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Merging Divisorial with Colored Fans

Klaus Altmann,
Valentina Kiritchenko, & Lars Petersen

Abstract. Given a spherical homogeneous space G/H of minimal
rank, we provide a simple procedure to describe its embeddings as
varieties with torus action in terms of divisorial fans. The torus in
question is obtained as the identity component of the quotient group
N/H , where N is the normalizer of H in G. The resulting Chow
quotient is equal to (a blowup of) the simple toroidal compactification
of G/(HN◦). In the horospherical case, for example, it is equal to a
flag variety, and the slices (coefficients) of the divisorial fan are merely
shifts of the colored fan along the colors.

1. Introduction

We are working over the base field C. Normal varieties X coming with an ef-
fective action of an algebraic torus T, also called T-varieties, can be encoded
by divisorial fans SX = ∑

D⊆Y SX
D ⊗ D on algebraic varieties Y of dimension

equal to the complexity of the torus action. In this notation, D ⊆ Y runs through
all prime divisors on Y , and SX

D denotes a combinatorial object associated to D

(being nontrivial for finitely many summands only). Let N denote the lattice of
one-parameter subgroups of T. Every SX

D stands for a polyhedral subdivision of
NQ together with a prescribed labeling of its cells referring to the set of affine
charts covering X.

The T-variety X in question is then given as a contraction of a toric fibration
over Y , and the data D and SX

D describe exactly where and how this fibration
degenerates, respectively. Vice versa, X can be reconstructed explicitly from SX

in two steps. First, one glues certain relative spectra over Y ; the result of this
procedure is called T̃V(SX). Finally, we obtain X as TV(SX), which denotes a
certain birational contraction of T̃V(SX). See Section 2 for further details.

1.1. The Comparison Theorem

Let G be a connected reductive group, and H ⊂G a spherical subgroup such that
the spherical homogenous space G/H is of minimal rank (see Definition 3.5). The
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goal of this paper is to describe spherical embeddings X ⊇G/H by a divisorial
fan S , that is, X = TV(S), on a modification Y of the simple, toroidal, and hence
often wonderful compactification Y ⊇G/H ′ with H ′ := H ·NG(H)◦, see (3.1)
and (3.2). The latter spaces are very well understood; for any G, there are only
finitely many of them, and the modification Y → Y is given by a certain fan �Y

refining the valuation cone VH ′ ∼=Q�
≥0 of Y , where l denotes the rank of G/H ′.

The basic tool for this construction will be the Tits fibration φ : G/H →G/H ′.
Its central fiber is the torus T :=H ′/H . It acts on X from the right, which turns
the spherical variety X into a T-variety with S = SX . See Section 3 for further
details about spherical varieties.

Fixing a Borel subgroup B ⊆G such that B ·H is open and dense in G, de-
note by C(G/H)(B) � X (G/H) the sets of B-semiinvariant functions and their
character lattice within XB := Hom(B,C∗), respectively. The dual lattices are
connected by an exact sequence

0→N →X ∗(G/H)
p→X ∗(G/H ′)→ 0;

see [Bri97, Théorème 4.3(ii)] and Proposition 4.3. Let C(G/H ′) denote the set
of colors of G/H ′, that is, the set of B-invariant prime divisors of G/H ′. After
fixing a splitting of the above exact sequence, our main result is the following:

Theorem 1.1. Let X ⊇ G/H be a spherical embedding of minimal rank given
by a colored fan �X inside X ∗

Q
(G/H). Denote by VH ⊆X ∗

Q
(G/H) the valuation

cone. Then X = TV(S), where S is a divisorial fan on (Y,N) with:

(1) The base space Y is the toroidal spherical embedding of G/H ′ given by the
(un-)colored fan (�Y ,∅) arising as the image fan (see Definition 4.4) of �X∩
VH via the map p. Its rays a ∈�Y (1) correspond to the G-invariant divisors
Da ⊆ Y .

(2) The maximal cells of the divisorial fan S = SX describing X as a T-variety
are labeled by the maximal colored cones C = (C,FC) ∈ �X and the ele-
ments w ∈W of the Weyl group of G. The part of SX with label (C,w) is
equal to

SX(C,w) =
∑

a∈�Y(1)

SX
a (C)⊗Da +

∑
D′∈C(G/H ′)

(ρ(D′)+ SX
0 (C))⊗D′

+
∑

D′∈C(G/H ′)\FC

∅⊗wD′,

where SX
a (C) := C ∩ p−1(a) is considered as an element of p−1(a)∼=NQ.

Note that the cells of the special fiber form a fan SX
0 . Since it exhibits the as-

ymptotic behavior of all other fibers SX
a , we will sometimes also call it the tail

fan tail(SX). Let us furthermore point out that the coefficients of the colors D′ are
just shifts of tail(SX). The shift vectors ρ(D′) ∈N are defined as projections to N

of the valuations ρD ∈X ∗(G/H) corresponding to the colors of G/H ′; see (4.4).
Finally, we would like to remark that the labeling of the maximal cells is not quite
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bijective. In (7.1) we will see that for a given C = (C,FC) ∈ �X , the accompa-
nying w ∈W are rather parameterized by W/WC for some subgroup WC ⊆W

depending on FC .
It would be interesting to generalize Theorem 1.1 to other spherical varieties.

As Example 7.3 shows, the divisorial fan SX should contain additional maximal
cells apart from those listed in Theorem 1.1.

1.2. Possible Applications

We believe that merging these two partially combinatorial descriptions via diviso-
rial and colored fans may help to obtain further results and insights into the realm
of spherical varieties, in particular, concerning their deformation theory (see e.g.
[AB04]), and the computation of their Cox rings. As an example for the latter
subject, we would like to mention that the Cox ring of a horospherical variety is
known to be a polynomial ring over the Cox ring of a flag variety ([Bri07b, The-
orem 4.3.2] or [Gag, Theorem 3.8]). However, an alternative way to understand
this might be to combine our Theorem 1.1 with Theorem 1.2 from [HS10].

1.3. Content of the Paper

The present paper is organized as follows. In Sections 2 and 3, we shortly review
polyhedral divisors and spherical varieties, respectively. Section 4 then introduces
the T-action on a spherical variety, which is relevant for our purposes and was
already announced at the beginning of this section. Moreover, the toroidal part of
our main Theorem 1.1 appears there as Theorem 4.6.

Sections 5 and 6 contain the proof of Theorem 4.6. The main idea is to reinter-
pret well-known facts from the spherical context within the context of divisorial
fans. Using the language of p-divisors allows us to recover the encoded spherical
variety directly from the given combinatorial data.

Section 7 finally deals with the nontoroidal case, and we conclude by present-
ing several examples in Section 8.

2. P-Divisors and Divisorial Fans

The upshot of [AH06; AHS08] is that normal varieties X with a complexity-k ac-
tion of an algebraic torus correspond to p-divisors DX (for affine X) or divisorial
fans SX (for general X) on a k-dimensional variety Y . The latter variety is the
so-called Chow quotient Y = X//chT and defined as a GIT-limit quotient of the
T-action on X. But any modification of X//chT could be taken as well. Both data
DX and SX induce a diagram like

Y X̃
π r

X,

where r is a T-equivariant proper birational contraction resolving the indeter-
minacies of the rational quotient map π : X−→ Y . Whereas X is obtained as
TV(SX), the auxiliary T-variety X̃ shows up as T̃V(SX). We are now going to
recall this language in more detail.



6 K. Altmann, V. Kiritchenko & L. Petersen

2.1. Polyhedral Divisors

Let N ∼= Zn be a free Abelian group of rank n, and denote its dual by M :=
Hom(N,Z). These data give rise to the torus T=N ⊗Z C∗, and one can recover
M and N as its lattice of characters and 1-parameter subgroups, respectively. Let
us furthermore consider convex polyhedra � ⊆ NQ := N ⊗Z Q ∼= Qn. The tail
cone of a polyhedron � is defined as

tail(�) := {a ∈NQ | a +�⊆�}.
Note that the set of polyhedra with fixed tail cone σ forms a semigroup
Pol+(N,σ ) with cancelation property (the addition is given by the Minkowski
sum).

Definition 2.1. Let Y be a normal, semiprojective (i.e., projective over an affine)
variety and fix a polyhedral, pointed cone σ ⊆ NQ. A finite formal sum D =∑

D �D ⊗D is called a polyhedral divisor on (Y,N) with tail(D)= σ if

(1) all D are prime divisors on Y ,
(2) all �D ⊆NQ are convex polyhedra with tail(�D)= σ , and
(3) for every u ∈ σ∨ ∩M , the evaluation D(u) :=∑

D min〈�D,u〉 ·D is an ele-
ment of the group of rational Cartier divisors CaDivQ(Y ) on Y .

Remark 2.2. (i) The tail cone σ serves as the neutral element in Pol+(N,σ );
hence, summands of the form σ ⊗D may be added or suppressed without having
any impact on D.

(ii) On the other hand, we will also allow ∅ as a possible coefficient. Whereas
we define ∅+� := ∅, the summand ∅⊗D indicates that the remaining sum is to
be considered on Y \D instead of Y . This allows us to always ask for projective Y ,
although D is only defined on its locus loc(D) := Y \⋃

�D=∅D.
(iii) Condition (3) is automatically fulfilled for Q-factorial, in particular, for

smooth base varieties Y .

Concavity of the min function, that is, min〈�D,u〉 + min〈�D,v〉 ≤ min〈�D,

u+ v〉, implies that the M-graded sheaf

A :=
⊕

u∈tail(D)∨∩M

OY (D(u))

carries the structure of an OY -algebra that induces the following scheme over Y

or, actually, over loc(D).

Definition 2.3. (1) Let D be a polyhedral divisor on (Y,N). Then we call

T̃V(D) := SpecY A π→ loc(D) ↪→ Y

the relative T-variety associated to D. It is affine if and only if loc(D) is.
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(2) D is called positive (or short “p-divisor”) if D(u) is semiample and big on
loc(D) for every u ∈ σ∨ ∩M or u ∈ intσ∨ ∩M , respectively. If this is the case,
then we define its associated absolute T-variety TV(D) := Spec
(loc(D),A).

We would like to remark that also on a possibly noncomplete variety Y a rational
Cartier divisor D is called semiample if it admits a basepoint-free multiple. If Y is
semiprojective, then the spaces of sections 
(Y,OY (mD)) are finitely generated

(Y,OY )-modules and, hence, define maps to projective spaces over 
(Y,OY ).
Their images do not depend on the choice of generators, and we call a divisor D

big if |mD| induces a birational morphism for m� 0. It follows then from [AH06,
Theorem 3.1] that T̃V(D)→ TV(D) are normal varieties with the function field
QuotC(Y )[M]. Moreover, the M-grading of A translates into a T-action on both
varieties, and π is a good quotient. Finally, all normal affine T-varieties arise this
way.

2.1.1. Toric Picture. Affine toric varieties X are T-varieties of complexity 0, that
is, Y = pt. The notion of a polyhedral divisor collapses to its tail cone, that is, a
polyhedral cone σ ∈NQ with X = TV(σ )= T̃V(σ ).

2.1.2. C∗�C2. For example, let us consider three different types of C∗-actions
on the affine plane SpecC[x, y]. The latter are specified by their weights on the
variables x and y, respectively. It is easy to check directly that these actions cor-
respond to the following polyhedral divisors D• =�•

0⊗0+�•∞⊗∞ on P1 such
that C∗�C2 = TV(D•):

degx degy type of action

1 0 parabolic
1 1 elliptic
1 −1 hyperbolic

�•
0 �•∞ tail cone locus

Dp [0,∞) ∅ [0,∞) P1 \∞
De [1,∞) [0,∞) [0,∞) P1

Dh [0,1] ∅ {0} P1 \∞

2.2. Equivariant Morphisms and Divisorial Fans

Let D′ and D be p-divisors on (Y ′,N) and (Y,N), respectively. By [AH06, Sec-
tion 8], T-equivariant maps T̃V(D′) → T̃V(D) and TV(D′) → TV(D) can be
provided by a dominant map ψ : Y ′ → Y and a plurifunction f ∈N ⊗C(Y ′) such
that D′ ⊆ ψ∗D + div(f). Here, both operators ψ∗ and div are supposed to be
applied to the divisors on Y occurring in D or the elements of C(Y ′) from f, re-
spectively. The inclusion sign is to be understood separately for each of the poly-
hedral coefficients on both sides. Moreover, it was shown in [AH06, Sect. 8] that
all T-equivariant maps TV(D′)→ TV(D) arise in this way when one allows to
replace D′ on Y ′ by p∗D′ with an appropriate proper birational map p : Y ′′ → Y ′
implying TV(p∗D′)= TV(D′).

There is a special case that will play an important role later on. Consider
two p-divisors D′ = ∑

D �′
D ⊗ D and D = ∑

D �D ⊗ D on (Y,N) that sat-
isfy �′

D ⊆ �D for each D. Then we have a T-equivariant open embedding
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T̃V(D′) ↪→ T̃V(D) if and only if the polyhedra �′
y :=

∑
D�y �′

D are faces
of the corresponding �y := ∑

D�y �D for all y ∈ Y ; see [AHS08, Prop 3.4,
Rem. 3.5(ii)]. Moreover, it was also shown in loc. cit. that the condition of
TV(D′) ↪→ TV(D) being an open embedding implies this condition. If TV(D′)
is an open subset of TV(D), then we will call D′ a face of D.

Definition 2.4 [AHS08, Def. 5.2]. A finite collection S of p-divisors on (Y,N)

is called a divisorial fan if for all D,D′ ∈ S , their intersection D ∩D′ (taken via
the polyhedral coefficients) is again a p-divisor, a face of both D and D′, and
belongs to S .

Gluing all affine pieces together, the divisorial fan S gives rise to the global
T-variety

TV(S) := lim−→D∈S
TV(D).

Moreover, since all coefficients �D
D of D (D ∈ S) fit into a polyhedral subdivision

SD of NQ, we may write the divisorial fan as S =∑
D SD ⊗D. In particular, all

tail cones tail(�D• ) form a fan tail(S). The latter encodes the asymptotic behavior
of the slices SD . However, to store all contents of S , it is still necessary to keep
in mind which cell of S belongs to which p-divisor D ∈ S . This is what we previ-
ously referred to as the labeling. Note, however, that only the maximal elements
of S matter for this kind of information.

2.2.1. Toric Picture. Open embeddings in the toric world correspond to inclu-
sions of faces on the level of polyhedral cones. Since divisorial fans coincide with
their polyhedral tail fans in this particular setting, face relations of polyhedral
divisors turn out to be the usual face relations for polyhedral cones.

2.2.2. C∗ � V(OP1(n)). For example, let us consider the geometric line bun-
dle p : V(OP1(n)) → P1 associated to O(n) over P1. We assume that C∗ acts
with weight 1 on the fibers of V(OP1(n)) and trivially on its zero section P1 →
V(OP1(n)). This action is given by the following two maximal polyhedral divi-
sors:

D1 = [n,∞)⊗ 0+∅⊗∞ and D2 = ∅⊗ 0+ [0,∞)⊗∞.

They correspond to affine charts p−1(P1 \ {∞}) and p−1(P1 \ {0}), respectively,
and are glued along the polyhedral divisor D1 ∩D2 = ∅⊗ 0+ ∅⊗∞ using the
plurifunctions n⊗ z1/z0 and 0⊗ 1 on P1.

2.2.3. C∗ � P2. Let us consider P2 as a C∗-variety with the following action
on its homogeneous coordinates: deg z0 = 1, deg z1 = 0, and deg z2 = 2. Using
the corresponding toric downgrade (see Section 5.2) yields a divisorial fan S with
three maximal elements Di =�i

0 ⊗ 0+�i∞ ⊗∞:
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�i
0 �i∞ tail cone locus

D1 [−1,0] ∅ {0} P1 \∞
D2 [0,∞) [1/2,∞) [0,∞) P1

D3 (−∞,−1] (−∞,1/2] (−∞,0] P1

2.3. Compatible Group Actions

Let X be a T-variety together with another group G acting on it. We say that T
normalizes the G-action if T⊆NAut(X)(G). This means that T acts on both X and
G and, moreover, the G-action m : G×X→X is T-equivariant (with respect to
the diagonal action of T on the left-hand side). In particular, this morphism can
be understood in terms of (2.2). If X is given by a p-divisor D on some variety
Y = X//chT, then G×X is given by a p-divisor on (G× X)//chT, which looks
like the familiar G-bundle X×T G over Y .

The actions of G and T even commute if and only if the T-action on G is
trivial. If this is the case, then G acts on Y , too, and the diagram

G × X
m

X

G × Y
m

Y

commutes. In the language of (2.2), this means that the p-divisors G×D and m∗D
only differ by some polyhedral principal divisor div(f). If D =∑

D �D⊗D, then
the two p-divisors equal

∑
D �D ⊗ (G×D) and

∑
D �D ⊗m∗D, respectively.

Since div(f) can only shift the polyhedral coefficients by integral vectors, this
means that the �D for non-G-invariant prime divisors D have to be almost trivial,
that is, shifted tail cones. This occurs, for example, for the coefficients of the
colors as pointed out in Theorem 1.1.

3. Spherical Varieties

In this section, we provide background on spherical varieties and colored fans.
Spherical varieties are natural generalizations of toric varieties. They appear when
a torus action is replaced by an action of an arbitrary connected reductive group G.

A normal variety X with a G-action is called spherical if a Borel subgroup
B ⊂ G has an open dense orbit in X. Similarly to toric varieties, every spheri-
cal variety contains only finitely many G-orbits and even finitely many B-orbits
[Kno91, Rem. 2.2]. Well-known examples of spherical varieties include horo-
spherical varieties (e.g. toric and flag varieties) [Pas] and symmetric varieties (e.g.
complete collineations and complete quadrics) [DCP83; DCP85].

A spherical G-variety X can be regarded as a partial G-equivariant compactifi-
cation of a spherical homogeneous space G/H (isomorphic to the open G-orbit of
X). In what follows, by an embedding of a spherical homogenous space G/H we
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mean a spherical G-variety X together with a point x ∈ X such that the G-orbit
of x is open in X and the isotropy subgroup of x equals H . By a compactifi-
cation of G/H we mean a complete embedding of G/H . The classification of
spherical varieties consists of two parts. The first part amounts to classifying all
G-equivariant embeddings of a given spherical homogeneous space G/H . Sim-
ilarly to toric varieties, embeddings of G/H can be classified by fans together
with an extra structure provided by colors [LV83]. We further shortly recall this
classification following [Kno91].

The second part amounts to the classification of all spherical homogeneous
spaces, which was finished only recently using D. Luna’s program. An exposition
of the main steps of this program can be found, for example, in [Bra10]. The
classification of spherical homogeneous spaces is based on the classification of
wonderful varieties. Recall that a smooth complete G-variety with an open dense
orbit is called wonderful (of rank r) if

(1) the complement to the orbit is the union of r smooth irreducible divisors
D1, . . . ,Dr with normal crossings;

(2) for any I ⊂ {1, . . . , r}, the intersection
⋂

i∈I Di is a nonempty G-orbit clo-
sure.

In particular, there is a unique closed G-orbit D1 ∩ · · · ∩Dr . Wonderful varieties
are spherical (see [Bra10] for references).

3.1. Colored Fans

We now introduce definitions needed to formulate classification results. Let G/H

be a spherical homogeneous space. As in (1.1), we fix a Borel subgroup B such
that 1 ∈G/H belongs to the dense orbit, that is, we assume that B ·H is open and
dense in G. A color is a B-invariant irreducible divisor in G/H . Let C = C(G/H)

denote the set of colors of G/H . The weight lattice X :=X (G/H) of G/H is the
set of all characters of XB = Hom(B,C∗) that occur as weights of eigenvectors
for the natural action of B on the field of rational functions C(G/H). The rank
of the weight lattice X is called the rank of G/H . Since G/H is spherical, for
each weight in X , there exists a unique (up to scalars) B-semiinvariant rational
function with this weight [Kno91, S.6]. These functions are regular on B · H ;
hence, there is an exact sequence

1 C∗ C(G/H)(B) X (G/H) 0.

f (with f (1)= 1) χ(f )= f |−1
B

Thus a valuation v on C(G/H) with values in Z gives rise to a linear function
ρv on X . In particular, colors D give rise to elements ρD ∈ X ∗ := Hom(X ,Z).
Let V denote the set of all G-invariant Z-valued valuations. It turns out that the
map ρ : V → X ∗, v �→ ρv is injective. The convex hull of the image of VQ in
X ∗
Q
:= X ∗ ⊗Z Q is called the valuation cone. In what follows, we identify VQ

with its image.
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By a result of Brion and Knop [Kno91, Theorem 6.4], there exists a root system
in X such that its simple roots α1, . . . , αr give linear equations on the facets of V ,
that is,

V = {x ∈X ∗
Q | x(αi)≤ 0, i = 1, . . . , r}.

In particular, the valuation cone is always cosimplicial.

Definition 3.1. Let F be a subset (possibly empty) of C such that ρ(F) does not
contain 0, and let C ⊆ X ∗

Q
be a strictly convex polyhedral cone. The pair (C,F)

is called a colored cone with the set of colors F if

(1) C is generated by ρ(F) and some elements of V and if
(2) the relative interior of C intersects the valuation cone.

For instance, if G/H is a torus, then V =X ∗
Q

and C = ∅. So every strictly convex
polyhedral cone C of full dimension is a colored cone (C,∅). The face relation
among colored cones is defined as

(C1,F1) < (C2,F2) :⇔ C1 is a face of C2 and F1 =F2 ∩ ρ−1(C1).

A finite nonempty set � of colored cones forms a colored fan if, first, every face
of (C,F) ∈� belongs to � and, second, every v ∈ V belongs to the interior of at
most one cone C with (C,F) ∈�. This implies in particular that the intersection
of two cones inside V is a common face of both.

Every spherical variety X with an open dense orbit G/H gives rise to a
colored fan �X . Namely, X can be covered by a finite number of simple
spherical varieties. Recall that a spherical variety is simple if it contains a
unique closed G-orbit. Every simple spherical variety X0 defines a colored cone
(C(X0),F(X0)) as follows. The set F(X0) is the set of all colors whose closure
in X0 contains the closed orbit. The cone C(X0) is spanned by

C(X0)= 〈ρ(F(X0)), ρ(D1), . . . , ρ(Dr)〉,
where D1, . . . ,Dr are irreducible G-invariant divisors on X0. The colored fan �X

is then the union of colored cones (C(X0),F(X0)) over all simple G-invariant
subvarieties X0 ⊂ X. By results of [LV83] the map X �→ �X is a bijection be-
tween isomorphism classes of spherical varieties with an open dense orbit G/H

and colored fans in X ∗(G/H)Q.
By the definition of �X there is a bijective correspondence between G-orbits in

X and colored cones in �X . Closed orbits correspond to maximal colored cones.
Some further properties of X can be read from the colored fan �X , for example,
X is complete if and only if the support |�X| of the colored fan contains the
valuation cone.

For two G-equivariant embeddings X and X′ of G/H , we say that X domi-
nates X′ if there exists a G-equivariant morphism X→X′. This can also be read
from the colored fans �X and �X′

. Namely, X dominates X′ if the fan �X fits
into the fan �X′

, that is, for every colored (C,F) of X, there exists a colored
cone (C′,F ′) of �X′

such that C ⊆ C′ and F ⊆ F ′. Note that we use the word
“dominate” here even for nonproper or nonsurjective maps.
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3.2. Toroidal Embeddings

There is a special class of spherical embeddings, namely, toroidal embeddings,
whose geometric properties are easier to study.

Definition 3.2. A G-equivariant embedding X of G/H is toroidal if it has no
colors, that is, the closure in X of any color of G/H does not contain a closed
G-orbit.

In other words, all of the colored cones in the colored fan of Y have empty sets of
colors. In particular, any toric variety is toroidal. Wonderful varieties are toroidal.
Any embedding X is dominated by a smallest toroidal one Xtor obtained by re-
placing every colored cone (C,F) by the (un-)colored cone (C ∩ V,∅).

Smooth toroidal embeddings (also called regular) are the closest relatives of
smooth toric varieties. If they are complete, then they can also be covered by affine
charts An (where n= dimG/H ) so that the closures of codimension one G-orbits
intersect each chart by coordinate hyperplanes D1, . . . ,Dr (where r = rkG/H ),
and all intersections

⋂
i∈I Di for I ⊂ {1, . . . , r} are exactly the intersections of An

with the closures of G-orbits. These affine charts are translates of those defined
in Proposition 3.7. There is a more general notion of log-homogeneous varieties
introduced in [Bri07a]. From a geometric viewpoint, these are the nicest possible
varieties among all varieties with an almost homogeneous action of an algebraic
group. It turns out that if the group is linear, then log-homogeneous varieties are
exactly smooth toroidal varieties (in particular, they are spherical); see [Bri09,
Sect. 4]. From a geometric point of view, it is thus sometimes more natural to
consider toroidal embeddings rather than arbitrary spherical varieties.

If the valuation cone is strictly convex (hence, simplicial), then there is a spe-
cial compactification YV of G/H whose colored fan is given by the valuation
cone and all of its faces. This compactification is called standard. Note that the
valuation cone is strictly convex if and only if NG(H)/H is finite; see [Kno91,
Thm. 7.1] or [Bri97, (4.4), Prop. 1]. Those subgroups H are called sober. The
standard compactification YV is a unique both simple and toroidal compactifi-
cation of X and, hence, the only candidate for a wonderful compactification of
G/H . To determine when YV is wonderful is a difficult problem, which is not yet
completely solved. It is known that if NG(H)/H acts on the set of colors effec-
tively (e.g. NG(H)=H ), then YV is wonderful [Tim11, Thm. 30.1]. The converse
is not true. Note that YV dominates any simple compactification of G/H and is
dominated by any toroidal compactification of G/H .

3.3. Horospherical Varieties

We shortly discuss properties of horospherical varieties since they will play a
major role in Section 8. For more details on this subject, the reader may consult
[Tim11, Chap. 29] or [Pas].
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Figure 1 Colored fans associated to embeddings of SL2/U .
(a) Bl0C

2, (b) C2, (c) P2 \ {0}, (d) Bl0P
2, (e) P2

Definition 3.3. A closed subgroup H ⊂G is called horospherical if it contains
the unipotent radical of some Borel subgroup B−. In this case, G/H is said to be
a horospherical homogeneous space. Analogously, we call a normal G-variety X

horospherical if it contains an open G-orbit that is isomorphic to a horospherical
homogeneous space.

In particular, tori and complete rational homogeneous spaces are horospherical.
It follows from the Bruhat decomposition of G that horospherical varieties are

also spherical, namely, the opposite Borel subgroup B has an open orbit on G/H .
Moreover, for any horospherical subgroup H ⊂G, there exists a unique parabolic
subgroup P ⊃ B− such that H is the intersection of the kernels of the characters
of P . Furthermore, we have P = NG(H). In more detail, given H ⊂G and the
maximal torus T = B ∩ B−, there exists a subset I of the simple roots of G

such that P is generated by WI and B−, that is, P = PI . Here, WI denotes the
subgroup of the Weyl group W = NG(T )/T that is generated by the reflections
associated to the elements of I . Even more, the lattice X (G/H) can be identified
with the set of characters of P whose restrictions to H are trivial.

It turns out that any horospherical homogeneous space G/H is the total space
of a torus fibration over the flag variety G/P where the fiber P/H equals the
torus T with character lattice X (G/H). This fibration can be extended to the
toroidal case, that is, any toroidal horospherical variety is of the form G ×P Y

where Y ⊇ T is a toric variety. This feature may be regarded as the main rea-
son for why horospherical varieties are more amenable to specific calculations
than arbitrary spherical varieties. Note also that X =XB and V =X (G/H)∗

Q
for

a horospherical embedding G/H ⊂ X, which ensures that its colored fan is an
honest polyhedral fan.

Example 3.4. The simplest example of a noncompact horospherical homoge-
neous space is SL2/U with

U =
(

1 0
∗ 1

)
⊂

(∗ 0
∗ ∗

)
= B−.

Here P = B− and I = ∅. The homogeneous space SL2/U is isomorphic to C2 \
{0}, and SL2/P = P1 with the usual projection. Apart from the trivial embedding
C2 \ {0} of SL2/U , there are five nontrivial ones; see Figure 1 for their colored
fans.
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Note that the one-dimensional torus H ′/H = H ·N◦
G(H)/H = P/U acts on

these embeddings by scalar matrices. Comparing (a) with the first example in
(2.2.2) for n = 1 and (b) with the second example in (2.1.2), we can check that
Theorem 1.1 holds for the horospherical embeddings Bl0C2 and C2, respectively.

3.4. Spherical Varieties of Minimal Rank

In what follows, we will mostly deal with spherical varieties of minimal rank. This
class of varieties include horospherical varieties and embeddings of G (viewed as
a homogeneous space under G × G acting by left and right multiplication). In
general, the rank rk(G/H) of a spherical homogeneous space G/H satisfies the
inequality

rk(G/H)≥ rk(G)− rk(H),

where rk(G) and rk(H) denote the ranks of the groups G and H .

Definition 3.5. A spherical homogeneous space G/H is of minimal rank if

rk(G/H)= rk(G)− rk(H).

Spherical homogeneous spaces of minimal rank are classified in [Res]. They can
be characterized by the following property:

Proposition 3.6 [Res, Proposition 2.4]. Let T ⊂G be a maximal torus. A spher-
ical homogenous space G/H is of minimal rank if and only if for any toroidal
embedding X of G/H , the T -fixed points of X lie in closed orbits.

This property is important for us because it yields a covering of X by T -stable
open affine subvarieties that can be explicitly described using the colored fan of X

and the Weyl group of G. We now describe this covering. First, let X(C,FC)⊂
X be the simple spherical embedding corresponding to a maximal colored cone
(C,FC) ∈�X . Then the open B-invariant subvariety

X̂id(C,FC)=X(C,FC) \
⋃

D∈C(G/H)\FC

D

is affine by [Kno91, Theorem 2.1]. For w ∈W , put X̂w(C,FC) :=wX̂id(C,FC).
This is a T -invariant subvariety (we assume that T ⊂ B).

Proposition 3.7. If X is a spherical variety of minimal rank with the colored fan
�X , then

X =
⋃

(C,FC)∈�X,w∈W

X̂w(C,FC),

where (C,FC) runs through the maximal colored cones in �X . This yields a
covering of X by T -invariant open affine subvarieties labeled by the maximal
colored cones and the elements of the Weyl group of G.
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Proof. Without loss of generality, assume that X is complete. The variety

X′ :=
⋃

(C,FC)∈�X,w∈W

X̂w(C,FC)

is open and T -invariant. The intersection X′ ∩O with any closed G-orbit O ⊂X

contains all T -fixed points in O. Indeed, if O corresponds to a maximal cone C,
then O ∩ X̂id(C,FC) is the open dense B-orbit in O by [Kno91, Thm. 2.1 (c)].
Since O is isomorphic to a flag variety, the open dense B-orbit in O contains a
unique T -fixed point x0, and all other T -fixed points in O have the form wx0 for
w ∈W .

Hence, if X is toroidal, then X′ contains all T -fixed points by Proposition 3.6.
It follows that the complement X \X′ is empty. Indeed, every nonempty closed
T -invariant subvariety of X must contain a T -fixed point by Borel’s fixed point
theorem.

The statement for a nontoroidal X follows at once from the corresponding
statement for a toroidal resolution of X. �

We further give an example of a complete spherical space (not of minimal rank)
for which Proposition 3.7 does not hold (this example was suggested to us by the
referee).

Example 3.8. Let G = GL2. Consider X = P1 × P1 as a G-variety under the
diagonal action of G. Then Proposition 3.7 yields only two charts out of four
standard affine charts for P1 × P1.

We will also need the following description of B-orbits in G/H . For more details,
see [Res; Bri01]. Let WG and WH denote the Weyl groups of G and H , respec-
tively. For arbitrary spherical homogeneous spaces, F. Knop defined an action of
WG on B-orbits in G/H .

Proposition 3.9 [Res, Props. 2.1 and 2.2]. The homogeneous space G/H is of
minimal rank if and only if the WG-action on its B-orbits is transitive. Then there
exists a unique closed B-orbit, and its stabilizer in WG is isomorphic to WH .

This description generalizes the description of Schubert cells in flag varieties to
all spherical varieties of minimal rank. However, no such description is known for
more general spherical varieties (see Example 3.8).

As in the case of flag varieties, there are two competing ways to label B-orbits
by elements of WG/WH : the identity element of WG labels either the closed (min-
imal) B-orbit or the open (maximal) B-orbit. We will use the former labeling,
which we now define more precisely. Let Oid denote the closed B-orbit in G/H .
Note that this is not the B-orbit through the identity coset of G/H since the latter
is open by our choice of B . In what follows, we denote by Ou (where u ∈WG)
the B-orbit obtained from Oid by the action of u. The action of WG on B-orbits
is related to the usual left action of WG on G/H as follows. If α is a simple
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root and Pα and sα are the associated minimal parabolic subgroup and the simple
reflection, respectively, then two cases can occur:

(1) PαOu =Ou, then Ou =Osαu and sα(Ou)=Ou;
(2) PαOu = Ou � Osαu and the natural map Pα ×B Ou → PαOu is birational.

If dimOu < dimOsαu (i.e., dimOu + 1= dimOsαu), then sα(Ou)⊂Osαu.

There is an analog of the weak Bruhat order on B-orbits in G/H , namely,
Ou ≺Ov if dimOu + 1= dimOv and v = sαu for a simple root α. In particular,
Ou ⊂ Ov . In what follows, 
(G/H) denotes the oriented graph associated with
the relation ≺, that is, the vertices of 
(G/H) are B-orbits, and two vertices Ou

and Ov are connected by an oriented edge labeled by α if Ou ≺Ov and v = sαu.
The graph 
(G/H) has a unique maximal element (the open dense B-orbit in
G/H ) and a unique minimal element (the closed orbit Oid). In particular, there
exists a strictly increasing path from Oid to any other orbit Ou, and the number
of edges in such a path is equal to (dimOu − dimOid). Similarly, there exists a
strictly decreasing path from the maximal orbit to Ou, and the number of edges
in such a path is equal to codimOu.

Remark 3.10. The colors of G/H are closures of codimension one B-orbits.
In the above notation, if Ou0 = (G/H) \ ⋃

D∈C D is the maximal B-orbit in
G/H that has stabilizer WH ⊆ WG, then the colors coincide with the closures
of B-orbits Osαu0 for simple reflections sα ∈WG \WH . Put D(α) :=Osαu0 . Then
sα(D(α)) �= D for any color D since sα(Osαu0) ⊂ Ou0 . On the other hand, if
D(β) �=D(α) is any other color, then sαD(β)=D(β). Indeed, sαu0 �= sβu0 im-
plies sα(sβu0) �= u0 in WG/WH , that is, dimOsαsβu0 < dimOsβu0 or Osαsβu0 =
Osβu0 . In either case, Osαsβu0 ⊆ Osβu0 = D(β). Then, sαOsβu0 ⊆ PαOsβu0 =
Osβu0 ∪ Osαsβu0 ⊆ D(β). The same argument shows that if sα ∈ WH , then
sαD(β)=D(β), too.

We will also need the following result describing the orbits inside a given color.

Lemma 3.11. Let Ou be a B-orbit in G/H such that an increasing path
(αi1, . . . , αi�) from Ou to Ou0 contains an edge labeled by α. Then Ou ⊂D(α).

Proof. Proceed by induction on � = codimOu. If � = 1, then we have even
Ou =D. Choose j such that αij = α. By replacing u with sαij−1

· · · sαi1
u we may

assume that j = 1. Put β = αi2 and v = sαsβsαu. Then either Ov ≺Osαv =Osβsαu

(and dimOv = dimOu + 1) or Osβsαu ≺Ov (and dimOv = dimOu + 3). In the

latter case, Osβsαu satisfies the induction hypothesis for (l− 2) and Ou ⊂Osβsαu.
In the former case, Ov satisfies the induction hypothesis for (l − 1), so it remains
to show that Ou ⊂Ov .

The braid relation (sαsβ)m(α,β) = id within WG yields a closed path � in

(G/H) that goes through Ou and Ov . Note that any such path contains a
unique locally maximal vertex Ow , that is, Osαw ≺ Ow and Osβw ≺ Ow . In-

deed, Ow is both Pα- and Pβ -invariant in this case; hence, Ow contains all the
other orbits in the path. This implies that � also has a unique minimal vertex
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Ov0 with respect to ≺. Indeed, let Ow1 ∈� be a locally minimal vertex, that is,
Osαw1 �Ow1 and Osβw1 �Ow1 . Let Ow2 ∈ P be another locally minimal vertex.
Unless Ow1 =Ow2 , we can represent � as the union of two distinct paths �1 and
�2 where �1 goes from Ow1 to Ow2 , �2 goes from Ow2 to Ow1 , and �1 and �2
intersect only at the endpoints. For i = 1,2, the first edge in �i goes upward, and
the last edge goes downward; hence, �i contains a locally maximal vertex. This
contradicts to the uniqueness of a locally maximal vertex.

Let �u and �v be strictly increasing paths inside the loop from Ov0 to Ou and
Ov , respectively. The labels on both paths look like (. . . , α,β,α,β, . . .). Denote
by P the parabolic group corresponding to the path �u. Moreover, we may as-
sume that �v = (sβ,�u). Then, on the one hand, PβOv0 =Ov0 �Osβv0 . On the
other hand, Ou is the open orbit in P ·Ov0 , and Ov is the open orbit in P ·Osβv0 .

Thus, Ou ⊆ P ·Ov0 ⊆ P · PβOv0 ⊆ P ·Osβv0 ⊆Ov . �

4. Toward the Toroidal Case

4.1. A New Torus Action

We now introduce a torus action on embeddings of the spherical homogeneous
space G/H . Note that this will not be the restriction of the G-action to a maximal
torus T ⊆ G. Instead, we use the fact that NG(H)/H is a subgroup of a torus
[Bri09, Prop. 5.2]. In particular, if we put H ′ =H ·N◦

G(H), then T :=H ′/H is a
torus, too. Note that the group H ′ is the smallest sober subgroup that contains H

[Tim11, Lemma 30.1]. The maximal linear subspace contained in the valuation
cone V has dimension dimT [Kno91, Thm. 7.1]. Note that T acts on G/H from
the right and hence commutes with the left action of G.

Lemma 4.1. The right action of T on G/H extends to any G-equivariant embed-
ding of G/H .

Proof. The group G̃ :=G×T acts on G/H by left and right multiplications as

(g, t) : x �→ gxt−1 (g ∈G, t ∈ T, x ∈G/H).

Hence, G/H (so far only being considered as a homogeneous G-space) may also
be regarded as the homogeneous G̃-space G̃/H̃ , where H̃ := {(th, t) | t ∈ T, h ∈
H } ∼= H × T. Recall that we fixed a Borel subgroup B ⊂ G such that B · H is
open and dense in G. It follows that NG(H) is the stabilizer of BH from the
right; see [Bri97, Thm. 4.3(iii)]. In particular, we obtain that BH ⊃ H ′ (indeed,
bH ·h′ = bh′H = bb1h1H ∈ BH ). Note that B̃ := B×T⊂ G̃ is a Borel subgroup
in G̃.

We now show that G/H and G̃/H̃ have the same colors and isomorphic weight
lattices. Indeed, the open B-orbit in G/H is T-invariant since BH ⊇H ′; hence,
any B-invariant irreducible divisor in G/H is also B×T-invariant. Next, since the
actions of B ⊆G and T commute, each B-eigenvector f ∈ C(G/H)

(B)
χ remains

in this one-dimensional space after applying the T-action. Hence, f becomes a
B ×T-eigenvector of some weight χ̃ ∈XB̃ lifting χ ∈XB .
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Since the resulting dual isomorphism X ∗(G/H)
∼→ X ∗(G̃/H̃ ) is compatible

with the identification C(G/H)= C(G̃/H̃ ) we stated before, we obtain a bijection
between the sets of colored fans for G/H and G̃/H̃ , respectively. Thus, every G-
equivariant embedding of G/H extends to a G̃-equivariant one of G̃/H̃ . �

Since H ′ is sober, the homogeneous space G/H ′ admits the standard compactifi-
cation YV ′ (see Sect. 3.2), which is wonderful in many cases of interest. Moreover,
blow-ups of the latter will serve as base varieties for polyhedral divisors describ-
ing spherical embeddings of G/H as T-varieties.

4.2. Comparing H and H ′

Let M denote the character lattice of T, and N its dual, that is, the lattice of
one-parameter subgroups of T.

Lemma 4.2. Each f ∈C(G/H)(B) with f (1)= 1 is partially multiplicative, that
is, it satisfies f (gh′)= f (g) · f (h′) for g ∈G and h′ ∈H ′. In particular, restric-
tion to H ′ gives the vertical homomorphism X (G/H)→M in the diagram

X (G/H) XB (by restriction to B)

C(G/H)
(B)
1�→1

∼

M XT (by restriction to H ′).

Proof. From Lemma 4.1 it follows that f is an eigenvector of B×T and hence of
B ×H ′. Alternatively, one has the following direct argument: For each h′ ∈H ′,
we define a new rational function f ′(g) := f (gh′). It is not hard to see that f ′
and f transform in the same ways with respect to the left B-action. Moreover,
since H ′ normalizes H , we see that f ′ also is H -invariant (for the action from
the right). Hence, f and f ′ differ multiplicatively by a constant, that is, f ′(g)=
f (g) · f ′(1). �

The following result is derived from the Tits fibration φ : G/H →G/H ′.

Proposition 4.3. The dual of the vertical homomorphism from Lemma 4.2 fits
into the short exact sequence

0→N →X ∗(G/H)
p−→X ∗(G/H ′)→ 0.

The valuation cone V of G/H is the full preimage of the (strictly convex) valuation
cone V ′ of G/H ′ under pQ. Moreover, there is a natural identification of colors

φ : C(G/H)
∼−→ C(G/H ′) compatible with p = φ∗.

Proof. For the exactness of

0→X (G/H ′)→X (G/H)→M → 0,

see [Bri97, Thm. 4.3(ii)]. Since H ′ ⊆ BH , we know that φ−1(BH ′/H ′) =
BH/H , that is, the two dense B-orbits correspond to each other via φ. The
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map φ is a locally trivial fibration with fiber T, cf. the beginning of Section 6.
Hence, for every color D′ ∈ C(G/H ′), we know that φ−1(D′) equals a single
color D ∈ C(G/H), and no colors from G/H can be sent via φ to a variety of
larger codimension.

The equality of cones V = p−1(V ′) is also established in [Bri97, 4.3] by rep-
resenting the valuation cone as the dual of the cone generated by some negative
roots; see (3.1), right before Definition 3.1. Moreover, it is clear that for colors
D = φ−1(D′), the associated valuations vD and v′D coincide on C(G/H ′) under-
stood as a subfield of C(G/H), that is, p(ρD)= ρD′ inside X ∗(G/H ′). �

Note that the previous exact sequences imply that G/H is of minimal rank if and
only if G/H ′ has the same property.

4.3. Introducing New Fans

Let X, X′ be embeddings of G/H and of G/H ′, respectively. Generalizing a
remark at the end of (3.1) to the situation of now two different subgroups H

and H ′, we quote from [Kno91, Thm. 4.1] that there exists a G-equivariant map
X→X′ if and only if the fan �X maps to the fan �X′

, that is, for every colored
(C,F) of X, there exists a colored cone (C′,F ′) of �X′

such that p(C) ⊆ C′
and p(F) ⊆ F ′. For example, every toroidal embedding X maps to the simple
toroidal compactification Y = YV ′ already mentioned in (4.1).

Definition 4.4. Let �X denote the colored fan that is associated with the G/H -
embedding X. Now we define the following “ordinary” fans:

(i) �X := {C ∩ V | (C,F) ∈�X} is called the underlying uncolored fan.
(ii) Let �Y = p(�X) denote the image fan of �X via p, that is, the coarsest sub-

division of the pointed cone V ′ that refines all images p(C) of cones C ∈�X .
(iii) Finally, let �X̃ be the coarsest common refinement of �X and p∗�Y :=

{p−1(C′) | C′ ∈�Y }.
Let Xtor and X̃ denote the toroidal G/H -embeddings corresponding to the fans
�X and �X̃ , respectively. Similarly, we call Y the toroidal G/H ′-embedding cor-
responding to the fan �Y . Invoking the remark on G-equivariant maps of spheri-
cal varieties at the beginning of this section, we have the following G-equivariant
diagram connecting all these varieties:

X̃ Xtor X

Y Y .

Whereas the varieties and the maps of the first row carry the natural T-action
provided by Lemma 4.1, the torus T acts trivially on the second row. Recall that
the rays a ∈�Y (1) correspond to the G-invariant divisors Da of Y .
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4.4. Statement of the Result

In what follows, we assume that G/H is of minimal rank. Assume that X is a
spherical embedding of G/H and consider the varieties shown in the diagram of
(4.3). Fix a maximal torus T ⊆ B . Let W := N(T )/T denote the Weyl group.
The action of the Weyl group on T by conjugations induces the action of W

on XT . It is easy to check that wX (G/H)= X (G/Hw) where Hw := wHw−1

and Bw :=wBw−1. As indicated in

0 X (G/H ′)

w

X (G/H)

w

XB

w

XT

wM 0

0 wX (G/H ′) wX (G/H) XBw XT

Mw 0,

the W -action induces the isomorphism θw between M and the character lat-
tice Mw of Tw := H ′w/Hw . We will use W to build the divisorial fan SX

and S̃X on (Y,N). Note that the affine covering defined in Proposition 3.7 is
T-invariant. Moreover, multiplication by w ∈W gives an isomorphism between
the T-varieties X̂id(C,FC) and X̂w(C,FC). As the above diagram shows, the iso-
morphism does not affect the coefficients of the corresponding p-divisors in NQ.
Indeed, multiplication by w gives the isomorphism between X regarded as a
G/H -embedding and X regarded as a G/Hw-embedding, which takes the T-
variety X̂id(C,FC) to the Tw-variety X̂w(C,FC). Hence, if

∑
SD ⊗ D and∑

SD′ ⊗D′ are their respective p-divisors, then
∑

SD′ ⊗D′ =∑
θ∗w(SD)⊗wD.

If we now regard X̂w(C,FC) not as Tw- but as T-variety, then we have to apply
the inverse of θ∗w to the coefficients of its p-divisor, thus getting

∑
SD ⊗wD.

We are going to define p-divisors corresponding to the affine charts in this
covering. To do so, fix a splitting of the exact sequence

0→N →X ∗(G/H)
p→X ∗(G/H ′)→ 0

from Proposition 4.3 by choosing a cosection s∗ : X ∗(G/H) � N . We use this
projection to define ρ(D′) ∈ N as s∗(ρD) where D is the color of G/H corre-
sponding to D′ via the bijection φ : C(G/H)

∼−→ C(G/H ′) also established in
Proposition 4.3, that is, satisfying p(ρD)= ρD′ . Moreover, we will use the split-
ting to always identify the fibers p−1(a) with p−1(0)=NQ.

Definition 4.5. The maximal elements of S̃X are p-divisors S̃X(C,w) on (Y,N)

labeled by pairs of maximal colored cones (C,F) ∈�X (or, equivalently, by max-
imal ordinary cones C ∩ V ∈�X) and elements w ∈W . They are defined as

S̃X(C,w) :=
∑
a

(C ∩ p−1(a))⊗Da +
∑
D′

(ρ(D′)+ (C ∩NQ))⊗D′

+
∑
D′
∅ ⊗wD′,
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where a ∈ �Y (1) runs through the (primitive generators of the) rays of �Y , and
D′ ∈ C(G/H ′) runs through the colors of G/H ′. Note that it makes the difference
between S̃X and the SX defined earlier in Theorem 1.1 in (1.1) that now D′
runs through all the colors even in the third summand. However, S̃X = SX for
toroidal X. Note further that for w = 1, the second summand will be annihilated
by the third one.

The following theorem covers Theorem 1.1 for toroidal X, that is, for the case
X =Xtor.

Theorem 4.6. The divisorial fan S̃X on (Y,N) describes X̃ and Xtor as
T-varieties, namely X̃ = T̃V(S̃X)= T̃V(SX) and Xtor = TV(S̃X).

The proof of this statement consists of a local part (Section 5), and a global one
(Section 6).

Remark 4.7. The T̃V construction is a local one, and hence it yields the same
result for the arguments S̃ and S . The description of the divisorial fan providing
X̃ can be even more simplified, namely

X̃ = T̃V

(∑
a

(�X ∩ p−1(a))⊗Da +
∑
D′

(ρ(D′)+ tail)⊗D′
)

.

Note that no labels via cells of �X or elements of W are necessary. This is due to
the fact that Definition 2.3 of T̃V(D) does not make any positivity assumptions
on D. However, the latter are necessary for the definition of TV(D). Thus, we
cannot expect simplifications for the descriptions of Xtor or X.

5. Toric Downgrades Give the Local Picture

5.1. The Toric Skeleton

The first step toward the proof of Theorem 4.6 is a local understanding of Xtor

with respect to the right T-action. Denoting by �tor
X the union of the closures in

Xtor of all colors of G/H , the stabilizer of �tor
X is given by a parabolic subgroup

P := P(�tor
X ) of G, which is actually independent of the particular toroidal em-

bedding. Furthermore, it comes with a Levi decomposition P = Pu �L such that

Xtor \�tor
X
∼= P ×L TV(�X)∼= Pu ×TV(�X),

where TV(�X) denotes the ordinary toric variety associated to the fan �X ; see
[Bri97, Sect. 2.4] and [Tim11, Thm. 29.1]. The accompanying torus is equal to
a quotient of L, and its character lattice equals X (G/H). Moreover, we may
consider T = H ′/H as a subtorus that turns TV(�X) into a T-variety; see loc.
cit.

The very same procedure also works for X̃ and Y . Moreover, it is compatible
with the morphisms shown in (4.3). Hence, denoting the union of the closures of
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all colors of G/H and G/H ′ in the respective varieties by �̃X and �Y , we obtain
the following commutative diagrams:

X̃ \ �̃X
∼

Pu ×TV(�X̃)

Xtor \�tor
X

∼
Pu ×TV(�X)

Y \�Y
∼

Pu ×TV(�Y ).

Of particular interest to us is the right-hand side of the diagram. There we have
two maps between three toric varieties multiplied with the unipotent group Pu. In
the next section, we will show how such a diagram between toric varieties can be
understood in the context of T-varieties and polyhedral divisors.

5.2. Toric Downgrades

There is a very prominent procedure that gives rise to polyhedral divisors and
divisorial fans. This construction plays a fundamental role in the proof of Theo-
rem 4.6, so we shortly recall it from [AH03, Sect. 8].

Let T ⊆ T̃ be a subtorus, and assume that we have fixed a splitting of the
corresponding exact sequence of 1-parameter subgroups

0→N → Ñ
p→NY → 0.

Now, whenever Z = TV(�) is a toric variety given by a fan � in ÑQ, then we
define the fans �Y := p(�) and �̃ := {C ∩p−1(C′) | C ∈�,C′ ∈�Y } as in Def-
inition 4.4(ii) and (iii), respectively. They give rise to toric varieties Z̃ := TV(�̃)

and TV(�Y ). Similarly to the situation in (5.1), these varieties fit into the diagram

TV(�̃)

p

TV(�)

TV(�Y ).

The embedding T ↪→ T̃ turns Z̃ and Z of the upper row into T-varieties. They can
be described by a divisorial fan S on (TV(�Y ),N). Let TY :=NY ⊗Z C∗ denote
the torus of the toric variety TV(�Y ). It turns out that the divisors occurring in S
are TY -invariant, that is, they are closures orb(a) of TY -orbits of codimension one
parameterized by the rays a ∈�Y (1). We define

S :=
∑

a∈�Y (1)

Sa ⊗ orb(a) with Sa =� ∩ p−1(a),

that is, all Sa become polyhedral subdivisions of p−1(a) = NQ with a naturally
defined labeling.

Proposition 5.1 [AH03, Sect. 8]. The T-structure of Z̃ → Z is given by the
divisorial fan S on (TV(�Y ),N), that is, this morphism is equal to T̃V(S)→
TV(S).
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5.3. The T-Variety Xtor \�tor
X

Combining results from (5.1) and (5.2), we deduce that the T-equivariant map
(X̃ \ �̃X)→ (Xtor \�tor

X ) is equal to T̃V(S̃X
1 )→ TV(S̃X

1 ), where S̃X
1 consists of

the p-divisors S̃X(•, idW) introduced in Definition 4.5:
The first summand is literally built by the recipe of the toric downgrade

of (5.2); the former divisors orb(a) have just been replaced by Pu × orb(a) =
Da \�Y . The second summand in S̃X

1 is void because of w = 1, and the presence
of the last one just means that the divisorial fan is supposed to be evaluated on
Y \�Y instead of the entire complete Y .

5.4. The Action of the Weyl Group

Both spherical varieties X̃→Xtor are covered by the open subsets (X̃ \w�̃X)→
(Xtor \w�tor

X ), where w ∈W runs through all elements of the Weyl group. Since
these charts arise from (X̃ \ �̃X)→ (Xtor \�tor

X ) by applying w, they are equal
to T̃V(S̃X

w )→ TV(S̃X
w ) with S̃X

w :=w(S̃X
1 ), that is,

S̃X
w :=

∑
a∈�Y

(C ∩ p−1(a))⊗Da +
∑

D′∈C′
∅ ⊗wD′.

Gluing the charts of X̃ (and similarly of Xtor) leads to isomorphisms ϕw:

X̃ \ �̃X T̃V(S̃X
1 +∅⊗w�Y )

∼ ϕw

T̃V(S̃X
1 )

X̃ \ (�̃X ∩w�̃X)

X̃ \w�̃X T̃V(S̃X
w +∅⊗�Y ) T̃V(S̃X

w ).

Note that we use ∅ ⊗�Y as an abbreviation for
∑

D′∈C′ ∅ ⊗D′ and recall from
(2.2) what equivariant maps between T-varieties look like in terms of p-divisors
or divisorial fans. Since ϕw induces the identity map idY on Y, it corresponds to a
plurifunction fw with

S̃X
1 + (∅⊗w�Y )⊆ S̃X

w + (∅⊗�Y )+ div(fw).

We cannot expect to have div(fw) = 0. Otherwise, all local isomorphisms X̃ \
w�̃X

∼= wPu × TV(�̃) would glue to a global one and thus expose TV(�̃) as a
factor of X̃. On the other hand, div(fw) clearly has to vanish on those slices where
both divisorial fans already agreed in the first place. This observation shows that
supp(div fw) ⊆ �Y ∪ w�Y . Furthermore, we see that coefficients of the princi-
pal polyhedral divisors div fw are just shifts of the tail fan. Using this “hint”, we
correct the previous definition by

S̃X
w := S̃X

w + div(fw).

Then we still have that X̃ \ w�̃X
∼= T̃V(S̃X

w ). But the gluing of X̃ \ �̃X and
X̃ \ w�̃X now simply corresponds to the inclusion S̃X

1 + (∅ ⊗ w�Y ) ⊆ S̃X
w +

(∅ ⊗ �Y ). Thus, the corrected S̃X
w fit into a huge common divisorial fan S̃X

pre

with S̃X
pre(•,w)= S̃X

w . Up to now, we have proven that X̃ = T̃V(S̃X
pre) and Xtor =
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TV(S̃X
pre). Yet, in contrast to the definition of S̃X in Definition 4.5 in (4.4), we

have that

S̃X
pre(C,w) =

∑
a

(C ∩ p−1(a))⊗Da +
∑
D′

(lD′,w + (C ∩NQ))⊗D′

+
∑
D′
∅ ⊗wD′

for certain elements lD′,w ∈N . To complete the proof of Theorem 4.6, it remains
to check that these elements do not depend on w and are equal to ρ(D′).

6. Concluding the Toroidal Case

Restricting the map φ : X̃ → Y introduced in (4.3) to φ−1(G/H ′) → G/H ′,
we obtain a locally trivial fibration. This is well known (following from G-
homogeneity), and it is also visible in the description of X̃ as T̃V(S̃X

pre) in (5.4)—it

is reflected by the fact that, after restricting the divisorial fan S̃X
pre to G/H ′, all its

remaining polyhedral coefficients are shifted tail fans only.
The map φ−1(G/H ′)→G/H ′ extends the classical Tits fibration φ : G/H →

G/H ′. In particular, both share the same twist, which is encoded in the lattice
elements lD′,w ∈ N introduced at the end of (5.4). The only difference between
the divisorial fans describing φ−1(G/H ′) and G/H can be found in their tail fans,
which are tail(S) and {0}, respectively.

We exploit this relation to determine the shift vectors lD′,w ∈N by presenting
a polyhedral divisor DG/H supported on the colors C(G/H ′) on G/H ′ such that
G/H ∼= T̃V(DG/H ) under the right action of the torus T=H ′/H . In particular,
in this section, we will forget about the embeddings X̃, Xtor, and X discussed
before—we just focus on the original Tits fibration.

6.1. The Tits Fibration

By abuse of notation, let φ also denote the Q-linear extension QC(G/H) →
QC(G/H ′) of the natural identification of colors φ : C(G/H)

∼−→ C(G/H ′). Recall
further from Proposition 4.3 and its proof in (4.2) that we have an exact sequence

0→X (G/H ′)→X (G/H)→M → 0

together with a splitting associated to a section s : M → X (G/H). Moreover,
given a character χ ∈M , we fix an associated eigenfunction fs(χ) ∈C(G/H)

(B)
s(χ)

on G/H . In other words, it satisfies fs(χ)(b
−1gH) = s(χ)(b) · fs(χ)(gH). We

now define

L(χ) :=OG/H ′(φ(divfs(χ)))=OG/H ′
( ∑

D′∈C(G/H ′)
〈s(χ), ρφ−1(D′)〉D′

)
,

where, as before, ρD = ρφ−1(D′) ∈ X ∗(G/H)Q denotes the restriction of the
valuation associated to the color D = φ−1(D′) ∈ C(G/H). Note also that by
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φ(
∑

D∈C(G/H) aDD) we mean
∑

D′∈C(G/H ′) aDD′ by using our identification of

colors D = φ−1(D′) in G/H and G/H ′.
On the other hand, choosing a basis BM of M , we may embed T =

Homgroup(M,C∗) inside Cm with m := rkM . Note that the action of T on it-
self extends to an action on Cm such that Cm =⊕

χ∈BM
Cχ as a T-module where

T acts on Cχ via the character χ ∈ BM ⊂ M . Hence, we obtain the following
embedding of T-varieties:

G/H =G×H ′
T⊂G×H ′

( ⊕
χ∈BM

Cχ

)
=:E.

Let E denote the sheaf of sections of E. Note that it is equal to
⊕

χ∈BM
E(χ),

where E(χ) denotes the sheaf of sections of G×H ′
Cχ .

Lemma 6.1. L(χ) ∼= E(−χ), namely fs(χ) · L(χ) = E(−χ) as subsheaves of
C(G/H).

Proof. Given an open subset U ⊂G/H ′, we have that


(U,E(χ))=MorH ′(π−1(U),Cχ )= {η ∈OG(π−1(U)) | η · h′ = χ(h′)η},
where π denotes the projection G → G/H ′ (which factors through φ), and χ

is considered a character on H ′ that is trivial on H ; see [Tim11, Prop. 2.1].
The function f = fs(χ) was introduced as a B-eigenfunction for s(χ) ∈ XB ;
we may assume that f (1) = 1. According to Lemma 4.2, this implies that
f (bHh′) = f (bH)f (h′) = f (bH)χ(h′)−1. Since BH is dense inside G, this
means that fs(χ) is a χ -eigenfunction for the right T-action, too. Hence, if we
multiply the elements of


(U,L(χ)) = {ζ ∈C(G/H ′) | div ζ + φ(divfs(χ))|U ≥ 0} ⊂C(G/H ′)
= C(G)H

′

with fs(χ) ∈ C(G)H , then we obtain regular functions on π−1(U) ⊂ G that are
H ′-semiinvariant with eigenvalue χ , namely,

fs(χ) · 
(U,L(χ))= {η ∈OG(π−1(U))H | η · h′ = χ(h′)−1η} = 
(U,E(−χ)).

�

6.2. The Shift Vectors

Recall that in (4.4) we already had met the section s : M →X (G/H) mentioned
in (6.1), but there it was used via the dual cosection

s∗ : X ∗(G/H) � N.

In other words, (p, s∗) : X ∗(G/H)
∼−→ X ∗(G/H ′) ⊕ N establishes a splitting

of the exact sequence from Proposition 4.3. Note that this proposition also states
that p(ρD)= ρD′ for colors D ∈ C(G/H) and D′ = φ(D) ∈ C(G/H ′), where ρ•
refers to the elements of X ∗(G/H) and X ∗(G/H ′) induced from the valuations
associated to these colors, respectively.
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Definition 6.2. Using the notation from above, we define for every color D′ =
φ(D) its associated shift vector

ρ(D′)= ρ(D) := s∗(ρD) ∈N.

That is, for χ ∈M , 〈χ,ρ(D′)〉 = 〈χ, s∗ρφ−1(D′)〉 = 〈s(χ), ρφ−1(D′)〉.
The choice of a basis BM of M in (6.1) allows us to define the polyhedral cone
σ ⊂ NQ := N ⊗ Q ∼= Qn as the positive orthant in the latter space. This will
become the tail cone for the following important polyhedral divisor.

Proposition 6.3. The vector bundle E → G/H ′ from (6.1) is T-equivariantly
isomorphic to T̃V(DE), where

DE =
∑

D′∈C(G/H ′)
(ρ(D′)+ σ)⊗D′.

Proof. By Lemma 6.1 we can describe the vector bundle E as

E = SpecG/H ′ Sym• E∨ = SpecG/H ′
⊕

χ∈σ∨∩M

E(−χ)

= SpecG/H ′
⊕

χ∈σ∨∩M

L(χ).

However, the very same result is obtained when we analyze the evaluation of the
polyhedral divisor DE on a multidegree χ ∈ σ∨ ∩M , namely

DE(χ)=
∑
D′
〈χ,ρ(D′)〉 ·D′ =

∑
D′
〈s(χ), ρφ−1(D′)〉 ·D′ = L(χ).

�

As explained in (2.2), the T-equivariant open embedding G/H ⊂E translates into
a face relation of the corresponding polyhedral divisors. Since this embedding is
induced by T⊂ Cm, it arises from the face relation 0 � σ among the tail cones.
So, as a corollary, we obtain a description of the polyhedral divisor DG/H . Note
that it depends on the choice of the section s (hidden in the shift vectors ρ(D′)).
However, in contrast to E and DE , it does not depend on the choice of a basis
of M .

Corollary 6.4. The T-variety G/H is equal to T̃V(DG/H ), where

DG/H =
∑

D′∈C(G/H ′)
ρ(D′)⊗D′.

In particular, its tail cone is equal to 0.

This completes the proof of Theorem 4.6.
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7. The General Case

7.1. The Weyl Group

Recall that we have fixed T ⊆ B ⊆G such that BH ⊆G is open and dense. Let
∇ denote a basis of the positive roots R+ that correspond to the choice of B . In
particular, W = WG is generated by simple reflections {sα | α ∈ ∇}. For every
subset I ⊂ ∇ of simple roots, let WI ⊂ W denote the subgroup generated by
simple reflections {sα | α ∈ I }. The subgroup WI comes with a distinguished set
WI ⊆ W consisting of the representatives of minimal length of the left cosets
of WI . In particular, WI ×WI

∼→ W preserves the minimal representations as
products of simple reflections. For proofs and further details, see [Spr].

Note that if G/H is of minimal rank then for every simple reflection sα ∈W ,
there exists at most one color D = D(α) ∈ C(G/H) such that sα(D) �=D.
Namely, D = Osαu0 unless sα ∈ WH (see Remark 3.10). For an arbitrary
subset F ⊆ C(G/H) of colors, define the subgroup WI(F) ⊂ W by taking
I (F) = {α ∈ ∇ | D(α) ∈ F or sα ∈ WH }. In other words, WI(F) is gener-
ated by all simple reflections that leave

⋃
D∈C(G/H)\FC

D invariant. In partic-
ular, WI(F) = {w ∈W | w(

⋃
D∈C\FC

D) =⋃
D∈C\FC

D}. Indeed, the subgroup
{g ∈ G | g(

⋃
D∈C\FC

D) =⋃
D∈C\FC

D} is parabolic; hence, its Weyl group is
generated by simple reflections. For example, WI(∅) =WH is the Weyl group of
the parabolic subgroup P = P(�tor

X ) mentioned in (5.1). The other extremal case
is WI(C(G/H)) =W , that is, I (C(G/H))=∇ .

7.2. Contracting the Spherical Side

Let X =̂ (C,FC) be a simple spherical embedding of minimal rank. Recall that
there is an open affine T-invariant covering X =⋃

w∈W X̂w (see Proposition 3.7).
Note that some of these charts may be identical. To obtain a nonredundant de-
scription, we exploit the subgroup WC := WI(FC) of W associated to (C,FC).
Summing things up, we obtain X =⋃

w∈WI(FC) X̂w , where the X̂w are now pair-
wise distinct.

Let π : Xtor −→ X (see diagram from (4.3)) be the map corresponding to
(C ∩ V,∅)→ (C,FC). Then we have a similar covering Xtor =⋃

w∈W X̂tor
w .

Lemma 7.1. For every w ∈ W , the map πw : ⋃
w′∈wWC

X̂tor
w′ → X̂w is the full

preimage of X̂w under π : Xtor −→X. In particular, πw is birational and proper.

Proof. We may assume that w = id (renaming w′ into w afterward). It remains to
show that πid : ⋃

w∈WC
X̂tor

w → X̂id is a full preimage, that is,

⋂
w∈WC

w ·�tor
X =

⋃
D∈C\FC

π−1(D), (1)
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where we had defined �tor
X :=⋃

D∈C D ⊆Xtor. First, let us compare the intersec-
tions with the open orbit G/H , that is, show

� :=
⋂

w∈WC

w

( ⋃
D∈C

D

)
=

⋃
D∈C\FC

D. (2)

Let Ou be a B-orbit in G/H that contains a given point x ∈� (here we use no-
tation of Section 3.4). Take an increasing path in the graph 
(G/H) from Ou

to the maximal B-orbit Ou0 . Let (αi1 , . . . , αi�) be the labels on its edges lead-
ing to wx ∈ w(Ou) ⊂ Ou0 �=

⋃
D∈C D for w = sαi�

· · · sαi1
∈ WC . Then there

exists an ij such that ij /∈ I (FC) since otherwise we would have w ∈WC . Put
αij = α. Then Lemma 3.11 implies that Ou ⊂D for some D ∈ C \ FC , namely,

for D(α)=Osαu0 .
Finally, note that the above argument goes through if G/H is replaced by any

other G-orbit O ⊂Xtor because O is also of minimal rank by [Res, Lemma 2.1].
More precisely, let FC(O) be the set of all colors of O that are not contained in⋃

D∈C\FC
π−1(D). Identity (2) for O and FC(O) takes the form⋂

w∈WC

w

( ⋃
D∈C(O)

D

)
=

⋃
D∈C(O)\FC(O)

D. (3)

We have

O ∩�tor
X =

⋃
D∈C(O)

D and O ∩
⋃

D∈C\FC

π−1(D)=
⋃

D∈C(O)\FC(O)

D.

Hence, both sides of (3) coincide with the respective sides of (1) intersected
with O. This implies equality (1).

Now, the birationality and properness of πw follow directly from the corre-
sponding properties of π : Xtor →X; see [Kno91, Theorem 4.2]. �

7.3. Contracting the T-Variety Side

Theorem 1.1 states that the simple spherical variety X can be described by a
divisorial fan SX whose maximal elements are indexed by elements of W ; more
precisely,

SX
w =

∑
a∈�Y

(C ∩ p−1(a))⊗Da +
∑

D′∈C′
(ρ(D′)+ (C ∩NQ))⊗D′

+
∑

D′∈C′\FC

∅⊗wD′.

The only difference with respect to S̃X = SXtor
is that the last sum runs over

C′ \FC instead of the entire C′. In other words, we have

S̃X
w = SXtor

w =Z on V tor
w := Y \

⋃
D′∈C′

wD′,

SX
w = Z on Vw := Y \

⋃
D′∈C′\FC

wD′,
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where Z =∑
a∈�Y

(C ∩p−1(a))⊗Da +∑
D′∈C′(ρ(D′)+ (C ∩NQ))⊗D′ does

not depend on w ∈W . Since Y is also of minimal rank (see (4.2)), both V tor :=
{V tor

w |w ∈W } and V := {Vw |w ∈W } are coverings of Y .

Lemma 7.2. The covering V tor is a refinement of V . In detail, for every w ∈W ,
we have

⋃
w′∈wWC

V tor
w′ = Vw .

Proof. Similarly to the proof of Lemma 7.1, we may assume that w = id (renam-
ing w′ again into w afterward). It remains to show that

⋃
w∈WC

V tor
w = Vid, that

is, ⋂
w∈WC

w ·�Y =
⋃

D′∈C′\FC

D′

with �Y :=⋃
D′∈C′ D′ ⊆ Y . However, this claim literally equals the equation we

have shown in the proof of Lemma 7.1 for the X-level. Thus, the same arguments
apply. �

7.4. Comparison of Both Sides

Our goal now is to compare the map Xtor −→ X (see diagram from (4.3)) with
the map TV(S̃X)→ TV(SX). The already proven Theorem 4.6 ensures that the
sources of both maps coincide. Using Z , we define A :=⊕

u∈(C∩NQ)∨ O(Z(u))

together with the following two affine T-varieties:

Xtor
w := Spec
(V tor

w ,A), Xw := Spec
(Vw,A).

They are open subsets of TV(S̃X) and TV(SX), respectively. Everything fits now
into the following commutative diagram:

Xtor ⋃
w′∈wWC

X̂tor
w′

πw
X̂w X

TV(S̃X)
⋃

w′∈wWC
Xtor

w′
ψw

Xw TV(SX)

Whereas the vertical equalities X̂tor
w′ =Xtor

w′ come from Theorem 4.6, we have seen
in Lemmas 7.1 and 7.2 that both central horizontal maps πw and ψw are birational
and proper. On the other hand, both X̂w and Xw are affine; hence, they have to
coincide, too. This proves Theorem 1.1.

7.5. A Counterexample for the Nonminimal Rank Case

Note that Proposition 3.7 was essential for the proof. The assumption that G/H

is of minimal rank in Theorem 1.1 was used both in Proposition 3.7 and in
Lemma 7.1 and cannot be dropped as can be seen from the following example
with a nontrivial T-action.
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Example 7.3. Take G=GL2 and consider its action on X = P1×P2 by matrices(
a b

c d

)
×

⎛
⎝a b 0

c d 0
0 0 1

⎞
⎠ .

It is easy to check that X, together with the point (1 : 0)× (0 : 1 : 1), is a spherical
embedding of G/H , where

H =
{(

λ 0
0 1

) ∣∣∣ λ ∈C∗
}

.

Note that G/H is not of minimal rank. The T-variety given by Theorem 1.1 in
this case does not coincide with the whole X since the former is not complete
(note that the base space Y in this case is exactly the G-variety P1 × P1 from
Example 3.8). Namely, Theorem 1.1 yields only four out of six standard affine
charts for P1 × P2.

8. Examples

8.1. Horospherical Varieties

We use the notation introduced in (3.3). Also, recall from loc. cit. that V =
X (G/H)∗

Q
for any horospherical embedding G/H ⊂ X. Hence, our polyhedral

divisors SX will be defined on the flag variety G/P . Note also that for horospher-
ical varieties, the exact sequence

0→N →X ∗(G/H)
p→X ∗(G/P )→ 0

reduces to the canonical isomorphism N !X ∗(G/H), that is, there is no need to
choose a splitting. The following examples are taken from [Pas].

8.1.1. Embeddings of SL2/U . This example continues Example 3.4 and relates
the colored fans on Figure 1 to their corresponding divisorial fans. The Weyl
group of SL2 contains only two elements, id and w. Using Theorems 4.6 and 1.1
and identifying the color D′ = {0} and wD′ = {∞} on P1, we obtain the following
maximal elements of the respective divisorial fans:

S(a)([0,∞), id) = ∅⊗ 0,

S(a)([0,∞),w) = [1,∞)⊗ 0+∅⊗∞,

S(b)(([0,∞), α), {id,w}) = [1,∞)⊗ 0,

S(c)((−∞,0], id) = ∅⊗ 0,

S(c)((−∞,0],w) = (−∞,1] ⊗ 0+∅⊗∞,

S(d)([0,∞), id) = ∅⊗ 0,

S(d)([0,∞),w) = [1,∞)⊗ 0+∅⊗∞,

S(d)((−∞,0], id) = ∅⊗ 0,

S(d)((−∞,0],w) = (−∞,1] ⊗ 0+∅⊗∞,

S(e)(([0,∞), α), {id,w}) = [1,∞)⊗ 0,
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Figure 2 Colored fans associated to complete embeddings of SL3/H

S(e)((−∞,0], id) = ∅⊗ 0,

S(e)((−∞,0],w) = (−∞,1] ⊗ 0+∅⊗∞.

They are all toric, and it can easily be verified that the torus action is the action
of a subtorus given by the following exact sequence of lattices of one-parameter
subgroups:

0 Z
φ

Z2 π

σ

Z 0

with

φ =
(

1
1

)
, π = (

1 −1
)
, σ = (

1 0
)
.

So we are in fact in a toric downgrade situation as described in (5.2). The Chow
quotient Y is P1, and one can check that applying the recipe from (5.2) yields the
same divisorial fans as described above.

8.1.2. An Example of Rank 1 and T-Complexity 3. Let B− ⊂ SL3 denote the
subgroup of lower-triangular matrices. We consider the subgroup H ⊂ B− of
matrices whose second diagonal entry is 1. This yields a four-dimensional horo-
spherical homogeneous space G/H of rank one over the full flag variety G/B−.
There are four complete embeddings, but we will only have a closer look at two
of them, namely those whose colored fans are given in Figure 2.

Let α, β denote simple roots of SL3. The Weyl group is isomorphic to S3. It is
generated by the reflections sα and sβ and consists of six elements: 1, sα , sβ , sαsβ ,
sβsα , sαsβsα . Let D′

α and D′
β denote the colors of G/B . The W -action maps D′

α

to sαD′
α or sβsαD′

α (note that sβD′
α =D′

α), and D′
β to sβDβ or sαsβDβ (again,

sαD′
β = D′

β ). The following tables in Figure 3 encode the maximal elements of
the corresponding divisorial fans.

They are to be read as follows. Each row is indexed by a divisor D′•. The cor-
responding one-dimensional slice is subdivided at v into two unbounded compo-
nents. The labels of these components are given in columns 3 and 4, respectively.
Note that we use a shorthand notation for the labels, that is, • = s•.

8.2. (GL2 ×GL2)-Equivariant Embeddings of GL2

These examples are classical yet we choose to discuss all details in order to give
the reader the possibility to recall all notions that have been defined so far.

8.2.1. Basic Setup. Let G := GL2 × GL2 act on GL2 by left and right multi-
plications, that is, (g1, g2) : g �→ g1gg−1

2 . It follows that H := �(GL2), where
� denotes the diagonal embedding of GL2 to G. We fix the Borel subgroup
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Figure 3 Divisorial fans associated to complete embeddings of SL3/H

B := B+
GL2

×B−
GL2

⊂G, where B+
GL2

and B−
GL2

consist of upper and lower trian-
gular matrices, respectively. Furthermore, we fix the maximal torus T ⊆ B given
by the diagonal matrices (C∗)2× (C∗)2. Hence, we have that XB =XT = Z4 with
basis {e+1 , e+2 , e−1 , e−2 }. Finally, U := Bu denotes the unipotent radical of B . As
usual, elements of GL2 are denoted by matrices(

a b

c d

)
.

One easily checks that C(G/H) = C(GL2) = C(a, b, c, d) and C(GL2)
U =

C(d,det) with det = ad − bc. Using the exact sequence from (3.1), we see that
the weights of these generators are χ(d) = e−2 − e+2 and χ(det) = (e−1 − e+1 )+
(e−2 − e+2 ). The Weyl group of G is W = {1, sα, sβ, sαsβ} with

sα =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ and sβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

that is, sα : e+1 ↔ e+2 and sβ : e−1 ↔ e−2 .

8.2.2. Further Ingredients. The Bruhat decomposition of GL2 with WGL2 =
{1, s} yields GL2 = (B+B−) � (B+sB−). The first double class is the open orbit
and shows that G/H = GL2 is spherical, whereas the second double class corre-
sponds to the unique color D = V (d) in C.

The normalizer H ′ is equal to �(GL2) · (C∗ × C∗). The transitive G-action
on GL2 from (8.2.1) induces a transitive G-action on PGL2 providing the iso-
morphism G/H ′ = PGL2. Its unique and wonderful compactification is P3 =
PGL2 �V (det).
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8.2.3. The Ambient Spaces for the (Colored) Fans. We identify T=H ′/H with
C∗ via (t,1) �→ t . In particular, M = Z, and we derive from the commutative
diagram of Lemma 4.2 that the sequence

0→X (G/H ′)→X (G/H)→M → 0

sends (e+i − e−i ) �→ 1 for i = 1,2; see the proof of Proposition 4.3. The kernel
X (G/H ′) is generated by (e−1 − e+1 )− (e−2 − e+2 ) which is χ(det /d2). The dual
sequence

0→ (N = Z)→X ∗(G/H)
p−→X ∗(G/H ′)→ 0

sends 1 �→ −E1 − E2 and E1 �→ E, E2 �→ −E, where {E1,E2} and {E} are
the dual bases of {(e−1 − e+1 ), (e−2 − e+2 )} = {χ(det/d),χ(d)} and {(e−1 − e+1 )−
(e−2 − e+2 )} = {χ(det/d2)}, respectively. Since the valuation vD = vV (d) sends
det/d �→ −1 and d �→ 1, we obtain ρD =E2 −E1. We fix the splitting E �→E1.
This induces the projection X ∗(G/H) � N = Z with E1 �→ 0 and E2 �→ −1. In
particular, the shift vector from (4.4) equals ρ(D)=−1.

8.2.4. The Valuation Cone. Let us consider the GL2-embeddings given in the
following diagram:

C̃4

π

P̃4

π

GL2 C4 P4

where the upper row consists of the blow ups at the origin of the corresponding
varieties in the lower row. This picture provides us with three G-invariant divisors
and their associated valuations vdet =̂V (det)=C4 \GL2, vE =̂E = π−1(0), and
v∞ =̂P4 \ C4. They send the equations det/d = (x1x4 − x2x3)/(x0x4) and d =
x4/x0 to (1,0), (1,1), and (−1,−1), respectively. This means that ρdet = E1,
ρE =E1 +E2, and ρ∞ =−(E1 +E2). These elements span the valuation cone

V = {w1E
1 +w2E

2 |w1 ≥w2} ⊆X ∗(G/H),

that is, the lower half plane which is bounded by the line 〈E1 +E2〉.

8.2.5. The Colored Fans. All upper embeddings GL2 ⊆ C̃4 ⊆ P̃4 are toroidal.
The uncolored cone of GL2 is equal to {0}, the one corresponding to C̃4 equals
〈E1,E1 + E2〉, whereas P̃4 is given by the complete subdivision of V by the
ray 〈E1〉. Hence, it consists of the two uncolored cones 〈−(E1 + E2),E1〉 and
〈E1,E1 +E2〉; see Figure 4.

Blowing down the exceptional divisor E via π gives us two nontoroidal spher-
ical embeddings of GL2, namely C4 and P4. All we have to do is to replace the
uncolored cone 〈E1,E1 + E2〉 appearing in both blow ups by the colored one
(〈E1,E2 −E1〉, {D}); see Figure 5.
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Figure 4 Toroidal GL2 ×GL2-equivariant embeddings of GL2

Figure 5 Nontoroidal GL2 ×GL2-equivariant embeddings of GL2

8.2.6. The Divisorial Fans. The induced action of T = C∗ on C4 corresponds,
up to sign, to the standard Z-grading of the affine coordinate ring C[a, b, c, d].
Performing the usual downgrading procedure for the diagonal subtorus C∗ ↪→
(C∗)4, we see that the polyhedral divisor D for C4 is defined over Y = P3 and
equal to [1,∞) ⊗ H , where H = H0 ⊆ P3 denotes a hyperplane. Actually, the
toric downgrade yields

D = [1,∞)⊗H0 +
3∑

i=1

[0,∞)⊗Hi

with Hi = V (zi). However, since one can omit trivial summands, that is, those
having just the tail cone as their coefficient, we arrive at the description from
above. The coefficients of Hi in the extended version arise as intersections of
the four affine lines �i = ei + Q · e (with e := ∑

i e
i ) with the upper orthant

Q4≥0 = 〈e0, . . . , e3〉 that represents C4 as an affine toric variety.

Blowing up 0 ∈C4, we obtain C̃4 = T̃V(D)= TV(S), where the four maximal
elements of the divisorial fan S = {D0, . . . ,D3} are given by Di :=D+ ∅⊗Hi .
On the one hand, this simulates the relative Spec construction via the affine open
covering {P3 \Hi}. On the other hand, it arises naturally from the toric downgrade
construction. Namely, for C4, we had intersected the four lines �i with a single
polyhedral cone. But for C̃4, we subdivide Q4≥0 into four chambers Ci by inserting

the new ray e =∑
i e

i . These smaller cones correspond to the Di . Since each of
the four lines �i misses exactly one of them, namely �i ∩Ci = ∅, we obtain ∅ as
the coefficient of Hi in Di .
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Figure 6 Colored fan of Grass(2,4)

Representing P4 and P̃4 as toric varieties involves four additional cones, re-
spectively. Hence, our toric downgrade creates another four p-divisors
{D′

0, . . . ,D′
3} following the same pattern as for the case of C̃4. Their common

tail cone becomes (−∞,0]:
D′

i = (−∞,1] ⊗H0 +∅⊗Hi.

8.2.7. The Grassmannian Grass(2,4). Let Wi := C2 (i = 1,2) be two copies
of the very same complex plane C2. By G ⊆ GL4 we see that G acts on C4 =
W1 ⊕W2 and therefore also on Grass(2,4). Since G respects the decomposition
of C4, its orbits are given by orb(d1, d2) := {V ∈Grass(2,4) | dim(V ∩Wi)= di}.
The following list displays all pairs (d1, d2) which give a nonempty orbit:

dim 0 2 3 4

(d1, d2) (2,0), (0,2) (1,1) (1,0), (0,1) (0,0)

Let V0 := {(v, v) | v ∈ C2 =Wi} ∈ orb(0,0). Then stabV0 =�(GL2), that is,
1G �→ V0 provides an embedding GL2 ↪→ Grass(2,4) of the usual type. Its col-
ored fan is presented in Figure 6.

Using Plücker coordinates, the induced T-action on Grass(2,4) can be ob-
tained from degx01 = 1, degx23 =−1, and deg= 0 for the remaining variables.
Then the resulting p-divisor for C6 and the divisorial fan S for P5 live on the four-
dimensional weighted projective space P(2,1,1,1,1). Denoting its hyperplanes
by A,H1, . . . ,H4, the slices are given by

SA = (−∞,0,1,∞), SHi
= (−∞,0,∞) (i = 1,2,3), and

SH4 = (−∞,−1,∞).

The divisorial fan S is generated by six p-divisors D0, . . . ,D5 corresponding to
the standard affine open covering of P5. They can be visualized as labels on the
cells of the slices: All cells (−∞,•] carry the label D0, and, similarly, all [•,∞)

belong to D5. All middle cells, namely [0,1] in SA and the vertices in SHi
, are

labeled with {D1, . . . ,D4} \Di , that is, the Hi -coefficient in Di is ∅.
Finally, the embedding Grass(2,4) ↪→ P5 corresponds to the embedding

P3 ↪→ P(2,1,1,1,1), (a : b : c : d) �→ ((bc − ad) : a : b : c : d) on the level of
Chow quotients. Hence, the divisorial fan of Grass(2,4) is the restriction of S to
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P3. In particular, H1, . . . ,H4 become the standard hyperplanes, and A turns into
the quadric det⊆ P3.

8.2.8. Comparison of Divisorial and Colored Fans. The slices of the divisorial
fan of P̃4 on P3 from (8.2.6) are either (−∞,1,∞) or (−∞,0,∞) with four sep-
arate labels for both negative and positive sides. This labeling together with the
presence of empty coefficients corresponds exactly to the divisorial fan introduced
in Definition 4.5 in (4.4): The first summand involves the only G-invariant divi-
sor V (det) ⊂ P3. Since its coefficient equals a shift of the tail fan (−∞,0,∞),
this sum can be incorporated in the other summands, involving the only color
V (d)⊆ P3. Indeed, since the Weyl group has four elements, both top-dimensional
cells appear exactly four times.

Comparing this with the divisorial fan of P4 on P3, we see in (8.2.6) that the
four different labels on the one side merge into one common label. This reflects
exactly the description of the divisorial fan from Definition 4.5: Since C′ \F = ∅,
the last sum becomes void for these cells.

Finally, we consider the colored fan of Grass(2,4); see Figure 6. It is induced
from the subdivision of V by two rays, namely those spanned by E1 and −E2,
respectively. Note that there are two maximal cones which are not contained in V
since they contain the color as a generator. This means that C′ \F = ∅ occurs now
on both sides—creating the simple labelings by D0 and D5 in (8.2.7). Moreover,
the polyhedral coefficient SA clearly is the intersection of the colored fan with an
affine line within the valuation cone. However, this summand cannot be incorpo-
rated in the others as it was possible for P4. The reason is that it carries a richer
structure as just being a shift of the tail fan.

Acknowledgment. We are grateful to the referee for valuable comments and
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