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1 Introduction

Let D be a finite set of nonnegative integers (0 ∈ D, |D| > 1) and let

ζ = ζ1ρ + ζ1ρ
2 + ...,

where 0 < ρ < 1, variables ζ1, ζ2, ... are i.i.d. random variables, and P(ζi = d) =
1/|D|.

The distribution of the random variable ζ is called the Erdös measure on the real
line. Denote by � the support of the Erdös measure on the real line.

The problem of computing the of Hausdorff dimension of the set � is considered
in [3–5].
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Let β = 1
ρ

be a Pisot number. Recall that the a Pisot number is an algebraic integer
whose algebraic conjugates lie inside the unit disk. The Hausdorff dimension of �
equals the Hausdorff dimension of some sofic compact space (see [1, 2]). This last
dimension equals the ratio of topological entropy h to log β.

The topological entropy of the sofic compact space equals the entropy of some
regular language. The entropy of a regular language equals logλ, where λ is the
spectral radius of the adjacency matrix of the deterministic automaton recognizing
this language.

For the “difficult” case considered in [5] (D = {0, 1, 3}, β = 1 + √
3), we give an

estimate of the Hausdorff dimension of the set� more exact than that in [5].
For the “very difficult” case in [4] D = {0, 1, 3}, β3 = 2β2 + 2β + 2 (where the

Lalley formula is impractical), we determine the Hausdorff dimension of the set �
up to 10−15.

2 Formula for Computing the Hausdoff Dimension

For a Pisot number β , there exists a finite partition ξ of the unit [0, 1) whose atoms
are the intervals �i, i = 1, 2, ...,N, such that:

1. ξ ≥ η, where η is the partition with the atoms {x : [βx] = k}, k = 0, 1, ...;
2. For V : x �→ {βx} = βx − [βx],

V�i = ∪ jqij� j, qij ∈ {0, 1}, 0� j = ∅, 1 ·� j = � j.

The partition ξ is the V-Markovian partition. Let Q be the matrix (qij, i, j,=
1, ...,N).

The Markov compact set XQ with alphabet {1, 2, ...,N} is the set of all infinite
words x = x1x2...xk..., xi ∈ A, with qxixi+1 = 1, i = 1, 2, ....

The metric is given by the formula d(x, y) = ρn(x,y), where n(x, y) is the length of
the largest common prefix of words x and y.

Let ψ : [0, 1] → XQ be ψ(x) = x1...xk..., where x ∈ �x1 ,Vx ∈ �x2 , ...,Vn−1x ∈
�xn , ....

The shift σ : x1x2... �→ x2x3... on XQ corresponds to the map V on the unit
interval, ψ(Vx) = σψ(x). The invariant Erdös measure on the unit interval gives the
invariant Erdös measure on the space XQ (see [1, 2]). Let �Q be the support of this
measure. It is easy to prove (follow [1, 2]) that

dimH
(
�Q

) = dimH(�).

Let � be the interval (−1, max D
β−1 ). Define �k by the formula

�kx = {
x′ : ∃ j ∈ D, x′ = βx − j + k

} ∩�, k = 0, 1, ..., Ñ − 1,
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where

Ñ =
{

[β], β is not an integer,
β − 1, β is an integer.

For a Pisot number β , there exists a minimal finite set S ⊂ � such that

0 ∈ S, �kS ⊂ S, k = 0, 1, ..., Ñ − 1.

Let P(S) = 2S and �x = ∪k�kx. We define the set S′ as the minimal �-invariant
subset of the set P(S) such that {{s} : s ∈ S} ⊂ S′.

Let Gk be the graph (S′, Ek) with vertex set S′ and edge set

Ek = {(
s′, s′′) : s′′ = �ks′} , k = 0, 1, ..., Ñ − 1.

Denote by mk the adjacency matrix of this graph.
Define the matrix M j as the matrix mk if � j ⊂ {x : [βx] = k}. Introduce the block

matrix M = (qijm j) following [1, 2].
Let λ be the spectral radius of the matrix M. Then,

dimH
(
�Q

) = log(λ)

logβ
.

Indeed, the matrix M is the adjacency matrix of deterministic automaton which
recognizes the language of the sofic set�Q.

3 Simple Example [4]

Let β = 3, D = {0, 1,3}. Here, ξ = η = {[0, 1/3), [1/3, 2/3), [2/3, 1)}. All entries of
the matrix Q are equal to 1, S′ = {{0}, {1}, {0, 1}}, and

m0 =
⎛

⎝
1 0 0
1 0 0
1 0 0

⎞

⎠ , m1 =
⎛

⎝
0 0 1
0 1 0
0 0 1

⎞

⎠ , m2 =
⎛

⎝
0 1 0
0 0 0
0 1 0

⎞

⎠ ,

M(1) = m0, M(2) = m1, M(3) = m2.

The spectral radius of the matrix M equals the spectral radius λ of the matrix
m0 + m1 + m2. The spectral radius λ is the largest root of the polynomial 1 − 3x + x2,

dimH(λ) =
log

(
3+√

5
2

)

log 3
.

See [3].

4 Difficult Example [3, 5]

Let β=1+√
3, D={0,1, 3}. Here, qij =1, (i, j) = (3,3), q33 =0 and N = 3, Ñ = 2.

The set S is the set {−2ρ,−1 + 2ρ, 0, 1 − 2ρ, 1 − 4ρ, 2ρ, 1, 2 − 2ρ}. The cardinal-
ity of S′ equals 45.
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The spectral radius λ of the matrix M is the root (with the largest absolute value)
of the polynomial

p(x) = Det
[
Id45x2 − (m0 + m1)x − m2m0 − m2m1

]

= (−1 + x)4x67(1 + x)3
(
1 + x + x2

)
q(x),

where

q(x) = −14 − 8x2 + 5x3 − 8x4 − 10x5 + 9x6 − 9x7

− 4x8 + 2x9 + 9x10 + 8x11 − 6x12 − 2x13 + x14.

We have q(λ) = 0 and λ = 2.65574542447572.... The Hausdorff dimension is

dimH(Λ) = ln(λ)
ln(β)

= 0.9718152436329895....

In [5], Lalley proved that

2.63855 ≤ λ ≤ 2.65584,

0.963855 ≤ dimH(λ) ≤ 0.971847.

5 Very Difficult Example [5]

Let

β3 = 2β2 + 2β + 2, β > 1,D = {0, 1, 3}.
Then,

S = { − 2ρ − 2ρ2, −2 + 2ρ + 4ρ2, 1 − 4ρ − 4ρ2, −1 + 2ρ2, −2ρ, −2 + 4ρ,

1 − 4ρ − 2ρ2, −1 + 2ρ − 2ρ2, −1 + 4ρ2, −4ρ2, −2ρ + 2ρ2,

−2 + 4ρ + 2ρ2, 1 − 4ρ, −1 + 2ρ, −2ρ2, −2 + 4ρ + 4ρ2,

1 − 2ρ − 4ρ2, −1 + 2ρ + 2ρ2, 0, 1 − 2ρ − 2ρ2, −1 + 2ρ + 4ρ2,

2 − 4ρ − 4ρ2, 2ρ2, 1 − 2ρ, −1 + 4ρ, 2 − 4ρ − 2ρ2,

2ρ − 2ρ2, 4ρ2, 1 − 4ρ2, 1 − 2ρ + 2ρ2, −1 + 4ρ + 2ρ2, 2 − 4ρ,

2ρ, 1 − 2ρ2, −1 + 4ρ + 4ρ2, 2 − 2ρ − 4ρ2, 2ρ + 2ρ2, 1,

2 − 2ρ − 2ρ2, 2ρ + 4ρ2, 1 + 2ρ2, −1 + 6ρ + 2ρ2, 2 − 2ρ, 4ρ,

1 + 2ρ − 2ρ2, 1 + 4ρ2, −1 + 6ρ + 4ρ2, 2 − 4ρ2, 2 − 2ρ + 2ρ2
}
.
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The cardinality of S equals 49. The cardinality of S′ equals 482. The matrix M is

M =

⎛

⎜
⎜
⎝

m0 m1 m2 m2

m0 m1 m2 m2

m0 m1 0 0
0 0 m2 0

⎞

⎟
⎟
⎠ .

It is easy to prove that p(λ) = 0, where

p(x) = Det
[−Id482x3 + (m0 + m1)x2 + (m2m0 + m2m1)x + m2m0 + m2m1

]
,

p(x) = (−1 + x)3x1380
(
1 + x + x2

)2 (−2 + x3
)2

q(x),

q(x) = 12 − 4x − 16x2 + 16x3 + 36x4 + 60x5 + 75x6 + 99x7 − 52x8 − 69x9 − 184x10

+15x11 − 109x12 + 147x13 + 131x14 + 137x15 + 54x16 − 124x17 + 34x18

− 220x19 − 25x20 + 36x21 + 164x22 + 101x23 − 7x24 − 208x25 − 164x26

− 481x27 + 358x28 − 182x29 + 801x30 − 145x31 + 659x32 − 440x33 − 251x34

− 420x35 − 194x36 + 267x37 − 77x38 + 410x39 − 99x40 + 223x41 − 253x42

+ 14x43 − 170x44 + 71x45 + 76x47 − 7x48 − 16x50 + x53.

We have q(λ) = 0 and

λ = 2.1965202182188763....

The Hausdorff dimension is

dimH(Λ) = log(λ)

log(β)
= 0.7343944361851578....
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