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Duality of critical interfaces in Potts model: numerical check
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Abstract

We report on numerical investigation of fractal properties of critical interfaces in two-dimensional Potts
models. Algorithms for finding percolating interfaces of Fortuin—Kasteleyn clusters, their external perimeters
and interfaces of spin clusters are presented. Fractal dimensions are measured and compared to exact

theoretical predictions.

1. Introduction

Study of the fractal geometry of critical inter-
faces has recently become one of the main areas
of development in statistical physics. Indeed, the
SLE (Schramm-Loéwner Evolution) process discov-
ered by O. Schramm [1] is defined in terms of frac-
tal curves. This discovery has led to an explosion
of rigorous results for statistical models on a plane
(see for example review [2)).

Potts model B] is a generalization of Ising
model where spin variables o; can possess values
in {1,2,...,¢q}. Hamiltonian of the model with
nearest—neighbor interactions is

H=— Jij(00.0, — 1) (1)
<ij>
We consider ferromagnetic model with no bond
disorder, that is J;;=J>0. It is convenient to
rewrite partition function as a sum over bond vari-
able configurations {b;;}.

ZPotts = Z H p H (1 _p) q#ca (2)

{bij} \bij=1 bij=0

where #c is the total number of clusters in the con-
figuration and p=1 — exp(—£J). This representa-
tion is called Fortuin—Kasteleyn representation |4].
Note that now ¢ is not restricted to integer values.
Two-dimensional (2D) Potts model has a second
order phase transition for ¢ € [0;4]. For greater
values of ¢ phase transition becomes first—order.
Correspondence between critical Potts models
and SLE remains hypothetical (rigorously proved
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by Smirnov only for the case of square—lattice Ising
model [5], for numerical check see [§]). For these
models SLE approach is complementary to older
and less rigorous Coulomb gas ﬂa] and Conformal
Field Theor ﬁ] methods. Elegant prediction by
Duplantier ﬂé] (confirmed by SLE, provided there is
correspondence) states that the fractal dimensions
of boundaries of drpx and their external perimeters
drp satisfy duality relation (dpx — 1)(dpp — 1) =
1/4. This prediction is supported by numerical re-
sults presented by Aisikainen et al |[10] and by more
recent data of Adams et al ] For boundaries of
spin clusters of Ising model Smirnov’s paper pre-
dicts that their fractal dimension is equal to dgp.
The hypothesis ﬂﬂ] that it is true for other values of
parameter ¢ is supported by recent numerical data
of Jacobsen et al [13] for ¢ = 3.

We present algorithm for identification of perco-
lating boundary of Fortuin—Kasteleyn (FK) clus-
ters, of percolating external perimeter of FK clus-
ters (EP) and percolating boundary of spin clusters
(SP). Preliminary estimations of fractal dimension
of critical FK interfaces, EP, and SP interfaces for
various values of ¢ € [1;4] are presented.

In section 2 we review Monte-Carlo algorithms.
In section 3 we proceed with the definitions of clus-
ters, their boundaries. In section 4 we introduce
algorithms for finding lengths of interfaces. We con-
clude with the account of our simulations.

2. Monte—Carlo algorithms

Well known algorithms for Monte—Carlo simu-
lations of Potts model with noninteger ¢ include

December 9, 2013


http://arxiv.org/abs/1008.3573v2

Chayes—Machta algorithm [14] and Sweeny algo-
rithm [15].

Sweeny algorithm is essentially a Metropolis type
algorithm for simulating partition function (@) via
single-bond updates. It is applicable for simula-
tions in the whole range ¢ € [0,4]. As this al-
gorithm needs nonlocal information for local up-
dates, its performance depends strongly on the na-
ture of implementation. The original article de-
scribes some optimizations for 2D lattice which help
achieve O(N log N) performance asymptotic (where
N = L? is the number of lattice sites).

Chayes—Machta algorithm is easy to implement,
sweeps the whole lattice in O(N) steps and works
for ¢ € [1;4]. One step of the algorithm proceeds
as follows:

1. Find all bond clusters in the configuration.

2. Independently label clusters as “active” (site
color 1) with probability 1/¢ or “inactive” (site
color 0) with probability (¢ — 1)/q.

3. Erase all bonds. Independently with probabil-
ity p add bonds between sites of active clusters.

There is some freedom in which cluster—
finding algorithm to use. We used Newman—Ziff
method [16] as it turned out to be slightly superior
in performance to other methods (e.g. breadth—first
search).

As Chayes—Machta algorithm (when it is appli-
cable) generally performs better than Sweeny algo-
rithm, we used it for all our simulations. Addition-
ally, as will be shown later, this algorithm provides
an idea for the identification of spin cluster appli-
cable to noninteger values of q.

3. Definition of clusters and their interfaces

Our goal in this section is to provide unified def-
initions for all the objects considered. Let us start
with the definition of clusters.

3.1. FK and spin clusters

Given lattice graph G and bond configuration
b = {b;;} on it, we call every group of vertices of
G which is a connected component of b a cluster
of b. This definition allows us to treat clusters of
different types merely as clusters on different bond
configurations.

Specifically, let bond configuration b be drawn
from the distribution induced by the Fortuin—
Kasteleyn partition function (2)). Then, clusters of
b are called Fortuin—Kasteleyn or FK clusters.
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Figure 1: Example of bond conguration with nontrivial part
of the boundary of a cluster marked by the line with arrows.
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Spin clusters are defined in the following way: let
o; be the configuration of spin variables obtained
with Chayes—-Machta (CM) algorithm. Then, gen-
erate bond configuration by setting all b;;=1 be-
tween sites ¢,j such that o;=o;=1 and all other
b;j=0. Note that such procedure is equivalent to
performing the bond-adding step of CM algorithm
at zero temperature.

When ¢ is integer, “active” sites in CM algorithm
represent sites of one particular Potts color. So for
integer ¢ this definition coincides with the regular
one and provides natural extension to noninteger
values of q.

3.2. Cluster boundary

Any bond configuration induces a configuration
of closed loops [17] on a medial lattice (sites of the
medial lattice are in the middles of the bonds of
the original lattice), which is defined for any planar
lattice. Let us define cluster boundary as the set of
loops on a medial lattice adjacent to at least one of
the sites of the cluster considered.

On a lattice with periodic boundary conditions
(as is indeed the case in our simulations) most of
these loops can be contracted into a point by a con-
tinuous transformation. But for loops that wind
nontrivially on the torus of the lattice (we will call
such loops “nontrivial”) this is not true. We will
be interested primarily in nontrivial loops, as they
possess an unambiguous length scale (namely, lat-
tice size L) and do not disappear in the scaling limit
as L—o0. Example of a cluster with nontrivial part
of the boundary marked is presented in Fig. [l
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Figure 2: External perimeter.
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3.3. External perimeter

For any cluster ¢ with a nontrivial boundary let
us set all bond variables b;;=1 for all neighboring
sites i, j€c such that there is a loop adjacent to both
7 and j. As a result the initial cluster boundary is
split into trivial loops (which encircle fjords that
become “lakes”) and two nontrivial parts. We will
call them the external perimeter of a cluster. Exter-
nal perimeter for the cluster in Fig. [l is presented
on Fig.

The definition makes use of the fact that the loop
is “internal” iff it is trivial. For other types of
boundary condition one has to come up with some
other method for distinguishing between internal
and external loops.

According to this definition only the fjords with
the narrowest entrances (the ones one lattice spac-
ing wide) are closed. Our simulations suggest that
it is sufficient to achieve the expected fractal di-
mension, although one could in principle define the
whole hierarchy of external perimeters as was found
in [18].

Note also that according to presented definition
external perimeter of a spin cluster coincides with
its regular outer boundary.

4. Algorithms for tracing boundaries

The main purpose of the algorithms in this sec-
tion is to find lengths of cluster boundaries and
their external perimeters given the configuration
({bi;},{s:}). In the basis of all these algorithms
lies a lattice walker which traces loops on a medial
lattice, with one segment at a time. We will present
definitions for a square lattice as generalizations to
arbitrary planar lattice are straightforward.
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Figure 3: Tracing the boundary.

I+ 0,wz < 0,wy < 0

e+ e

do
l—1+1
(wz, wy) + (wx,wy) + Windings(e)
¢’ < NextLink(e’)

while e’ # ¢

return (I, wz,wy)

Figure 4: TraceLoop(e)

The state of a walker is a tuple e = (i, j, k) repre-
senting the segment of a medial lattice. Here (4, j)
are the lattice coordinates and k € {0,1,2,3} is
the index of the segment (see Fig. ). Procedure
NextSegment(e) finds next to e segment in a loop
to which e belongs. If the corresponding bond end-
ing in (4,7) is not present, NextSegment(i, j, k) =
(4,4, (k + 1)%4), where % represents taking a
remainder. If the bond is present, then e.g.
NextSegment(i, j,2) = ((¢ + 1)%L, j,1). For other
cases NextSegment is defined analogously. Note
that to trace spin cluster boundaries instead of FK
one does not need to construct another configura-
tion but only tell the walker that the bond is present
if respective sites are both active.

Procedure TraceLoop(e) (Fig. E]) returns the tu-
ple (I,wz,wy), where [ is the length the loop con-
taining e and wz,wy are the number of times the
loop winds around the lattice in both directions.
Windings(e) returns (0,0) for a segment in the
bulk and one of {(1,0), (—1,0),(0,1), (0, —1)} if the
walker needs to cross the edge of the lattice in a
corresponding direction. The loop is nontrivial iff
(wz, wy) # (0,0) (note that the mere fact that the
walker crosses the lattice edge is insufficient).

Procedure FindNontrivialLoops() (Fig.[Hl) finds



q di. measured dis measured d’;};m measured
1 1.75 1.75002(2) 4/3 1.33331(9) - -

1.5 1.70444  1.70449(7) 1.35489 1.3546(2) 1.35489  1.3549(2)
2 5/3 1.6667(1) 1.375 1.3747(5) 1.375 1.37514(8)
2.5 1.63274  1.63275(8) 1.39511  1.3953(9) 1.39511  1.3946(3)
3 1.6 1.6002(1) 1.41667 1.418(1) 1.41667 1.418(1)
3.5 1.56498 1.565(2) 1.44248 1.438(4) 1.44248 1.46(2)

4 1.5 1.534(1) 1.5 1.405(1) 1.5 1.428(1)

Table 1: Fractal dimensions: theoretical predictions and measured values.

ClearLabels()
loops + ()
label + 1
for e € Exits do
if Label(e) = 0 then
(I, wx,wy) + TraceLoop(e)
LabelLoop(e, label)
label < label 4+ 1
if wx # 0 or wy # 0 then
loops < loops U e
end if
end if
end for
return loops

Figure 5: FindNontrivialLoops ()

the set of all nontrivial loops in the configuration.
The subset of boundary segments

Exits = {(i,7, k) : i=0,0<j<L, ke{0,1}}U

is chosen in such way that any nontrivial loop has a
segment in this subset. A naive way to find nontriv-
ial loops would be to launch TraceLoop for all seg-
ments in Exits. But, as one loop can cross Exits
many times, this leads to much worse than O(N)
performance. To avoid this we mark all already
traced loops with an unique label. ClearLabels
sets all the labels to zero.

Search for external perimeters is performed only
for a configuration with nonempty loops set. For
all e€loops define the set

LoopExits(e) =
Exits N {e': ¢’ = NextSegment™(e)} (4)

of all segments of loop represented by e which
are also in Exits. We will also need procedures

lengths < ()
for e € loops do
for ¢’ € LoopExits(e) do
(I, wz,wy) < TraceEP(¢’)
if wx # 0 or wy # 0 then
lengths < lengths U
end if
end for
end for
return lengths

Figure 6: FindEPLengths (loops)

NextEPSegment(e) and TraceEP(e) defined analo-
gously to NextSegment and TraceLoop only in such
way that bonds added according to the definition
of external perimeter are taken into account (again,
no modification of configuration is necessary). The
fact that the loop segments are still labeled after
the run of FindNontrivialLoops greatly helps in
recognizing gates to the fjords.

Now finding the length of the external perimeter
is easy (Fig. [).

Processing a configuration with these algorithms
requires O(N) steps.

5. Simulation and results

We simulated 2D Potts model on a square lat-
tice with periodic boundary conditions and ¢ €
{1,1.5,2,2.5,3,3.5,4}. For pseudorandom num-
ber generation Mersenne Twister algorithm [19]
(MT19937) was used. For each value of ¢ lattices of
linear size L from 32 to 1323 were simulated. For
each lattice size we performed 150 to 1000 inde-
pendent runs. One independent run started with a
thermalization period of 2-10* Monte—Carlo steps.
It was followed by 10° steps during each of which
the configuration was searched for nontrivial inter-



faces. After each run mean values of the lengths
of interfaces of all types were computed. Final out-
put of the simulation is the mean values of interface
lengths for all values of ¢ and L.

Fractal dimensions were extracted using least—
squares fitting. To take corrections to scaling into
account, data was fitted using the following func-
tions:

ALY (1+b/L), (5)
I ~ ALY (1+b/L°), (6)

Q

which correspond to analytical and non—analytical
main correction term respectively. We tried to
fit with analytical correction first, discarding data
points with small L until satisfactory x? per degree
of freedom was obtained. If this procedure was un-
successful, function (@) was used.

Results are presented in Table [l Except g = 4,
they are in close agreement with theoretical pre-
dictions. The reason for the discrepancy at ¢ = 4
is that main correction term becomes logarithmic,
which is very difficult to properly take into account.
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