ GVΦ(I).
We define the norm | · |Φ on GVΦ(I) by

|f |Φ = |f(a)| + pΦ(f), f ∈ GVΦ(I), (4)

where a ∈ I is arbitrary and fixed and pΦ( · ) is the Luxemburg-Nakano semi-
norm (cf. [8, Sec. 2.4 and Remark 2 in Sec. 1]) given by

pΦ(f) = inf {r > 0 | VΦ(f/r) ≤ 1}.

Let Φ−1 designates the inverse function of Φ ∈ N , and set ωΦ(ρ) = ρΦ−1(1/ρ),
ρ > 0. Note that the function ωΦ is continuous, subadditive, concave and
limρ→+0 ωΦ(ρ) = limr→∞ r/Φ(r) = 0 since Φ ∈ N .

Some elementary properties of pΦ are gathered in the following

Lemma 4 (cf. [5]) Let Φ ∈ N and f ∈ GVΦ(I). We have:
(a) if t, s ∈ I, then |f(t) − f(s)| ≤ ωΦ

(
|σ(t) − σ(s)|

)
pΦ(f);

(b) if pΦ(f) > 0, then VΦ

(
f/pΦ(f)

)
≤ 1;

(c) if r > 0, we have: pΦ(f) ≤ r if and only if VΦ(f/r) ≤ 1; if VΦ(f/r) = 1,
then pΦ(f) = r (but not vice versa in general);

(d) if the sequence {fn}∞n=1 ⊂ GVΦ(I) converges to f pointwise on I as n → ∞,
then pΦ(f) ≤ lim supn→∞ pΦ(fn).

Remark 1. Estimate in Lemma 4(a) shows that any function f ∈ GVΦ(I)
is continuous on I (cf. also Lemma 1(d)). It shows also that the modulus of
continuity of f (even) in the case σ = id is “finer” than the modulus of continuity
from the embedding theorem for Sobolev-Orlicz spaces (cf. [1, Thm. 8.36]) since

ωΦ(ρ) = ρΦ−1(1/ρ) <

∫ ρ

+0

Φ−1(1/s) ds =
∫ ∞

1/ρ

Φ−1(τ)/τ2 dτ, ρ > 0.

We will require certain partial-ordering relationships among functions from
the set N (cf. [7, Secs. 3 and 13]). If Φ, Ψ ∈ N , we say that Φ dominates Ψ
near infinity (in symbols, Ψ�Φ) provided lim supρ→∞ Φ−1(ρ)/Ψ−1(ρ) < ∞, or,
equivalently, if there exist constants C > 0 and ρ0 > 0 such that Ψ(ρ) ≤ Φ(Cρ)
for all ρ ≥ ρ0. The two functions Φ and Ψ are equivalent near infinity if Ψ�Φ
and Φ�Ψ.

We say that Φ increases essentially more slowly than Ψ near infinity and
write Φ � Ψ if Φ � Ψ and Φ and Ψ are not equivalent near infinity. This is
exactly the case if and only if limρ→∞ Φ(Cρ)/Ψ(ρ) = 0 for all C > 0. Moreover,
the relation Φ � Ψ can be characterized as follows:

Φ � Ψ if and only if lim
ρ→∞ Ψ−1(ρ)/Φ−1(ρ) = 0. (5)
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Theorem 5 Let Φ, Ψ ∈ N and the function σ be bounded.
(a) The space GVΦ(I, σ) equipped with the norm (4) is a Banach algebra,

and for all f , g ∈ GVΦ(I) the following inequality holds :

|fg|Φ ≤ γ|f |Φ|g|Φ, (6)

where γ =γ(Φ,|σ(I)|)=max{1,2ωΦ(|σ(I)|)} and |σ(I)|=supt∈I σ(t)−inf t∈I σ(t).
(b) GVΦ(I) ⊂ GVΨ(I) if and only if Ψ�Φ; moreover, there exists a constant

κ = κ(Φ, Ψ) > 0 such that |f |Ψ ≤ κ|f |Φ for all f ∈ GVΦ(I).

Proof. (a) Since the function ωΦ(ρ) = ρΦ−1(1/ρ) is nondecreasing for ρ > 0,
by Lemma 4(a) for any function f ∈ GVΦ(I) we have the estimate:

‖f‖ ≡ sup
t∈I

|f(t)| ≤ |f(a)| + ωΦ(|σ(I)|)pΦ(f). (7)

Given f , g ∈ GVΦ(I), let us prove the following inequality:

p(fg) ≤ p(f)‖g‖ + ‖f‖p(g), (8)

where the subscript Φ is omitted in pΦ(fg), pΦ(f) and pΦ(g) for the sake of
brevity. Without loss of generality we may assume that the quantities ‖f‖, ‖g‖,
p(f) and p(g) are strictly positive. Set r = p(f)‖g‖ + ‖f‖p(g). If T = {ti}m

i=0

is a partition of I, then setting ∆fi = f(ti) − f(ti−1), ∆gi = g(ti) − g(ti−1),
∆σi = σ(ti) − σ(ti−1) and using the monotonicity and convexity of Φ and
applying Lemma 4(b) we have:

VΦ(fg/r, T ) =
m∑

i=1

∆σiΦ
(
|(∆fi)g(ti) + f(ti−1)(∆gi)|/(r∆σi)

)
≤

≤
m∑

i=1

∆σiΦ
(
(|∆fi| · ‖g‖ + ‖f‖ · |∆gi|)/(r∆σi)

)
≤

≤
(
p(f)‖g‖/r

) m∑
i=1

∆σiΦ
(
|∆fi|/(p(f)∆σi)

)
+

+
(
‖f‖p(g)/r

) m∑
i=1

∆σiΦ
(
|∆gi|/(p(g)∆σi)

)
≤

≤
(
p(f)‖g‖/r

)
VΦ

(
f/p(f)

)
+

(
‖f‖p(g)/r

)
VΦ

(
g/p(g)

)
≤

≤
(
p(f)‖g‖ + ‖f‖p(g)

)
/r = 1.

Due to the arbitrariness of T , we get VΦ(fg/r) ≤ 1, so that the definition of
p(fg) gives p(fg) ≤ r, which is (8). Now, inequality (6) follows from (4), (8)
and (7).

To prove that GVΦ(I) is complete, suppose that {fn}∞n=1 is a Cauchy se-
quence in GVΦ(I), i.e.

|fn − fm|Φ = |fn(a) − fm(a)| + pΦ(fn − fm) → 0 as n, m → ∞.
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By Lemma 4(a) it follows that {fn(t)}∞n=1 is a Cauchy sequence in R for all
t ∈ I and therefore there exists a function f : I → R such that fn converges to
f pointwise on I as n → ∞. Lemma 4(d) yields:

|fn − f |Φ ≤ lim sup
m→∞

|fn − fm|Φ = lim
m→∞ |fn − fm|Φ ∈ R

+, n ∈ N.

Since {fn}∞n=1 is a Cauchy sequence in GVΦ(I), we have:

lim sup
n→∞

|fn − f |Φ ≤ lim
n→∞ lim

m→∞ |fn − fm|Φ = 0.

Hence |fn − f |Φ → 0 as n → ∞. It follows that there exists n0 ∈ N such that
|fn0 − f |Φ ≤ 1, and so |f |Φ ≤ |f − fn0 |Φ + |fn0 |Φ ≤ 1 + |fn0 |Φ < ∞. Therefore,
f ∈ GVΦ(I), which was to be proved.

(b) Suppose that Ψ � Φ and f ∈ GVΦ(I), so that VΦ(f/r) < ∞ for some
r > 0. Using the equivalent condition for the relation Ψ�Φ (see p. 5), we have:

VΨ

(
f/(rC)

)
≤ Ψ(ρ0)|σ(I)| + VΦ(f/r),

so that f ∈ GVΨ(I).
If the relation Ψ�Φ does not hold, then there exists an increasing sequence

{ρn}∞n=1 of positive numbers such that limn→∞ ρn = ∞ and Ψ(ρn) > Φ(n2nρn)
for all n ∈ N. Setting θ = 1/2n and ρ = n2nρn in the inequality Φ(θρ) ≤ θΦ(ρ)
we find that Φ(n2nρn) ≥ 2nΦ(nρn), and so

Ψ(ρn) > 2nΦ(nρn), n ∈ N. (9)

Set t0 = inf I, σ(t0) = inft∈I σ(t) and define the increasing sequence {tn}∞n=1 ⊂ I
inductively as follows:

σ(tn) − σ(tn−1) = 2−n|σ(I)|Φ(ρ1)/Φ(nρn), n ∈ N.

If σ(I) is the image of σ, define the function χ : σ(I) → R by χ(s) = nρn if
σ(tn−1) ≤ s < σ(tn), n ∈ N, and χ(s) = 0 otherwise. If the function f : I → R

is given by f(t) =
∫ σ(t)

σ(t0)
χ(s) ds, t ∈ I, then f ∈ BVΦ(I) \ GVΨ(I). In fact,

VΦ(f) =
∞∑

n=1

(
σ(tn) − σ(tn−1)

)
Φ(nρn) = |σ(I)|Φ(ρ1).

On the other hand, let us show that VΨ(f/r) = ∞ for all r ≥ 1. Taking into
consideration (9), for any m ∈ N such that m ≥ r, we have:

VΨ(f/r) ≥
2m∑

n=m

(
σ(tn) − σ(tn−1)

)
Ψ

(
|f(tn) − f(tn−1)|

(σ(tn) − σ(tn−1))r

)
≥

≥
2m∑

n=m

(
σ(tn) − σ(tn−1)

)
Ψ(ρn) ≥ m|σ(I)|Φ(ρ1).
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Therefore f /∈ GVΨ(I).
It remains to prove the inequality in (b). Since Ψ�Φ, the identity operator

Id given by Id(f) = f maps GVΦ(I) into GVΨ(I) and is closed (by virtue of (4)
and (7)), so that, by the closed graph theorem, it is continuous, and it suffices
to define the constant κ > 0 as the operator norm of the identity operator
Id : GVΦ(I) → GVΨ(I). �
Remark 2. If the right derivative Φ′(+0) > 0, the assumption that σ is bounded
is redundant in Theorem 5(a). To see this, note that ωΦ is nondecreasing and

sup
ρ>0

ωΦ(ρ) = lim
ρ→∞ ρΦ−1(1/ρ) = lim

r→+0
r/Φ(r) = 1/Φ′(+0) ∈ (0,∞).

It follows from Lemma 4(a) that inequality (7) can be replaced by

sup
t∈I

|f(t)| ≤ |f(a)| + pΦ(f)/Φ′(+0),

and so γ = γ(Φ) = max{1, 2/Φ′(+0)} in (6).

Remark 3. From the theory of Banach algebras it is well known that the norm
(4) with the property (6) can always be replaced by an equivalent norm ‖ · ‖Φ

on GVΦ(I) such that ‖fg‖Φ ≤ ‖f‖Φ‖g‖Φ for all f , g ∈ GVΦ(I).

Remark 4. In the proofs of Lemma 2 and Theorem 5(b) we have used certain
ideas from the theory of Orlicz spaces (cf. [7, Secs. 8.3 and 13.1] and [8, Sec. 3]).

3 Lipschitzian superposition operators

Theorem 6 Suppose that h : I×R → R, H = Hh : R
I → R

I is the h-generated
superposition Nemytskii operator (see (1)) and Φ, Ψ ∈ N .

(a) If H maps GVΦ(I) into GVΨ(I) and is Lipschitzian in the sense that
there exists a constant µ > 0 such that

|Hf − Hg|Ψ ≤ µ|f − g|Φ ∀ f , g ∈ GVΦ(I), (10)

then there exists a function µ0 : I → R
+ such that

|h(t, x) − h(t, y)| ≤ µ0(t)|x − y|, t ∈ I, x, y ∈ R, (11)

and there exist two functions h0, h1 ∈ GVΨ(I) such that (3) holds.
If, in addition, Φ � Ψ, then h(t, x) = h(t, 0) for all t ∈ I and x ∈ R.
(b) Conversely, if Ψ � Φ, the function σ is bounded and there are two

functions h0, h1 ∈ GVΨ(I) such that (3) holds, then the superposition operator
H maps GVΦ(I) into GVΨ(I) and is Lipschitzian.
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Proof. (a) Inequality (10) and definition (4) imply that if f , g ∈ GVΦ(I),
then pΨ(Hf − Hg) ≤ µ|f − g|Φ which, in the case when |f − g|Φ > 0, is, by
Lemma 4(c), equivalent to

VΨ

(
Hf − Hg

µ|f − g|Φ

)
≤ 1.

Taking into account definitions of VΨ and H , for all α, β ∈ I, α < β, we have:

(
σ(β) − σ(α)

)
Ψ

(
|h(β, f(β)) − h(β, g(β)) − h(α, f(α)) + h(α, g(α))|

µ|f − g|Φ
(
σ(β) − σ(α)

)
)

≤ 1,

which yields

|h(β, f(β)) − h(β, g(β)) − h(α, f(α)) + h(α, g(α))| ≤
≤ µ|f − g|ΦωΨ

(
σ(β) − σ(α)

)
(12)

for all f , g ∈ GVΦ(I) and all α, β ∈ I, α < β.
For α and β as above define functions ηα,β : I → [0, 1] by

ηα,β(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if s ≤ α,
σ(s) − σ(α)
σ(β) − σ(α)

if α ≤ s ≤ β,

1 if β ≤ s.

Without loss of generality we may assume that the point a ∈ I in (4) is an
interior point of I.

In order to prove claim (11), consider the following three cases for the point
t ∈ I: i) t > a; ii) t < a; iii) t = a.

i) Let t > a and α, β ∈ I, a ≤ α < β. Define two functions

f(s) = ηα,β(s)x, g(s) = ηα,β(s)y, s ∈ I, x, y ∈ R.

To compute the norm |f − g|Φ, let x �= y and, applying Lemma 1(b), let us
choose a number r > 0 such that

VΦ

(
(f − g)/r

)
=

(
σ(β) − σ(α)

)
Φ

(
|x − y|(

σ(β) − σ(α)
)
r

)
= 1.

Then Lemma 4(c) gives:

pΦ(f − g) = r = |x − y|/ωΦ(σ(β) − σ(α)), x, y ∈ R.

Substituting functions f and g into inequality (12) and noting that f(β) = x,
g(β) = y and f(α) = g(α) = 0, we get:

|h(β, x) − h(β, y)| ≤ µ|x − y|ωΨ

(
σ(β) − σ(α)

)
/ωΦ

(
σ(β) − σ(α)

)
. (13)
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Setting α = a and β = t we obtain (11) with a suitably chosen number µ0(t).
ii) Let t < a and α, β ∈ I, α < β ≤ a. Substituting functions

f(s) =
(
1 − ηα,β(s)

)
x, g(s) =

(
1 − ηα,β(s)

)
y, s ∈ I, x, y ∈ R, (14)

into (12) and noting that f(β) = g(β) = 0, f(α) = x and g(α) = y, we have as
above:

|h(α, x) − h(α, y)| ≤ µ|x − y|ωΨ

(
σ(β) − σ(α)

)
/ωΦ

(
σ(β) − σ(α)

)
. (15)

Setting α = t and β = a we obtain (11) with an obvious choice of µ0(t).
iii) Let t = a. Since it is an interior point of I, fix β ∈ I such that a < β.

Substituting functions (14) with α = a into (12) and noting that |f(a)−g(a)| =
|x − y|, we arrive at

|h(a, x) − h(a, y)| ≤ µ|x − y|
(

1 +
1

ωΦ

(
σ(β) − σ(a)

)
)

ωΨ

(
σ(β) − σ(a)

)
. (16)

Therefore, we are through with inequality (11).
Now we prove that h(t, x) is of the form (3). For α, β ∈ I, α < β, set

f(s) = ηα,β(s)x + y, g(s) = ηα,β(s)x, s ∈ I, x, y ∈ R,

and observe that f(β) = x + y, g(β) = x, f(α) = y, g(α) = 0 and f − g ≡ y.
Hence, inequality (12) provides the estimate:

|h(β, x + y) − h(β, x) − h(α, y) + h(α, 0)| ≤ µ|y|ωΨ

(
σ(β) − σ(α)

)
. (17)

Since H maps GVΦ(I) into GVΨ(I) and constant functions belong to GVΦ(I),
the function h( · , x) = H(x) is in GVΨ(I) for all x ∈ R, and so it is continuous
on I according to Lemma 4(a). Given t ∈ I, letting β − α tend to zero in (17)
in such a way that [α, β] � t, we get:

h(t, x + y) − h(t, x) − h(t, y) + h(t, 0) = 0, t ∈ I, x, y ∈ R.

It follows that h(t, x + y) − 2h(t, x) + h(t, x − y) ≡ 0 and hence

lim
y→0

h(t, x + y) − 2h(t, x) + h(t, x − y)
y2

= 0, t ∈ I, x ∈ R, (18)

i.e. the second symmetric derivative of h(t, · ) (which is defined by the left hand
side of (18)) vanishes at any point x ∈ R. Since, by (11), the function h(t, · ) is
continuous on R, this implies (cf. [15, Ch. 10, Sec. 5, Thm. 1]) that h(t, x) is of
the form (3) for some functions h0, h1 ∈ R

I . Taking into account the equalities
h0 = h( · , 0) = H(0) and h1 = h( · , 1) − h( · , 0) = H(1) − H(0), we conclude
that h0, h1 ∈ GVΨ(I). This completes the proof of the representation (3).
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Now suppose that Φ � Ψ, and let t ∈ I. If t > a, we set β = t, y = 0 and let
α → t − 0 in (13). If t < a, we set α = t, y = 0 and let β → t + 0 in (15). If
t = a, we set y = 0 and let β → a + 0 in (16). Noting that

ωΨ

(
σ(β) − σ(α)

)
ωΦ

(
σ(β) − σ(α)

) =
Ψ−1

(
1/(σ(β) − σ(α))

)
Φ−1

(
1/(σ(β) − σ(α))

)
and taking into account (5) and the continuity of h( · , x), x ∈ R, we find that
h(t, x) = h(t, 0) for all t ∈ I and x ∈ R where h( · , 0) ∈ GVΨ(I). In particular,
we see that H is a constant operator.

(b) Since Ψ � Φ, then GVΦ(I) ⊂ GVΨ(I) by Theorem 5(b), and since the
operator H is given according to assumption (3) by

(Hf)(t) = h0(t) + h1(t)f(t), t ∈ I, f ∈ GVΦ(I),

and GVΨ(I) is an algebra by Theorem 5(a), it follows that H maps the space
GVΦ(I) into GVΨ(I). Now, for all f , g ∈ GVΦ(I), inequality (6) and Theo-
rem 5(b) yield the estimate

|Hf − Hg|Ψ ≤ γ(Ψ, |σ(I)|)κ(Φ, Ψ)|h1|Ψ|f − g|Φ, (19)

which shows that H is a Lipschitzian operator. �
Remark 5. If Φ(ρ) = ρp, Ψ(ρ) = ρq, ρ ≥ 0, p > 1, q > 1, and σ(t) = t, t ∈ [a, b],
Theorem 6 gives the results of Merentes and Rivas [14]. It suffices to note only
that Ψ�Φ if and only if q ≤ p, and Φ � Ψ if and only if p < q.

Remark 6. Given h0, h1 ∈ GVΦ(I), one can easily find conditions on the function
h1 in order to solve the “linear” functional equation x = h0 + h1x with respect
to x ∈ GVΦ(I) by using the classical Banach fixed point theorem.

Corollary 7 For Φ ∈ N define

γΦ =
{

γ(Φ, |σ(I)|) as in Theorem 5(a) if Φ′(+0) = 0 and σ bounded,
γ(Φ) as in Remark 2 if Φ′(+0) > 0.

If f , g ∈ GVΦ(I) and |1 − g|Φ < 1/γΦ, then f/g ∈ GVΦ(I).

Proof. Apply Banach’s contraction principle in GVΦ(I) to solve the functional
equation x = (1 − g)x + f with respect to the unknown function x ∈ GVΦ(I)
(see also estimate (19) with Ψ = Φ and h1 = 1 − g). �

Given n ∈ N, let (Rn)I = (RI)n be the algebra of all functions f : I → R
n,

h : I × R
n → R a function of n + 1 variables, h = h(t, x1, . . . , xn), and let

H : (RI)n → R
I be the (h-generated) superposition operator defined by

H(f)(t) = h(t, f1(t), . . . , fn(t)), t ∈ I, f = (f1, . . . , fn) ∈ (Rn)I . (20)
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If Φ = (Φ1, . . . , Φn) ∈ Nn, we endow the Cartesian product

GVΦ(I) = GVΦ1(I) × · · · × GVΦn (I)

with the product norm |f |Φ =
∑n

i=1 |fi|Φi , f = (f1, . . . , fn) ∈ GVΦ(I). Clearly,
GVΦ(I) is a Banach algebra with respect to componentwise operations.

If Φ = (Φ1, . . . , Φn) ∈ Nn and Ψ ∈ N , we write Ψ�Φ provided Ψ�Φi for
all i = 1, . . . , n, and Φ � Ψ—provided Φi � Ψ for all i = 1, . . . , n.

Corollary 8 Let H : (RI)n → R
I be the superposition operator generated by

the function h : I × R
n → R according to (20), and let Φ ∈ Nn and Ψ ∈ N .

(a) If Ψ � Φ and σ is bounded, then H maps GVΦ(I) into GVΨ(I) and
is Lipschitzian if and only if h(t, x1, . . . , xn) = h0(t) +

∑n
i=1 hi(t)xi, t ∈ I,

(x1, . . . , xn) ∈ R
n, for some functions hi ∈ GVΨ(I), i = 1, . . . , n.

(b) If Φ�Ψ and H : GVΦ(I) → GVΨ(I) is Lipschitzian, then H is constant.
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Poland. I am grateful to the Wydzia�l Matematyki Uniwersytet �Lódzki for the
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