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Abstract. An optimal control problem is formulated for a class of nonlinear systems for which there exists a coordinate 
representation transforming the original system into a system with a linear main part and a nonlinear feedback. In this case the 
coordinate transformation significantly changes the form of original quadratic functional. The penalty matrices become 
dependent on the system state. The linearity of the transformed system structure and the quadratic functional make it possible to 
pass over from the Hamilton–Jacoby–Bellman equation (HJB) to the state dependent Riccati equation (SDRE) upon the control 
synthesis. Note that it is rather difficult to solve the obtained form of SDRE analytically in the general case. In this study, we 
construct the guaranteed control method from the point of view of the system quality based on feedback linearization of the 
nonlinear system; the transformation of the cost function upon linearization is examined, as well as the system behavior in the 
presence of disturbance and the control synthesis for this case. The presented example illustrates the application of the proposed 
control method for the feedback linearizable nonlinear system. 
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INTRODUCTION 

This work focuses on the problem of output regulator 
for nonlinear systems, namely the problem of 
designing an output feedback controller. 
The central idea feedback linearization is to 
algebraically transform a nonlinear system dynamic 
into (fully or partly) linear on so that linear control 
techniques can be applied. As opposite to conventional 
linearization feedback linearization is achieved by 
exact state transformation and feedback, rather that by 
linear approximation. Note that transform is not 
unique (details about this can be found in [4,6,11].  
Several control design methods for that systems, based 
on a standard Lyapunov analysis [5,7,9,8].  

In this paper an optimal control problem is formulated 
for a class of nonlinear systems being under the 
influence of uncontrollable disturbance for which there 
exists a coordinate representation transforming the 
original system into a system with a linear main part 
and a nonlinear feedback. Considering disturbance as 
actions of some player counteracting successful 
performance of a control problem, we will consider a 
task in a key of differential game with two players. 
Examining the problem of synthesis of the control law 
as the differential game of two players we introduce 
the quadratic functional. The coordinate 
transformation significantly changes the form of 
original quadratic functional. The penalty matrices 
become dependent on the system state. The linearity of 

the transformed system structure and the quadratic 
functional make it possible to pass over from the 
Hamilton–Jacoby–Bellman equation (HJB) to the state 
dependent Riccati equation (SDRE) upon the control 
synthesis. 

Since the mid-90’s, SDRE strategies have emerged as 
design method that provide a systematic and effective 
means of design nonlinear controllers. This method, 
first proposed by Pearson [11] and later expended by 
Wernli & Cook [13], was independently studied by 
Mracek & Clouter [10]. The method entails 
factorization of the nonlinear dynamics into the state 
vector and the product of a matrix-valued function that 
depends on the state itself (SDC). The theoretical 
contribution in Mrasek, Clouter has initiated an 
increasing use of SDRE techniques in a wide variety 
of nonlinear control applications [3].  

Note that it is rather difficult to solve the obtained 
form of SDRE analytically in the general case. It is 
necessary to approximate the solution; this 
approximation is realized by numerical methods using 
symbolic computer packages or interpolation methods.  
In this study, we construct the guaranteed control 
method from the point of view of the system quality 
based on feedback linearization of the nonlinear 
system; the transformation of the cost function upon 
linearization is examined, as well as the system 
behavior in the presence of disturbance and the control 
synthesis for this case. The presented example 
illustrates the application of the proposed control 
method for the feedback linearizable nonlinear system. 



 

STATEMENT OF THE PROBLEM 

Consider the following continuous nonlinear system is 
described by the vector differential equation 
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Here ( ) nx t R  state of systems; x x ,  

0X x − domain of possible initial conditions of 

system; ,my R m n  − system exit; ru R control; 
kw R − disturbance variable;  

( ), ( ), ( ), ( )1 2f x g x g x h x − matrixes are real and 

continuous, (0) 0f  . It is supposed that at all ( )x   

system (1) is controllable and observable [1], t R . 
Besides, functions ( ), ( ), ( )1 2f x g x g x  we will 

assume to be rather smooth ( )C  that through any 

(0, )0x t x   passed one and only one decision (1) 

0( , 0, )x t x  and there would be the unique 

corresponding exit of system 0( ) ( ( , 0, ))y t h x t x . 

The disturbance variable ( )w t  are assumed to be 
bounded as follows: 

( ) ( ( )), 1,..., , 0w t x t i k tii    , where 

( ( )) 0x ti   for all ( )x t x . This condition we 
will write down in a look 

( ) ( ( )), 0w t x t t   .      (2) 
Considering disturbance ( )w t  as actions of some 
player counteracting successful performance of a 
control problem, we will consider a task in a key of 
differential game with two players U and W. 
The organization of controls ( )u t  and ( )w t  with use 
of a principle of feedback is supposed. Examining the 
problem of synthesis of the control law as the 
differential game of two players U and W we introduce 
the functional 
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Here, the matrix Q  can be positive semi-definite; the 
matrices ,R P  are positive definite. Positively definite 

matrix  ( ( ))P x t  is created so that to consider the 
greatest possible disturbance of a look (2) operating on 
system. Additional requirements to values of 
parameters of these matrixes will be defined further. 

 
FEEDBACK LINEARIZATIION 

AND UPDATING OF STATEMENT 
OF A TASK 

 

Let's assume that there is a function 1( ) Ф ( ( ))x t z t  
and this function is smooth. Thus, the smooth function 

( ) Ф( ( ))z t x t defined in domain z  is a 

diffeomorfizm in domain x .  

Let's assume that there is a function 1( ) Ф ( ( ))x t z t  
and this function is smooth. Thus, the smooth function 

( ) Ф( ( ))z t x t defined in domain z  is a 

diffeomorfizm in domain x . If system (1) is 

linearizable on x  [4], then there exists the 
coordinate transformation ( ) Ф( ( ))z t x t and the pair 
of feedback functions ( )a x  and ( )x  also defined on 

x , such that ( )x  is nonsingular for any x x , 

and the set z  containing the origin and trajectories 

of a variable ( ) Ф( ( ))z t x t  of initial system 
transformation in system 
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where 
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( )v t  is the new input vector. 
The coordinate transformation ( ) Ф( ( ))z t x t   and 
feedback law 

( ) ( ) ( ) ( )u t x x v t            (8) 
transform original nonlinear system (1) into system (9) 
with the linear structure and state dependent 
coefficients (SDC). For linear object (4) with the 
control ( )v t  we will enter, having substituted in (3) 
control (8), representation of an initial functional in a 
look 
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It can be seen that the matrices ( ), ( )Q z R z , ( )N z  and 
1( ( ))P z   
  depend on the state of system (4). 

Initial control problem for object (1) with cost function 
(3) is transformed into the problem of the control 
actions synthesis for object (4) with functional (9).  

The work has following goals: 
G1) to find the solution of differential game in the 
form of a synthesis problem of optimum controls; 
G 2) to find nonlinear control of a look (8);  
G 3) to carry out analysis of a control system stability. 

Directed by (4) and (9) the problem is referred to the 
class of problems whose parameters of system and 
functional of quality depend on system state (State-
Dependent Coefficients). 

CONTROL SYNTHESIS 

Let us write the Hamilton–Jacoby–Bellman equation 
using functional (9) 
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where ( )V z  is the Bellman function. There is no 
boundary condition in the Hamilton–Jacoby–Bellman. 
Optimal control are determined by the following 
expressions [1] 
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where vector  ( )/ ( )
T

V z z t  is defined by the solution 
of the equation 
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Thus, controls (11) are organized according to the 
feedback principle, where ( ) /V z z   is the solution to 
Eq. (12). Let us define ( ) /V z z   as [6] 
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We rewrite (11) with account of (13), 
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Expression (12) becomes the state dependent Riccati 
equation  
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Matrix ( )S z  in (14) is the unique, symmetric, 
positive-definite solution of (15). 
From this equation it is visible that matrixes 
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should be positive, at least, semidefinite at 
Ф( )z z x    that will be shown at carrying out 

the analysis of stability of system with controls (15). 

The control ( )v t  is possible to present as 
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Coming back to system (1), we will make return 
substitution in the law of feedback (8) 
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 Thus, optimum controls for system (1) is defined by 
expressions 
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where, ( ) ( )z t x   ─ the diffeomorfizm, and a matrix 
( ( )) ( )S x S z   is the solution of the equation of 

Riccati (15). 
The equations (20) describe optimum strategy with 
feedback for players of U and W as functions of 
current state and this strategy corresponds to a saddle 
point of a task on a minimax. In that case the control 
system is described by expression 
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Theorem 1. Let's consider system (1), being under the 
influence of the uncontrollable disturbance satisfying 
to bound (2). Let's assume existence of a 
diffeomorfizm ( ) ( ))z t x   and transformation by 
feedback (8) such that the equation (1) is input-state 
linearized and is representable in the form of (4). Then 
controls at performance of the conditions (16), (17) 
and delivering a minimum to a functional (3) are 
defined by expressions (20) where the matrix 

( ) ( ( ))S z S x   is the solution of the state dependent 
Riccati equation (15). 

ANALYSIS OF STABILITY 

Let us use the second Lyapunov method for 
investigation of the system stability [1]. The function 

( ) 2 ( )V z V z where ( )V x  is the Bellman function for 
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the following condition is proved: 
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The derivative of the Bellman function with respect to 
the coordinate can be rewritten in the following form: 
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Considering (5), (6) and (11), from the last expression 
in view of (13) we will have 
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If the right hand side is moved to the left, the Riccati 
equation similar to (16) can be found in the square 
brackets; then (25) is simplified, 
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should be positive semi definite. 
Thus, performance of a condition of positive 
definiteness of matrixes 

* ( ) ( ) ( )
1( ) ( ) ( ) ( ) ( ),

TQ z H z QH z
T Tz R z N z R z N z 

 

 
 (26) 

1 1( ) ( ) ( ) ( ) ( ),0 0
T Tz B R z B G z P z G z       (27) 

that was supposed at synthesis of optimum control 
(14), provides stability to nonlinear system.  

Theorem 2. Let's consider the system (1) being under 
the influence of uncontrollable disturbance satisfying 
to bound (2). Let's assume existence of a 

diffeomorfizm ( ) ( ))z t x   and transformation by 
feedback (8) such that the equation (1) is input-state 
linearized and is representable in the form of (4). 
Controls (14) where the matrix ( )S z  is defined by the 
solution of the equation (15), provide to system 
stability if matrixes of a penalty Q  and R  in a 
functional (3) are appointed so that matrixes * ( )Q z in 
(26) and ( )z in (27) would be, at least, positively 
semidefinite. 

DESIGN OF GUARANTEED CONTROL 

The equation (4) with controls (14) looks like 


( ) ( )0

1 1( ) ( ) ( ) ( )0 0
1( ) ( ) ( ),0

(0) , ( ) ( ) ( ).0

z t A z t

T TB R z B G z P G z S z

TB R z N z z t

z z s t H z z t

 

   



 

 
 



   (28) 

We determine one of the possible trajectories ( )Gz t  
[2]: 

* 1 *( ) ( ) ( ) ( ) ( )0 0
* 1 * * 1 * *( ) ( ) ( ) ( ),0 0

*(0) , ( ) ( ).0

G G G

G

G G G

Tz t A z t B R N z t

T TB R B G P G S z t

z z s t H z t

  

  

 

 
 



 (29) 

Here * * * *, , , constR G N H   such that, if 
 ( ), ( ), ( ), ( )R z G z N z H z  are measurable on the set 

z  for any fixed , , ,R G N H  and z ; 
 ( ), ( ), ( ), ( )R z G z N z H z are continuous on z  for 

any fixed , , ,R G N H ; 
 and for a fixed t  the functions 

( ), ( ), ( ), ( )R z G z N z H z  are continuous in 
aggregate of the variables z  and ,R G , ,N H , 

then there exist functions ( )m t  and ( )n t  that are 
Lebesgue-integrable and such that if  

* 1 * * 1 * *( ) ( ) ( ) ( ) ( )0 0 0
* 1 *( ) ( ) ( )0

G G

G

T TA z t B R B G P G S z t

TB R N z m t

   

 

 
   

and * ( ) ( )GH z t n t , where *S  is a positive-definite 
solution of the equation of Riccati with constant 
matrixes   



* * 1 * *( ( ) ( ) )0 0
* * 1 * * 1 * * *( ( ) ( ) ( ) )0 0
* * 1 * * * 1 *( ) ( ) ( ( ) ( ) ) 0,0 0

(30)

TS A B R N

T TS B R B G P G S Q

T T TN R N S A B R N S

 

    

    

 then 
1( ) ( ( )0 0 0

1 **( ) ( ( )) ( ) ( )

* 1 *( ) ( ) ( ) ( )0

G

G

G

TA z t B R z B

TG z P z G S z t

TB R N z t m t



 

  
 




  

and ( ) ( ) ( )H z z t n t . 

Therefore, the parameters of model (29) * *,R G , 
*N , *H may be called the “worst”.   

Definition. Under the condition 

 

   

* 1 * * 1 * *( ) ( ) ( ) ( ) ( )0 0 0

* 1 *( ) ( ) ( )0

1( ) ( )0 0 0

1 * *( )( ( ( )) ( ) ( )

1 *( ) ( ) ( ) ( )0

G G

G

G

G

T TA z t B R B G P G S z t

TB R N z t

TA z t B R z BG

TG z P z G S z t

TR z B R z N z t



   

 

  

 


 

  



 

the system (29) is majorant-model of a system (28). 
By this definition, linear controls  

* * 1 * *( ) ( ) ( ) ( ),0
* * 1 * *( ) ( ) ( ) ( )

T Tv t R B S N z t

Tw t P G S z t

 
 
 

  


      (31) 

for the system (1) we will call guaranteeing.  

Therefore the initial system (1) with controls (31) is 
described by expression 

   *

*

( ) ( )

11 1( ) ( ) ( )1 2 0

( ), ( ) ,0 0

( ) ( ).

G

x t f x

T T Tg x P g x R x B

S x x t x

y t h x



 

   

  



 
  
 
 



 

EXAMPLE 

The synchronous generator dynamics [8] in the 
established regime can be defined by the dynamic 
system of form (1),  

( ) ( ) ( ) ( ) ( ),1 2
(0) ,0

x f x g x w t g x u t
x x







  




 

where  

   
 

2
( ) 1 sin sin ,3 1 2

cos cos3 1

( ) ( ) 0 0 1 ,1 2

x

f x p x x d d qx

rx s x d d

Tg x g x

 
 
 
 
  
    
 
  
    

  

     

   

 

 

, , , ,p q r s d  − are the real parameters. The coordinate 
transformation for this system, 

1
Ф( ) 2

(1 ) sin( ) sin3 1 2

x

x x

p x x d d qx



    

 
 
 
    

 

together with the feedback functions 

 

2(1 )cos( ) sin2 3 1 2( ) sin( )1

(1 ) cos cos3 3 1

px x x d pq d q x
x p x d

q x rx s x d d



 
 
 

    
 

     

 

and 1( ) sin( )1
x p x d     

form the system 

( ) ,0 0
(0) .0

z A z B v D z w

z z







  




 

 

The matrices , , ( )0 0A B D z  have the form 

0 1 0 0
0 0 1 , 0 ,0 1 0 1
0 0 0 1

A A B b

   
   
   
   
   
      

     

 

0
( ) ( ) 01 1( )

sin 1

D z g xx x z
p z d

 
 
 

   
       

 
  

   
 

 

for al :0 .1x x x dx  
 
 

      In this case 

  :0 .1z z dz x  
 
 

        

The guaranteed control ( )u t  is possible to present as 



    11 **
0( ) ( ) ( ).T TRu t x B S x


    

The simulation was performed in Simulink of 
MATLAB software with the following plant 
parameters: 

136.0544, 4, 0.4091,

0.2576, / 4,

p q r

s d 

  

 
 

 initial conditions  (0) 1 18 9 Tx    and weighting 
matrices 

( (0) , (0) , (0) ), 0.0001, 1000.1 2 3Q diag x x x R P  

White noise with the intensity W = 1 was used as w(t). 
The plots of the states , ,1 2 3x x x of the system shown 
in Figure. 
 
FIGURE 1.  This is the Style for Figure Captions. Center 
this if it doesn’t run for more than one line. 
 

  

 

  
FIGURE. Plot of state 321 ,, xxx  in the presence of 

control ( )u t  and disturbance variable ( )w t  (White 
noise). 
The plots in Fig.  testify successful plant stabilization 
in the presence of the control action. 

CONCLUSION 

In this paper a problem of control for nonlinear 
systems is formulated for a class of a perturbed 
feedback-linearizable systems. Examining the problem 
of synthesis of the control law for those systems as the 
optimal differential game of two players. The linearity 
of the transformed system structure and the infinite-

time performance quadratic criterion make it possible 
to pass over from the Hamilton–Jacoby–Bellman 
equation (HJB) to the state dependent Riccati equation 
(SDRE) upon the control synthesis. In general case an 
analytical solution of SDRE cannot be obtained. For 
the problem control low design of a perturbed 
feedback-linearizable systems we have proposed to 
search of realizing decision using of minimax principle 
witch based on application of  majorant-model of 
system. One of the variants of further study can be 
formulated as the problem of non unique a feedback-
linearizable, factorization (SDC parameterizations) of 
matrix systems and creation of a systems majorant-
model. 
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