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Abstract In this paper we consider games with preference relations. The
main optimality concept for such games is concept of equilibrium. We in-
troduce a notion of homomorphism for games with preference relations and
study a problem concerning connections between equilibrium points of games
which are in a homomorphic relation. The main result is finding covariantly
and contravariantly complete families of homomorphisms.
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1. Introduction

In this paper we study games in which a valuation structure by preference relations
is given.

We can consider a n-person game with preference relations as a system of the
form

G=<X1:-~->XmAapl,-'-:me\) (1)
where X; is a set of strategies of player i (1 = 1,...,n), A is a set of outcomes,
pi C A? is a preference relation of player i (i = 1,...,n) and realization function F

is a mapping of set of situations X = X; x ... x X, in set of outcomes A.

The main optimality concept for games of this class are various modifications
of Nash equilibrium. We introduce a concept of equilibrium as a generalization of
Nash equilibrium for games of the form (1). We consider equilibrium and Nash
equilibrium as optimal solutions for games with preference relations. The basic
subject of research in our paper are homomorphisms of certain types. It is important
that homomorphisms preserve optimal solutions of some types. The main results of
the present work are theorems concerning connections between optimal solutions of
games which are in a homomorphic relation.

“2. Preliminaries

2.1. Basic concepts for preference structures

A preference structure on a set A can be given as a pair (A, p) where p is arbitrary
reflexive binary relation on A.

The condition (a3, az) € p means that element a; is less preference than as.
Given a preference relation p C A2, we denote p* = pN p~! its symmetric part and
p* = p\p°® its strict part.

We write
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o
a1 < ap instead of (ay, az)

m

s

M

P

a1 £ as instead of (a1, az) € p°,
P

a1 < ay instead of (a1, az) € o~

P 0
Remark 1. Conditions a; < as and ag < a; are not compatible.

In this paper we consider some important types of preference structures: tran-
sitive, antisymmetric, linear, acyclic, ordinal.

Definition 1. A preference structure (A, p) is called

transitive if for any a1, az, a3 € A

(a1, az) € p A (a2, a3) € p= (a1, a3) € p;

|

antisymmetric if for any a1, az € A

(a1, a2) € pA(az, a1) € p = a1 = ag;

linear if for any a;, ag € A

(a1, a2) € pV (az, a1) € p;

acyclic if for any n =2,3,... and a; an € A

(a1, a2) EpA ... A (-1, 0n) €EpA(an, a1) Ep=a; =az = ... = ap;
— ordinal if axioms of transitivity and antisymmetry hold.

Remark 2. An ordinal preference structure (A, p) is a transitive and acyclic one
and the converse is true.

Thus, transitive preference structure and acyclic one are a natural generalization
of ordinal preference structure.

Definition 2. Let (A, p) be a preference structure and ¢ be an equivalence relation
on A. Relation p is said to be acyclic under ¢ if for any n = 2,3, ... the implication

P P P p p N e
aoSal§a2§---§an§a0:>aoza15...

e

an
holds.

2.2. Homomorphisms of preference structures

Let (A, p) and (B, o) be two preference structures.

Definition 3. A mapping ¥: A — B is called a homomorphism of the first struc-
ture into the second one if for any a;, ay € A the condition

P g
a1 Say = ¥(a1) S ¥(az) (2)

holds.
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A homomorphism ¥: A — B is said to be a homomorphism “onto” if ¥ is a
mapping of A onto B.

A homomorphism v is said to be strict if the following two conditions are satis-
fled:

P / g . i
a; < az = ¥lai) < Ylaz), (3)
a1 R ay = Y(ar) X wlas). (4)
A homomorphism v is called regular if the following two conditions
g ol -
viay) < ¥laz) = a1 <ap (5)
v(a) % ¥las) = ¥(er) = ¥(az) (6)

hold.

Remark 3. For any homomorphism the condition (4) holds. Indeed, let ¢ be a
r1omomor1:>hxsm from A into B and a1 £ (12 holds. The condmon ay f« a, means

that a; 5 as and as ,< ai. Hence, ¥(a1) < < ¥(az) and ¥(as) < ¥(ay) hold,
v(a1) % ¥(aa).

Remark 4. Any strict homomorphism is a homomorphism but the converse is
false.

Let (A, p) be a preference structure and £ C A? an equivalence relation.

Definition 4. A factor-structure for preference structure (A,p) is a pair
(A/e, p/e) where we denote for any Cy, Cr € A/ &

(C1,Ca) € p/e = == < (3a; € C1, a2 € C3) (a1, a2) € p.
Lemma 1 (about homomorphisms of preference structures).
Let (A, p) be a preference structure, £ be an equivalence relation on A.
Then
1. a canonical mapping ¥: a — [ale is a homomorphism from preference structure

(A, p) onto factor-structure ( A/s p/€);
2. a canonical mapping v is a strict homomorphism if and only if condition

=a La (7)

A e (llm N

is satisfied;
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3. a canonical mapping ¥ is a regular homomorphism if and only if conditions

yel
92 % = 4| < ab, (8)

a

2
flle e Aot

= a1 as. (9)

LA e llfe 2 A®

hold.

Proof (of lemma).

P
< ay. Then according to definition of factor relation we have

~

1. Suppose a;
ple ]

[a1)e < [az].. Hence, ¢ is @ homomorphism. Since a canonical homomorphism

is a homomorphism "onto”, we obtain the proof of the part (1) of the Lemma.

9. Let a canonical homomorphism % be strict and the implication condition (17)

p : . . . .
is satisfied. Suppose a; < az. Since a canonical homomorphism is strict by

Coyoele
condition of the Lemma then |ai]c £ [az]e holds. On the other hand from the

r

p
condition aj < a} it follows that [aj]. < [ai]e. As [ai]e = [af]e, [a2]e = [a2]e
then

The last system of conditions cannot be true (because of remark 1). Hence, our

p
i i B o
assumption is not true and since a; < a; we get a; ~ az.

Conversely, suppose that the condition (17) holds. We have to prove that a

canonical homomorphism is strict. Indeed, take two elements aj, az for which
I ple

1, € a, takes place, hence a1 < az. By the part (1) of this Lemma [a1]e < [az2e
o/e

holds. We assume that [as]e < [ai].. Then there exist elements aj, aj such

£ £ I 2 ; o
that a} = a;, a} = ag, condition aj < a) holds. In this case, all assumptions of
condition (17) are satisfied and by (17) we have a; R a,, which is contradictory
/€
o . piE . /e
to a1 < az. Thus, [as)e < [ai]e does not take place and we get [a1]e < [az2e.
So, the first condition of homomorphism (3) for canonical homomorphism is
satisfied. By remark 3 ¢ is a strict homomorphism.
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3. Suffice to verify that for regular homomorphism 1 its kernel €y satisfies (8) and
(9). Suppose

5

e A HL
2
iy

e
S

2

. P g
From a1 < ap it follows that a; < ap then ¥(a1) < ¥(a2). Assume that

~

e

¥(ay) < ¥lay); by using (11) we get ¥(a1) = ¥(az), i.e. a1 = ap is in contra-

diction with our assumptions. Hence, ¥(a1) < ¥(ag) holds, ie. ¥(a}) < ¥(ah).

; P ;
By (10) we obtain a} < a5 which was to be proved.
Now suppose conditions of (9) hold. Since ¥ is a homomorphism we have

g
Y(a1) S ¥(a2)
ag
/ / 4
P(ay) < ¥(ay)
" | g v . ¥
Hence, ¥(a;) < v(az). By (11) we get ¥(a1) = ¥(az), i.e. a1 = aa.
. p/e . .
Conversely, assume [a1): < [a2]e. Then [ai]e $ [az]e that is there exist such
c P p
£ £ I
elements af, ab that a} = a1, a4 = az and a7 < aj. The condition ah < af
ple ple o
does not hold otherwise [a5)e < [alle, e [az]e < [ai]e; it is contradiction
4 " e
(see remark 1). Hence a} < a}. The condition a} = a5 does not hold, hence the
conditions
&
a1 # az,
! 2 /!
aj < aj,
ai = (lll,
ay = ab.

hold. According to (8) we obtain a; Z as.

; . ple S ; €
Now verify (11). Suppose [a1]. ~ [as]e, 1.e. there exist elements af, al = a1

£
and aj, ay = ag such that

)
aj < a3,
Cp
af <af.

Ik

Then according to (9) we get a} = aj, i.e. [a1]s = [a2]., which was to be proved.

a

Lemma 2. Let (A,p) be a preference structure, € be an equivalence relation on A.
Factor-structure of preferences ( A/ €, p/ ) is transitive if and only if the inclusion

N
™

pogop opoe (10)

holds.
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Proof (of lemma).

Suppose (a1, az) € poeop. According to the definition of composition of binary
relations, then there exist such elements as, a5 € A that (a1,az2) € p, (az,a}) € &,
(ay,a3) € p hold. Denote by C) = [a1]e, C2 = [as]e = [a)]e, C3 = [az)e. According
to the definition of factor-relation we have (C'l, Ch) € p/e, (Cy,C3) € p/e; since
the factor-relation is supposed to be transitive then (Cy,C3) € p/=z. It means that
for some a} € C1, a3 € C3, (a},a3) € p is satisfied. As a} = m, ab = az we get
(a1,a3) € £ 0 poe which was to be proved.

Conversely, let the inclusion (10) be held. Let us take three classes Cy, Cp, C5 €
A/ e for which (Cy, Cy) € p/e, (Ca, C3) € p/e. Then there exist the elemen‘cs a1 €
C1, az € Cy, aj € Ca, ag € C3 such that (a; g) € p, (ah,a3) € p. Since a}, = ay we
get (a1,a3) € poec p. Hence, according to ( 0), (a1,a3) € €0 poe. It means that
there exist the elements @1, @3 € A such that (a1,a@;) € ¢, (@1,33) € p, (@3, a3) € &
Then ([@1]e, [@3]e) € p/c and as (@3] = [az]e = C3, [@1): = [a1]e = C1 we get
(C1,C3) € p/e which was to be proved. O

Corollary 1. Let (A, p) be a transitive preference structure, € be an equivalence
relation on A. If at least one of the conditions poz Ceop orcop CpocoreCp
holds then factor-structure ( A/, p/€) is transitive.

Proof (of corollary).

1. Indeed, let for example the first inclusion p o e C ¢ o p be satisfied. Then
pocopC (poe)opC(eoplop=cop? CeopCeopoe. According to Lemma 2
factor-structure ( A/ e, p/e€) is transitive,

2. Now let ¢ C p be satisfled. Multiplying the inclusion € C p by p to the left
we have poe C pop=p? C pCeop Multiplying initial inclusion € C p by p to
the right we obtain eop C pop=p? C poe. From the inclusions proved we have
poe =cop, ie. relations p and € commute. From part (1) of the proof of this
corollary it follows that ( A/, p/¢) is transitive. O

Lemma 3. Let (A, p) be a preference structure, £ be an equivalence relation on A.
Factor-structure ( A/ e, p/€) 1s acyclic if and only if p Ue is acyclic under €.

Proof (of lemma).
Remark 5. It is easy to verify that conditions

pUs pUe pUe pUe pUe pUe

/ £ £
a0§a15@15...§an<a05a0:>a0_a1= = Qg (11)
and
s € P, = é < £, e € € e /
awlai=a150=0S 0 Sp= === ... =a, (12)

are equivalent.

Let the condition of the implication (12) be held. Put Co = [ao)e = [afle; C1 =

aile = [aj)e,--.,Cn = lanle = [ap]e. According to the definition of factor-
relation we have (Cy,C1) € p/€, (C1,C3) € p/e,...,(Cn,Co) € p/e. Since factor-
relation is supposed to be acyclic then Cg = C; = ... = C,. It means that

3 <
a=a1 =... = an.
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Conversely, let (12) be satisfied. Let us take classes Co, C1,...,Ch € Ale,
for which (Co,C1) € p/e, (C1,Ca) € p/e,..., (Cn,Co) € p/e. Then there ex-

ist elements ag € Cp, a} € Ci,a1 € Cr,ay € Ca,...,0n € Chyap € Co such
that (ao,a}) € p, (a1,8%) € p,.. -, (an,ap) € p; since @ = a; (1 =0, 1,...,n) we get
o = a1 = ... = an. It means that [ag): = [@1]: = ... = [@n)e. As Cp = lagle, C1 =
[a1)e,. .., Crn = [an]s we obtain Cy = C; = ... = Cn. This completes the proof of
Lemma 3. O

3. Games with preference relations

3.1. Homomorphisms of games with preference relations

=(X1,.... Xn A, proos Pny Fyand I'= Uy, Un, By o1, .00, @),

Definition 5. A (n + 1) system of mappings f = (¢1,...,¥n, ¥) where for any

i=1,...,n, ¢;: X; — U; and ¥: A — B is called a homomorphism from game G
into game I if the following two conditions are satisfied:

foranyi=1,...,nanda;, a2 € 4
Pi [} . ’
a1 Saz = Y(a1) S vlae), (13)
poF =& o (p0...0¢p,). (14)

Remark 6. For any situation z = (
that Y(F(z1,...,2n)) = @(p1(z1), ¥2

A homomorphism f is said to be strict homomorphism if system of the conditions

@ Zar = va) L), (i=1,...,n) (15)
a1 gy = yla1) e (G=1,...,n) (16)

holds instead of condition (13).
“A homomorphism f is said to be regular homomorphism if for any i =1,...,n,

mapping v is a regular homomorphism between the preference structures (A, pi)
and (B, o), that is the following two conditions

o Pi ¥
Y(a1) < ¥(a2) = a1 < aq, (17)
Yiay) % ¥laz) = ¥(a1) = ¥(a2). (18)
hold.
A homomorphism f is said to be homomorphism “onto”, if each ¢; (1 = 1,... ,n)
'is a mapping "onto”; an isomorphic inclusion map, if each ¢; (i =1,... ,n) is one-
to-one function; an isomorphism, if for any i = 1,...,n, @; is one-to-one function

and mapping ¥ is an isomorphism between (4, p;) and (B, o), that is the following
equivalence
gi

Pi
a1 Saz & Y(a) S vlaz) (19)
holds.
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Definition 6. A (n + 1) system of equivalence relations € = (e1,...,€n, €) where

o i . ; . . .
g EXE(=1y.e; )8 C A? is called congruence in game G if consistency condi-
tion for realization function holds, i.e.

m
o

Ty = I1

;g2

T = T €

2 25 = F(2),...,z)) = F(z1,...,Zn)- (20)
;1 En

z, = In

Congruence Z in game G is said to be str-congruence if consistency condition for
preference relations for any 1 =1,...,7n

az
a H

! = a1 " ag (21)
as .

[ w@\ —
AR e (o2 AR

s)

ay
holds.

Congruence Z in game G is said to be reg-congruence if the following two condi-
tions forany:=1,...,n

a1 # a»
P B
01 <92 8 o o) < af (22)
a’l = ioq
r £
Ay = a2
Pi
a1 S a2
a =a
— 1 (4
ll € = a] = as. (23)
Ay = a2
Pi
a; S ay
hold.
Definition 7. Let f = (¢1,...,%n, ¥) be a homomorphism from game G into
game I'. A (n + 1) system of equivalence relations Z; = (€4, .-+ €p., gy) where
for any i = 1,...7, &, is kernel of o; and ey is kernel of ¥, is called kernel of

homomorphism f.

Theorem 1. Let G be a game with preference relations of the form (1) and € be
a congruence in game G. Then we can define a factor-game G/E with preference
relations by

G/E=(X1/€1,..s Xn/€n, A€, p1/&s ..., Pn/ &, F;)

where realization function Fe([z1], ..., [za], ) ;4 (F (@555 05 Bndls s

1. Canonical homomorphism fz = (©ey,. ., e, Ye) where for any i = 1,...,M,
et Xy — Xi/ & and ¥e: A— AJe is a homomorphism from game G onto
game G/E.
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2. Canonical homomorphism fz is strict if and only if congruence € is str-congru-
ence.

3. Canonical homomorphism f= is regular if and only if congruence € 1s reg-congru-
ence.

The proof of this Theorem is based on Lemma 1.

Theorem 2. Let G and I be two games with preference relations and a (n+1) sys-

tem of mappings f = (¢1,. .., ,On, ) be a homomorphism of game G onto game I
Then
1. for a (n+1)—tuple of equivalence relations €; = (€, ..., 8, €/, where 7 18

kernel of homomorphism f, consistency condition 20/ holds. Hence, we can
construct factor-game G/ Z¢;

2. there ezists a (n + 1) system of mappings 8 = (61,...,0n, 8) from game G/%;
into game I' which is an tsomorphic inclusion map from G/ Zf into I'.

Proof (of theoremn).

1. Let the condition of the implication (20) be held. Since Z¢ is kernel of homo-
morphism f then foranyi=1,...,n

hold.

Let us prove that the equality W(F(z},....z,)) = ¥(F(z,. xn)) is true.
Since f is homomorphism, then w(F(x’l, coTh)) = @(,ol(:cl) ..... ,on(zr)) and
Y(F(zy, ..o 2n)) = Sp1(21), - Pn(2n)).

Thus, the equality @(p;(z)), .. ,on( 1) = &(p1(z1),...,on(zn)) is obvious.

By using Theorem 1 we can construct factor-game G/Z; and canonical homo-
morphism is a homomorphism from game G onto game G/ &y .

2. We define isomorphic inclusion map 8 = (6,...,60x, §) from game G/Z; into
game I" by 0;({zile,.) = pi(z:) forany i=1,..., n and 8([alc, ) = ¥(a).
First, we prove that all mappings f;,....8,, § are one-to-one functions. For

example, we verify that 6; is one-to-one functlon. We write

m

@

61([z1)e,,) = O1([z1]e,,) & 01(2)) = pa(z1) & 77 = 71 & (71, = [71]

>

€pq”

Now we prove that § = (8 .,0n, 6) is a homomorphism from game G/Z&y into
; . ; , ¥ , E¥

game ['. Suppose ( azjsw) € p;/ &y then there exist a] = a1,a5 = a2

(i.e. ¥(a}) = ¥(ay ia’g) = 1(az)) such that {(a},a5) € p;. Since f is a homo-

morphism, it follov\ that (¥(al) ,u(ag\\ € oy, that is (¥(a1),¥(az2)) € g;. By

definition 4, we get ( (la1)ey ), 0([az]e, ) € o;. Hence, condition of homomor-

phism (13) for 8 holds.
Now we verify condition (14). We write

o)) = 8([F (21, 2n)ley) = B(F (o, . 20)).

V(F (21,0, T0)) = $(o1(T1),. .-, Vn(Inﬁ’:@(&l(EIl}Ew) ----- gn\mn( ).

Eon //



396 Tatiana F. Savina

Thus, § = (61, ..., 0y, 6) is an isomorphic inclusion map from factor-game G/&s
into game I". This completes the proof of Theorem 2.

O

Theorem 3. Let G be a game with preference relations of the form (1) and € be
a congruence in game G. A factor-game G/ is a game with transitive preference
structure if and only if for any 1 =1,...,n the condition

piocop; Ceop;oe
holds.

The proof of this Theorem is based on Lemma 2.

Theorem 4. Let G be a game with transitive preference structure, € be a congru-
ence in game G. If for any i =1,...,n at least one of the conditions pice S €0 p0;
oreop; C pioe ore C p; holds then a factor-game G/E is a game with transitive
preference structure.

The proof of this Theorem is based on Corollary 1 of Lemma 2.

Theorem 5. Let G be a game with preference relations of the form (1) and € be
a congruence in game G. A factor-game G/Z is a game with acyclic preference

structure if and only if for any i = 1,...,n, p;Je 18 acyclic under e, i.e. the
implication
piUe pile pile piUe E . s
a0 Sar £ ... S an S @B aw=a1=...=0n
holds.

The proof of this Theorem is based on Lemma 3.

It is easy to see that the following results are true.
Theorem 6. A (n+1)-tuple of equivalence relations € = (€1,...,En, €) 1N game G
is kernel of some homomorphism from game G into a game with preference relations
if and only if € is a congruence in game G.

Theorem 7. A (n+1)-tuple of equivalence relations € = (€1,...,&n, €) 1n game G
is kernel of some strict homomorphism from game G into a game with preference
relations if and only 1f £ 15 a str-congruence in game G.

Theorem 8. A (n+1)-tuple of equivalence relations € = (e1,. .. En, €) in game G
is kernel of some regular homomorphism from game G into a game with preference
relations if and only if E 1s a reg-congruence in game G.

3.2. Equilibrium points in games with preference relations

Let G be a game with preference relations of the form (1). Any situation z € X
can be given in the form z = (z;)i=1,.. n, where z; is the i~-th component of z. For
r; € X;, we denote by z || z, a situation whose i-th component is 7, and other
components are the same as in z.
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9 ] J

Definition 8. A situation z € X is called an equilibrium point in game G if such
1=1,...,nand z{ € X; for which the condition

F(z) 2 F(z | z))

holds do not exist.

Nash equilibrium point is an equilibrium point z for which the outcomes F(z)
and F(z || z) are comparable under preference relation pi forany i=1,...,n In
this case it satisfies

Pi
F(z || z}) < F(a).

Let K and K be two arbitrary classes of games with preference relations. Fix
in these classes certain optimality concepts and let Opt G be the set of optimal
solutions of any game G € K, Opt I the set of optimal solutions of any game I" € K.
If f is a homomorphism from G into I', then a correspondence between outcomes
{and also between strategies and between situations) of these games is given; we
denote this correspondence also by f.

Definition 9. A homomorphism f is said to be covariant, if f~image of any optimal
solution in G is an optimal solution in I" that is f(OptG) C Opt I.

A homomorphism £ is said to be contravariant, if f-preimage of any optimal
solution in I is an optimal solution in G that is f~YOptI) C OptG.

Now suppose that for each j € J a homomorphism f; of game G € K into some
game [ € K is given.

Definition 10. A family of homomorphisms (f);es is said to be covariantly com-
plete if for each z € Opt G there exists such index j € J that f;(z) € Opt I;.

A family of homomorphisms (f;);¢ is said to be contravariantly complete if the
condition f;(z) € Opt I for all j € J implies z € Opt G.

Lemma 4. 1. A family of homomorphisms (f3)jes is a covariantly complete fam-
iy of contravariant homomorphisms if and only if

OptG = | 71 (0pt Iy). (24)

j&J

2. A family of homomorphisms (f3)ieu 18 a conravariantly complete family of co-
variant homomorphisms if and only if

OptG = () f7(Opt I}). (25)
jeJ

Proof (of lemma).
We prove, for example, assertion 1. Since for each J € J, f; is a conravariant

homomorphism then by definition we get fj"l(Opt I;) € Opt G. Hence, for arbitrary
family of conravariant homomorphisms

U f7H0pt Iy) C Opt G
jeJ
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is satisfied. Since (f;);es is covariantly complete family of homomorphisms then
there exists such index j € J that f;(OptG) C Opt [}, ie. OptG C fj‘l(Opt Iy).
Hence

OptG C | J f7H(Opt I;).

=
Thus,
OptG = | | f;71(Opt Iy).
jeJ
It is easy to verify that the converse is true. This completes the proof of Lemma 4.

O

Now consider the case when an optimality concept is the concept of equilibrium.
It is easy to verify that the following result is true.

Theorem 9. 1. For equilibrium any strict homomorphism is a contravariant ho-
momorphism.

2. For equilibrium any regular homomorphism is a covariant homomorphism.

3. For Nash equilibrium any homomorphism “onto” is a covariant homomorphism.
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