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Abstract 
The issue of determining “the right number of clusters” is attracting ever growing interest. The paper reviews 
published work on the issue with respect to mixture of distributions, partition, especially in K-Means 
clustering, and hierarchical cluster structures. Some perspective directions for further developments are 
outlined.  
 
 
1. Introduction 
 

It is tempting to consider the problem of determining “the right number of clusters” as akin to 

the problem of estimation of the complexity of a classifier, which depends on the complexity of the 

structure of the set of admissible rules, assuming the worst-case scenario for the structure of the 

dataset (Vapnik 2006). Indeed there are several different clustering formats – such as partitioning, 

hierarchical clustering, one cluster clustering, fuzzy clustering, Kohonen self-organising maps, and 

mixtures of distributions – that should involve different criteria. Yet the worst-case scenario 

paradigm seems rather tangential to clustering, because the worst case here is probably a uniform 

noise: there is no widely acceptable theoretical framework for systematization of data structures 

available as yet.  

The remainder reviews the bulk of published work on the issue followed by a systematic 

discussion of directions for further developments.   

2. Review of published work 

Most efforts in determining the number of clusters have been channelled along the following 

three cluster structures:  

(I) mixture of distributions; 

(II) binary hierarchy; and 

(III) partition. 

We present them accordingly. 

       2I. Number of components in a mixture of distributions. 
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 Under the mixture of distributions model, the data is assumed to be a random independent sample  

from a distribution of density  
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where unimodal density fk(x|k) and positive pk represent, in respect, k-th cluster and its probability 

(k=1,…, K). Given a sample X={xi}, a maximum likelihood estimate of the parameters ={k} can 

be derived by maximizing the log-likelihood L(g,l)=ilogf(xi|) = ikgik(lik–log gik) where gik 

=pkf(xi|k)/kpkf(xi|k) are posterior membership probabilities and lik=log(pkf(xi|k)). A somewhat 

more complex version of L involving a random assignment of the observations to the clusters has 

received attention too (see, for example, Biernacki et al. 2000). Until recently, most research has 

been concentrated on representing the clusters by Gaussian distributions; currently, the choice is 

extended to, first of all, Dirichlet distributions that enjoy the advantage of having both a bounded 

density support and less parameters (for a review, see for example, Bouguila and Ziou 2007).   

 

There have been four approaches to deriving recipes for choosing the right K under the mixture of 

distributions model: 

(2Ia) Hypothesis testing for deciding between different hypotheses on the number of clusters (see 

Bock 1996 for a review), that mainly produced recipes for testing one number against another (Bock 

1996, Lo, Mendell and Rubin 2001); this can be used for testing one cluster hypothesis against the 

two-cluster hypothesis to decide of stopping in hierarchical clustering. 

(2Ib) Additional constraints to the maximization of the log-likelihood, expressed with the help of a 

parsimony principle such as the principles of the minimum description length or minimum message 

length; these generated a number of useful criteria to utilize additive terms penalizing L for the 

number of parameters to be estimated versus the number of observations, such are Akaike 

Information Criterion (AIC) or Bayes Information Criterion (BIC) (for reviews, see Bozdogan 1994, 

McLachlan and Peel 2000 and Figueiredo and Jain 2002); the latter, along with a convenient data 

normalization, has been advocated by Yeung et al 2001, though Hu and Xu 2004, as well as other 

authors, present less favourable evidence that BIC tends to overestimate the number of clusters – yet 

the issue of data transformation should be handled more seriously. The trouble with these criteria is 

that they tend to be monotone over K when a cluster structure is not well manifested (Windham and 

Cutler 1992). 

(2Ic) Collateral statistics that should be minimal at the “right” number K such as, for example, the  

information ratio (Windham and Cutler 1992) and the normalized entropy (Celeux and Soromento 
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1996). Both of these can be evaluated as side products of the ordinary expectation-maximization EM 

algorithm at each pre-specified K so that no additional efforts are needed to compute them. Yet, 

there is not enough evidence for using the latter while there is some disappointing evidence against 

the former. 

(2Id) Adjusting the number of clusters while fitting the model incrementally, by penalizing the rival 

seeds, which has been shaped recently into a weighted likelihood criterion to maximize (see Cheung 

2005 and references therein).  

2II. Stopping in hierarchic clustering. 

Hierarchic clustering is an activity of building a hierarchy in a divisive or agglomerative way by 

sequentially splitting a cluster in two parts, in the former, or merging two clusters, in the latter. This 

is often used for determining a partition with a convenient number of clusters K in either of two ways: 

(2IIa) Stopping the process of splitting or merging according to a criterion. This was the 

initial way of doing exemplified by the Duda and Hart (1973) ratio of the square error of a two-

cluster solution over that for one cluster solution so that the process of division stops if the ratio is 

not small enough or a merger proceeds if this is the case. Similarly testing of a two-cluster solution 

versus the one-cluster solution is done by using a more complex statistic such as the log-likelihood 

or even BIC criterion of a mixture of densities model. The idea of testing individual splits with BIC 

criterion was picked up by Pelleg and Moore (2000) and extended by Ishioka (2005) and Feng and 

Hamerly (2006); these employ a divisive approach with splitting clusters by using 2-Means method.  

(2IIb) Choosing a cut-off level in a completed hierarchy. In the general case, so far only 

heuristics have been proposed, starting from Mojena (1977)  who proposed calculating values of the 

optimization criterion f(K) for all K-cluster partitions found by cutting the hierarchy and then 

defining a proper K such that f(K+1) exceeds the “ three sigma” over the average f(K). Obviously 

every partition-based rule can be applied too. Thirty different criteria were included by Milligan 

(1981) in his seminal study of rules for cutting cluster hierarchies, though this simulation study 

included rather small numbers of clusters and data sizes, and the clusters were well separated and 

equal-sized. Use of BIC criterion is advocated by Fraley and Raftery (1998). For the situations at 

which clustering is based on similarity data, a good way to go is subtracting some “ground” or 

“expected” similarity matrix so that the residual similarity leads to negative values in criteria 

conventionally involving sums of similarity values when the number of clusters is too small (see 

Mirkin’s (1996, p. 256) uniform threshold criterion or Newman’s modularity function (Newman and 

Girvan 2004)).     

2III. Partition structure. 
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Partition, especially K-Means clustering, attracts a most considerable interest in the literature, and 

the issue of properly defining or determining number of clusters K is attacked by dozens of 

researchers.  Most of them accept the square error criterion that is alternatingly minimized by the so-

called Batch version of K-Means algorithm: 

                                                                 W(S, C) =
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where S is a K-cluster partition of the entity set represented by vectors yi (iI) in the M-dimensional 

feature space, consisting of non-empty non-overlapping clusters Sk, each with a centroid ck 

(k=1,2,…K), and || || the Euclidean norm. A common opinion is that the criterion is an 

implementation of the maximum likelihood principle under the assumption of a mixture of the 

“spherical” Gaussian distributions with a constant variance model (Hartigan 1975, Banfield and 

Raftery 1993, McLachlan and Peel 2000) thus postulating all the clusters Sk to have the same radius.  

There exists, though, a somewhat lighter interpretation of (1) in terms of an extension of the SVD 

decomposition-like model for the Principal Component Analysis in which (1) is but the least-squares 

criterion for approximation of the data with a data recovery clustering model (Mirkin 1990, 2005, 

Steinley 2006) justifying the use of K-Means for clusters of different radii.    

 Two approaches to choosing the number of clusters in a partition should be distinguished: (i) 

post-processing multiple runs of K-Means at random initializations at different K, and (ii) a simple pre-

analysis of a set of potential centroids in data. We consider them in turn: 

 (2IIIi) Post-processing.  

A number of different proposals in the literature can be categorized in several categories (Chiang and 

Mirkin 2010): 

(a)  Variance based approach: using intuitive or model based functions of criterion (1) which 

should get extreme or “elbow” values at a correct K;  

(b)   Structural approach: comparing within-cluster cohesion versus between-cluster separation 

at different K;  

(c)   Combining multiple clusterings: choosing K according to stability of multiple clustering 

results at different K;  

(d)   Resampling approach: choosing K according to the similarity of clustering results on 

randomly perturbed or sampled data. 

Currently, approaches involving simultaneously several such criteria are being developed too (see, 

for example, Saha and Bandyopadhyaya 2010). 
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 (2IIIia) Variance based approach 

Let us denote the minimum of (1) at a specified number of clusters K by WK. Since WK cannot be 

used for the purpose because it monotonically decreases when K increases, there have been other WK 

based indices proposed to estimate the K. For example, two heuristic measures have been 

experimentally approved by Milligan and Cooper (1985):  

-  A Fisher-wise criterion by Calinski and Harabasz (1974) finds K maximizing CH=((T-WK)/(K-

1))/(WK/(N-K)), where T= 
 Ii Vv

ivy 2 is the data scatter. This criterion showed the best performance in 

the experiments by Milligan and Cooper (1985), and was subsequently utilized by other authors (for 

example, Casillas et al 2003). 

 -  A “rule of thumb” by Hartigan (Hartigan 1975) utilizes the intuition that when there are K* well 

separated clusters, then, for K<K*, an optimal (K+1)-cluster partition should be a K-cluster partition 

with one of its clusters split in two, which would drastically decrease WK because the split parts are 

well separated. On the contrary, WK  should not much change at KK*. Hartigan’s statistic 

H=(WK/WK+1  1)(NK1), where N is the number of entities, is computed while increasing K, so 

that the very first K at which H decreases to 10 or less is taken as the estimate of K*. The Hartigan’s 

rule indirectly, via related Duda and Hart (1973) criterion, was supported by Milligan and Cooper 

(1985) findings. Also, it did surprisingly well in experiments of Chiang and Mirkin (2010), including 

the cases of overlapping non-spherical clusters generated. 

A popular more recent recommendation involves the so-called Gap statistic (Tibshirani, 

Walther and Hastie 2001). This method compares the value of (1) with its expectation under the 

uniform distribution and utilizes the logarithm of the average ratio of WK values at the observed and 

multiple-generated random data. The estimate of K* is the smallest K at which the difference 

between these ratios at K and K+1 is greater than its standard deviation (see also Yan and Ye 2007). 

Some other model-based statistics have been proposed by other authors such as Krzhanowski and 

Lai (1985) and Sugar and James (2003).  

(2IIIib) Within-cluster cohesion versus between-cluster separation 

A number of approaches utilize indexes comparing within-cluster distances with between cluster 

distances: the greater the difference the better the fit; many of them are mentioned in Milligan and 

Cooper (1985). More recent work in using indexes relating within- and between-cluster distances is  

described in Kim et al. (2001),  Shen et al. (2005), Bel Mufti et al. (2006) and Saha and 
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Bandyopadhyaya (2010); this latter paper utilizes a criterion involving three factors: K, the maximum 

distance between centroids and an averaged measure of internal cohesion. 

A well-balanced coefficient, the Silhouette width involving the difference between the within-

cluster tightness and separation from the rest, promoted by Kaufman and Rousseeuw (1990), has 

shown good performance in experiments (Pollard and van der Laan 2002). The largest average 

silhouette width, over different K, indicates the best number of clusters.  

(2IIIic) Combining multiple clusterings 

The idea of combining results of multiple clusterings sporadically emerges here or there The intuition 

is that results of applying the same algorithm at different settings or some different algorithms should 

be more similar to each other at the right K because a “wrong” K introduces more arbitrariness into 

the process of partitioning; this can be caught with an average characteristic of distances between 

partitions (Chae et al. 2006, Kuncheva and Vetrov 2005).   

A different characteristic of similarity among multiple clusterings is the consensus entity-to-entity 

matrix whose (i,j)-th entry is the proportion of those clustering runs in which the entities i,jI  are in 

the same cluster. This matrix typically is much better structured than the original data. An ideal 

situation is when the matrix contains 0’s and 1’s only: this is the case when all the runs lead to the 

same clustering; this can be caught by using characteristics of the distribution of consensus indices 

(the area under the cumulative distribution (Monti et al. 2003) or the difference between the 

expected and observed variances of the distribution, which is equal to the average distance between 

the multiple partitions partitions (Chiang and Mirkin 2010)).  

 (2IIIid) Resampling methods 

 Resampling can be interpreted as using many randomly produced “copies” of the data for assessing 

statistical properties of a method in question. Among approaches for producing the random copies 

are:   

() random sub-sampling in the data set;  

() random splitting the data set into “training” and “testing” subsets,  

() bootstrapping, that is, randomly sampling entities with replacement, usually to their original 

numbers, and  

() adding random noise to the data entries.  

All four have been tried for finding the number of clusters based on the intuition that different copies 

should lead to more similar results at the right number of clusters: see, for example, Minaei-Bidgoli, 
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Topchy and Punch (2004) for (), Dudoit, Fridlyand (2002) for (), McLachlan, Khan (2004) for (), 

and  Bel Mufti, Bertrand, Moubarki (2005) for ().  

Of these perhaps most popular is approach by Dudoit and Fridlyand (2002) (see also Roth, 

Lange, Braun, Buhmann 2004 and Tibshirani, Walther 2005).  For each K, a number of the following 

operations is performed: the set is split into non-overlapping training and testing sets, after which 

both the training and testing part are partitioned in K parts; then a classifier is trained on the training 

set clusters and applied for predicting clusters on the testing set entities. The predicted partition of 

the testing set is compared with that found on the testing set by using an index of (dis)similarity 

between partitions. Then the average or median value of the index is compared with that found at 

randomly generated datasets: the greater the difference, the better the K. Yet on the same data 

generator, the Dudoit and Fridlyand (2002) setting was outperformed by a model-based statistic as 

reported by MacLachlan and Khan (2004). 

 (2IIIii) Pre-processing. 

An approach going back to sixties is to recursively build a series of the farthest neighbors starting 

from the two most distant points in the dataset. The intuition is that when the number of neighbors 

becomes that of the number of clusters, the distance to the next farthest neighbor should drop 

considerably.  This method as is does not work quite well, especially when there is a significant 

overlap between clusters and/or their radii considerably differ. Another implementation of this idea, 

involving a lot of averaging which probably smoothes out both causes of the failure, is the so-called 

iK-Means method (Mirkin 2005). This method extracts “anomalous patterns” that are averaged 

versions of the farthest neighbors (from an unvaried “reference point”) also one-by-one. In a set of 

experiments with generated Gaussian clusters of different between- and within-cluster spreads 

(Chiang and  Mirkin 2010), iK-Means has appeared rather successful, especially if coupled with the 

Hartigan’s rule described above, and outperformed many of the post-processing approaches in terms 

of both cluster recovery and centroid recovery. 

3. Directions for development 

Let us focus on the conventional wisdom, that the number of clusters is a matter of both data 

structure and the user’s eye. Currently the data side prevails in clustering research and we discuss it 

first.  

     (3I) Data side. 

This basically amounts to two lines of development: (i) benchmark data for experimental 

verification and (ii) models of clusters.  

      (3Ii) Benchmark data. 
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    The data for experimental comparisons can be taken from real-world applications or generated 

artificially. Either or both ways have been experimented with: real-world data sets only  by Casillas et 

al. (2003), Minael-Bidgoli et al (2005), Shen et al. (2005), generated data only by Chiang and Mirkin 

(2009), Hand and Krzanowski (2005), Hardy (1996), Ishioka (2005), Milligan and Cooper (1985), 

Steinley and Brusco (2007), and both by Chae et al. 2006, Dudoit and Fridlyand (2002), Feng and 

Hamerly (2005), Kuncheva and Vetrov (2005).   

There is nothing to report of research in the real data structures yet. As to the case of 

generated data, this involves choices of:  

(A) Data sizes (growth can be observed from a hundred entities two dozen years ago such as 

Milligan and Cooper (1985) to a few thousands by now such as Feng and Hamerly (2006), Steinley 

and Brusco (2007), Chiang and Mirkin (2010);  

(B) Number of clusters (from 2 to 4 two dozen years ago to a dozen or even couple of 

dozens currently);  

(C) Cluster sizes (here the fashion moves from equal sized clusters to different and even 

random sizes, see Steinley and Brusco (2007), Chiang and Mirkin (2010), who both claim that the 

difference in the numbers of points in clusters does not change the results;  

(D) Cluster shapes (mostly spherical and elliptical are considered);  

(E) Cluster intermix (from well separated clusters to recognition of that as a most affecting 

factor (Steinley and Brusco 2007));  

(F) Presence of irrelevant features (this is considered rather rarely (Dudoit and Fridlyand 

2002, Kuncheva and Vetrova 2005, Milligan and Cooper 1985); and   

(G) Data standardization (here the fashion moves from the conventional normalization by the 

standard deviation to normalization by a range related value – such a shift should not frustrate 

anybody because normalizing by the standard deviation may distort the data structure: it downplays 

the role of features with multimodal distributions, which is counterintuitive (Chiang and Mirkin 

2010).  

The data structures involved in the experiments reported in the literature are rather arbitrary 

and not comprehensive. It could be guessed that to advance this line of research one needs to apply 

such a type of cluster structure which is both simple and able to reasonably approximate any data – 

could it be a mix of the spherical distributions of different variance? –  the evaluations of data 

complexity, which should emerge from such an approach, could perhaps be used for setting a 

standard for experiments. 

(3Iii) Cluster modeling. 
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Cluster modeling in cluster analysis research is in a rather embryonic state too: Gaussian, or 

even spherical, clusters prevail to express a rather naïve view that clusters are sets around their 

centroids, and popular algorithms such as K-Means or EM clustering reflect that too. Experimental 

evidence suggests that the multiple initializations with centroids in randomly chosen entities 

outperform other initialization methods in such a setting (Pena et al. 1999, Hand and Krzanowski 

2005, Steinley and Brusco 2007). With respect to modeling of cluster formation and evolution, and 

dynamic or evolving clusters in general, including such natural phenomena as star clusters or public 

opinion patterns, one can refer to a massive research effort going on in physics (for recent reviews, 

see Castellano, Fortunato, Loreto 2009 and Springel et al. 2005) – yet there is a huge gap between 

these and data clustering issues. Even a recent rather simple idea of the network organization as what 

is called “small world” which seems rather fruitful in analyzing network regularities (see, for example, 

Newman et al. 2006) has not been picked up in data clustering algorithms. Probably evolutionary or 

on-line computations can be a good medium for such modelling cluster structures (see some attempts 

in Jonnalagadda and Srinivanasan 2009, Shubert and Sedenbladh 2005). Perhaps the paper by 

Evanno et al. 2005 involving a genetic multi-loci population model, can be counted as an attempt in 

the right direction. 

(3II) User side 

Regarding the “user’s eye”, one can distinguish between at least these lines of development:  

(i) cognitive classification structures,  

(ii) preferred extent of granularity,  

(iii) additional knowledge of the domain.  

Of the item (i), one cannot deny that cluster algorithms do model such structures as typology (K-

Means), taxonomy (agglomerative algorithms) or conceptual classification (classification trees). Yet 

no meaningful formalizations of the classification structures themselves have been developed so far 

to include, say, “real” types, “ideal” types and social “strata” within the same concept of typology. A 

deeper line of development should include a dual “archetype” structure potentially leading to 

formalization of the process of generation of useful features from the raw data such as sequence 

motifs or attribute subsets – a matter of future developments going far beyond the scope of this 

paper.  Of the item (ii), the number of clusters itself characterizes the extent of granularity; the issue 

is in simultaneously utilizing other characteristics of granularity, such as the minimal size at which a 

set can be considered a cluster rather than outlier, and the proportion of the data variance taken into 

account by a cluster – these can be combined within a data recovery and spectral clustering 

frameworks (see Mirkin 2005, for the former, and von Luxburg 2007, for the latter). Yet there 
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should be other more intuitive characteristics of granularity developed and combined with those 

above. Item (iii) suggests a formalized view of a most important clustering criterion, quite well 

known to all practitioners in the field – consistency between clusters and other aspects of the 

phenomenon in question.  Long considered as a purely intuitive concept, this emerges as a powerful 

device, first of all in bioinformatics studies. Dotan-Cohen et al. (2009) and Freudenberg et al. (2009) 

show how the knowledge of biomolecolular functions embedded in the so-called Gene Ontology can 

be used to cut functionally meaningful clusters out of a hierarchical cluster structure. More 

conventional approaches along the same line are explored in Lottaz et al. (2007) and Mirkin et al. 

(2010).  The more knowledge of different aspects of real-world phenomena emerges, the greater 

importance of the consistency criterion in deciding of the right number of clusters. 

4. Conclusion 

Figure 1 presents most approaches to the issue of choosing the right number of clusters 

mentioned above as a taxonomy tree.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A taxonomy for the approaches to choosing the number of clusters as described in the paper. Here DK is 
Domain Knowledge in which DA is Direct Adjustment of algorithm and AP is Adjustment by Post-processing of 
clustering results, GC is modelling of the process of Generation of Clusters, and CS is Cluster Structures. This last 
item is further divided in MD, that is, Mixture of Distributions, P, Partitions, BH, Binary Hierarchies, and OS, Other 
cluster Structures.  MD involves HT which is Hypothesis Testing,  AL, Additional terms in the Likelihood criterion, 
CoS, Collateral Statistics, and WL, Weighted Likelihood; BH involves SC, Stopping according to a Criterion, and CO, 
using a cut-off level over a completed tree. Item PA covers PP, Partition Post-processing, and IC, pre-processing by 
Initialization of Centroids.  The latter involves DC, Distant Centroids, and AP, Anomalous Patterns. PP involves V, 
Variance based approach, S, Structure based approach, C, Combining clusterings approach, and R, Resampling based 
approach. The latter is composed of SS, Sub-sampling, SD, Splitting the Data, BS, Bootstrapping, and AN, Adding 
Noise.   
 

Among the current cluster-structure-centered approaches, those involving plurality in either data 
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  Approaches to choosing the number of clusters: a Taxonomy 
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resampling or choosing different initializations or using different algorithms or even utilizing various 

criteria seem to have an edge over the others and should be further pursued and practiced to arrive at 

more or less rigid rules for generating and combining multiple clusterings.  
Even more important seem directions such as developing a comprehensive model of data involving cluster structures, 
modelling clusters as real world phenomena, and pursuing the consistency criterion in multifaceted data sets. 
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