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Banach’s Theorem asserts that any contractive
map of a complete metric space into itself admits a
unique fixed point. This classical result, having
numerous applications [10, 13], has been generalized
in the framework of the theory of metric spaces in dif�
ferent directions, among which we mention [2, 11]
(and references therein). In the case when norms on
linear spaces are given indirectly or implicitly (as, e.g.,
in the theory of Orlicz spaces or the theory of modular
spaces [14, 15]), generalizations of Banach’s Theorem
have been established in [1, 12]. 

The purpose of this paper is to present a result on
the existence of fixed points of nonlinear maps in the
context of the theory of metric modulars [5–7], which
extends simultaneously the theory of modular spaces
over linear spaces as well as the theory of metric
spaces. In the case under consideration a (modular)
contraction does not contract the distances between
points, but it contracts some generalized average
velocities, which correspond to the given modulars.
Moreover, a new notion of convergence (modular
convergence) can be defined, which is weaker than the
metric convergence.

In Section 1 we present basic facts concerning
modular (metric) spaces. In Section 2 we define a new
notion of the modular convergence and establish a
necessary and sufficient condition on the modular,
under which the modular convergence is equivalent to
the metric convergence (Lemma 2). In Section 3 we
introduce the notion of modular contractive maps,
study their relationship with Lipschitz continuous
maps with respect to the corresponding metrics (The�
orem 1) and formulate the main result of the paper on
the existence of fixed points of modular contractive
maps (Theorem 2). Finally, in the last Section 4 we

present an application of Theorem 2 to the existence
of solutions to Caratheodory�type differential equa�
tions with the right�hand side from the Orlicz space.

1. MODULAR SPACES

Let us recall basic definitions, notation and auxil�
iary facts from [5, 7] needed in the sequel.

A modular on a nonempty set X is a one�parameter
family w = {wλ}λ > 0 of maps of the form wλ: X × X →
[0, ∞] for λ ∈ (0, ∞) satisfying, for all x, y, z ∈ X, the
following three conditions: (i) x = y if and only if
wλ(x, y) = 0 for all λ > 0; (ii) wλ(x, y) = wλ(y, x) for all
λ > 0; and (iii) wλ + μ(x, y) ≤ wλ(x, z) + wμ(y, z) for all
λ, μ > 0. The modular w on X is said to be: (a) strict if,
in addition to (i), condition wλ(x, y) = 0 for at least one
λ > 0 implies x = y; (b) convex if, instead of the ine�
quality in (iii), for all λ, μ > 0 and x, y, z ∈ X, the fol�
lowing inequality holds:

(iv) wλ + μ(x, y) ≤ wλ(x, z) + wμ(y, z).

For instance, if (X, d) is a metric space with metric
d, then the family w = {wλ}λ > 0, given by wλ(x, y) =

 for all x, y ∈ X, is a strict convex modular on X,

which can be naturally interpreted as a field of abso�
lute values of average velocities between the points x
and y. In the general case a modular is a family of
some generalized (nonclassical) average velocities: if
wλ(x, y) = ∞ for λ ≤ d(x, y), and wλ(x, y) = 0 for λ >
d(x, y), then w = {wλ}λ > 0 is a nonstrict modular on X.
Numerous examples of (convex) modulars are pre�
sented in [4–7], and also in Section 4.

The essential property of any modular w on X is that
the function λ � wλ(x, y) is nonincreasing on (0, ∞)
for all x, y ∈ X; moreover, if w is convex, then, in addi�
tion, the function λ � λwλ(x, y) is also nonincreasing.
Thus, in [0, ∞] there exist the limit from the right
wλ + 0(x, y) and the limit from the left wλ – 0(x, y), for
which we have wλ + 0(x, y) ≤ wλ(x, y) ≤ wλ – 0(x, y) [7].
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Let us fix an element x0 ∈ X arbitrarily. Modular
spaces (around x0) are the following two sets:

and

Clearly, Xw ⊂  (proper inclusion, in general),
and in the case of a convex modular w on X these two
spaces coincide. It was shown in [5–7] that Xw is a
metric space with respect to the (implicitly defined)
metric dw(x, y) = inf{λ > 0: wλ(x, y) ≤ λ} for all x, y ∈
Xw; if w is a convex modular on X, then a metric on

= Xw can be defined by the rule (x, y) = inf{λ >

0: wλ(x, y) ≤ 1} for all x, y ∈ .

Generally, the verification of axioms of a modular
(i)–(iv) is not difficult, which allows to define effi�
ciently nontrivial metrics in various functional spaces
by means of the formulas mentioned above ([5–7]). In
the next section we show that, given a modular, one
can define a new type of convergence, which is weaker
than the convergence in metric.

2. MODULAR CONVERGENCE

It is known ([7]) that if w is a convex modular on a
set X, {xn} is a sequence in  and x ∈ , then con�

dition (xn, x) = 0 is equivalent to the condition

(xn, x) = 0 for all λ > 0 (a similar assertion is

valid for any modular w if in the above we replace 

by Xw and  —by dw). The notion of metric conver�
gence can be weakened if we assume the condition on
the right in the assertion above to hold only for some
λ > 0 (instead of all λ > 0).

Let w be a modular on X. A sequence {xn} from 
is said to be modular convergent to an element x ∈ X,
provided there exists a number λ = λ({xn}, x) > 0 such

that (xn, x) = 0 (in short, xn  x). Any such ele�

ment x is called a modular limit of {xn}.

Lemma 1. Given a modular w on X, we have: (a)
modular spaces Xw and  are closed with respect to the

modular convergence (i.e., if {xn} is from Xw or , x ∈ X

and xn  x, then x ∈ Xw or x ∈ , respectively); (b) if
w is a strict modular on X, then the modular limit is
determined uniquely (if it exists).

In the next lemma we exhibit conditions, under
which the metric convergence (with respect to dw or

) is equivalent to the modular convergence.

Xw x X: wλ x x0,( )
λ ∞→
lim 0=∈{ }=

Xw* x X: wλ x x0,( ) ∞<∈{=

for some λ λ x( ) 0 }.>=

Xw*

Xw* dw*

Xw*

Xw* Xw*

dw*
n ∞→
lim

wλ
n ∞→
lim

Xw*

dw*

Xw*

wλ
n ∞→
lim →w

Xw*

Xw*

→w Xw*

dw*

Lemma 2. The metric convergence in  (with

respect to dw if w is a modular, and with respect to  if
w is a convex modular) coincides with the modular con�
vergence if and only if the modular w satisfies the follow�
ing Δ2�condition: if {xn} ⊂ , x ∈  and λ > 0 is such

that (xn, x) = 0, then (xn, x) = 0.

A counterpart of the completeness of a metric
space in the context of the modular convergence is the
following notion.

The modular space  is said to be modular complete

if the conditions {xn} ⊂  and (xn, xm) = 0

for some λ > 0 imply the existence of an element x ∈
 such that (xn, x) = 0.

3. MODULAR CONTRACTIVE MAPS

First, let us characterize Lipschitz continuous
maps T:  →  with respect to the metrics dw and

 in terms of their underlying modulars w on X. Let

k > 0 be a constant and x, y ∈ .

Theorem 1. (a) Condition dw(Tx, Ty) ≤ kdw(x, y) is
equivalent to wkλ + 0(Tx, Ty) ≤ kλ for all λ > 0 such that
wλ(x, y) ≤ λ.

(b) Given a convex modular w on X, we have: (Tx,

Ty) ≤ k (x, y) if and only if wkλ + 0(Tx, Ty) ≤ 1 for all
λ > 0 such that wλ(x, y) ≤ 1.

In particular, this implies that if wkλ(Tx, Ty) ≤
kwλ(x, y) for all λ > 0, then dw(Tx, Ty) ≤ kdw(x, y); and
if wkλ(Tx, Ty) ≤ wλ(x, y) for all λ > 0, where w is a con�

vex modular, then (Tx, Ty) ≤ k (x, y).

The following definition extends the notion of a
contractive map to the case of maps on modular
spaces.

Let w be a modular on X. A map T:  →  is said
to be modular contractive (strongly modular contrac�
tive) if there exist constants 0 < k < 1 and λ0 > 0 such
that wkλ(Tx, Ty) ≤ wλ(x, y) (wkλ(Tx, Ty) ≤ kwλ(x, y),

respectively) for all 0 < λ ≤ λ0 and x, y ∈ .

The main result of the paper is the following theo�
rem on the existence of fixed points of modular con�
tractive maps.

Theorem 2. Let w be a strict convex modular on a set
X such that  is modular complete, and T:  → 
be a modular contractive map such that for each λ > 0
there exists xλ ∈  such that wλ(xλ, Txλ) < ∞. Then T

admits a fixed point, i.e., Tx∗ = x∗ for some x∗ ∈ . In

addition, if the modular w assumes only finite values on

Xw*

dw*

Xw* Xw*

wλ
n ∞→
lim wλ/2

n ∞→
lim

Xw*

Xw* wλ
n m, ∞→

lim

Xw* wλ
n ∞→
lim

Xw* Xw*

dw*

Xw*

dw*

dw*
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(0, ∞) ×  × , then the last hypothesis on T is
redundant, the fixed point x∗ of T is unique, and for each

 ∈  the sequence of iterations {Tn  is modular
convergent to x∗.

This theorem remains valid if we replace the terms
“strict convex modular” by “strict modular” and
“modular contractive map”—by “strongly modular
contractive map.” An application of Theorem 2 is pre�
sented in the next section.

4. APPLICATION

Let ϕ: [0, ∞) → [0, ∞) be a convex function, ϕ(u) = 0

only at u = 0,  = ∞, [a, b] be a closed interval

in � (a < b) and (M, ||·||) be a reflexive Banach space
(over � or �) with the norm ||·||. Given x0 ∈ M, we
denote by X the set of all functions x: [a, b] → M such
that x(a) = x0. Given λ > 0 and x, y ∈ X, we set

where the supremum is taken over all partitions

P =  of [a, b], i.e., m ∈ � and a = t0 < t1 < … <
tm – 1 < tm = b. Then ([3, 4]) the family w = {wλ}λ > 0 is a
strict convex modular on X, and one can show that the
(nonlinear) modular space  (around the constant
function x0(t) ≡ x0, t ∈ [a, b]) is modular complete.

Recall that a function x: [a, b] → M is in  if and only
if x(a) = x0 and there exists a constant λ = λ(x) > 0 such
that

the value wλ(x, x0) with λ = 1 is usually said to be the
total ϕ�variation of x in the sense of F. Riesz, Yu. T.
Medvedev and W. Orlicz [4].

Denote by AC([a, b]; M) the set of all absolutely
continuous functions x: [a, b] → M, by L1([a, b]; M) —
the set of all strongly measurable and Bochner sum�
mable functions x: [a, b] → M and by Lϕ([a, b]; M)—
the Orlicz space of all strongly measurable functions x:

[a, b] → M such that dt < ∞ for some λ > 0.

The following criterion is well known [3, 4, 8]:
given x: [a, b] → M, we have: : x ∈  if and only
if x ∈ AC ([a, b]; M), x(a) = x0 and wλ(x, x0) =

Xw* Xw*

x Xw* x }n 1=
∞

ϕ u( )
u

���������
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lim

wλ x y,( )
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⎛ ⎞ ti ti 1––( ),
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∑
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ti{ }i 0=
m
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P

sup ∞;<

ϕ x t( )
λ

�����������⎝ ⎠
⎛ ⎞

a

b

∫

Xw* Xw*

dt < ∞ for some number λ = λ(x) > 0, and

so, the strong derivative x' (evaluated in the norm ||·||),
which is defined almost everywhere on [a, b], belongs
to the space Lϕ([a, b]; M).

Theorem 3. Let f: [a, b] × M → M be a (Car�
athéodory�type) function satisfying the following two
conditions:

(C.1) for each x ∈ M the function f(·, x) = [t �
f(t, x)]: [a, b] → M is strongly measurable and f(·, y0) ∈
Lϕ([a, b]; M) for some y0 ∈ M;

(C.2) there exists a constant L > 0 such that ||f(t, x) –
f(t, y)|| ≤ L||x – y|| for almost all t ∈ [a, b] and all x, y ∈ M.

Then the integral operator

maps the modular space  into itself, and the following
inequality holds:

As a corollary, we note that, under the assumptions
(C.1) and (C.2) from Theorem 3, for each x0 ∈ M and
any interval [a, b] such that L(b – a) < 1 Theorem 2
implies the existence of a fixed point x ∈  of the
integral operator T, and so, the Cauchy problem
x'(t) = f(t, x(t)) for almost all t ∈ [a, b] and x(a) = x0

admits a solution x ∈ . This generalizes certain
results on the existence of absolutely continuous solu�
tions to the Caratheodory differential equations under
the assumption that f(·, y0) ∈ L1([a, b]; M) for some
y0 ∈ M (see [9]).

Finally, it is to be noted that the modular w, defined
at the beginning of this section, has been chosen on the
basis that in the corresponding modular space 
the modular convergence is not equivalent to the met�
ric one.

Example. Set ϕ(u) = eu – 1 if u ≥ 0, [a, b] = [0, 1],
M = � and x0 = 0. Define a sequence of functions xn ∈

, n ∈ �, as follows: xn(t) = t – (t + αn)log(t + αn) +

αnlogαn for all 0 ≤ t ≤ 1, where αn = , and set x(t) = t –

tlogt if 0 < t ≤ 1, and x(0) = 0. Then x ∈ , xn con�
verges uniformly on [0,1] to x as n → ∞, wλ(xn, x) → 0
as n → ∞ only for λ > 1 (and so, xn  x), and at the

same time (xn, x) ≥ 1 for all n ∈ �.

ϕ x' t( )
λ

������������⎝ ⎠
⎛ ⎞

a

b

∫

Tx( ) t( ) x0 f s x s( ),( ) s, x Xw*, t a b,[ ]∈ ∈d
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t
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