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solve equipment object control problems. We consider the description of a system for dynamic planning of
mobile robot behavior, constructed based on a network of similar elements.
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INTRODUCTION

One of the most interesting problems in modern
robot engineering remains that of creating autono-
mous mobile robots capable of being oriented in
space, of decision-making in a complex real situation,
of solving pattern recognition problems, etc. The
range of possible application of similar devices is
wide—from the creation of loading robots, patrol
robots, and security for robots to robot guides, etc.

The range of problems that such a robot should be
able to solve is extremely wide. In this paper we con-
sider one of the components of a similar robot—a
dynamic planning system for robot actions in deci-
sion-making and processing control actions. As well,
an artificial neural network model constructed of so-
called intellectual neurons will constitute the basis of
the planning system.

As a specific example of a similar type of mobile
devices, we consider the problem of creating a robot-
guide control system.

1. ROBOT GUIDE

A robot guide (RG) is a mobile device designed to
play certain lecture materials. An RG should move
along a certain route, which is a marked line. The
marks determine the breakpoint and the start for play-
ing the corresponding text. Movement along the route
line (zone) is achieved at the hardware level using a
special controller, and the robot can determine the
accuracy level of positioning on the line. The main
requirement for an RG is its safety: a robot absolutely
must never harm people or exhibits. This means the
immediate shutdown of a robot in a worst-case situa-
tion, including in the case when an obstacle appears in
its path or it loses the route zone. For this, it is
equipped with two types of sensors:

level 0 (OS0) sensors that determine an obstacle
immediately within the safety zone of the robot and an

ultrasound sensors (USS) that reacts to remote obsta-
cles. Reaction to an OS0 signal is unconditional shut-
down of the system. Reaction to a US signal is less crit-
ical: here the robot has more variety in reacting to it.
As well, the distance to the obstacle can be esti-
mated—the degree of potential danger.

A robot is an autonomous device; therefore, it
should keep track of the charge level of its onboard
batteries. With a decrease in charge lower than critical,
the robot should begin the procedure of searching for
a power source.

Thus, the robot’s main functions are as follows:
movement along a certain route/zone; reaction to the
presence of obstacles in the robot’s working zone;
reaction to a decrease in the battery charge level; and
determination of breakpoints on the route and playing
of the corresponding lecture materials.

2. ROBOT GUIDE STRUCTURE

An RG consists of a drive module, a chassis, a set of
primary and secondary sensors, a motor controller,
and a controller for operation mechanisms and com-
puter control. Figure 1 shows the basic structure of the
RG.

The primary sensors are the obstacle, zone, illumi-
nation, etc., sensors. The secondary sensors are the
acoustic sensors (microphone), video camera, etc.
The motor controller (MC) is responsible for the
robot’s movement. It ensures, together with uncondi-
tional reflex control, system shutdown in a worst-case
situation. The operation mechanisms controller controls
additional operation mechanisms (head, arms, etc.).
The computer control (CC) is the central computer.
CC communication with the reflex controller is car-
ried out by a RS232 slow standard interface.

The system is constructed according to a hierarchal
principle. At the lowest level of the hierarchy are the
sensors, which are responsible for the safety of the sys-
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tem and operation mechanisms. All critical control is
carried out via the reflex controller. This controller
should query the near-action obstacle sensors (safety
zone) with sufficient frequency, and when a critical sit-
uation arises, it should stop the drive motors in the
simplest case (emergency shutdown).

Thus, the robot behavior necessary for solving the
posed problem is carried out at the highest level, in the
CC, and the rapid reactions necessary to ensure safety;,
at the lowest level using the reflex controller. Com-
mands processed by the reflex controller are of higher
priority, even if they contradict a CC command.

Figure 2 schematically depicts the location of the
RG’s main sensors.

Figure 3 shows an external view of the RG.

3. FORMULATION OF THE PROBLEM

Among the set of various problems of robot behav-
ior control, we consider a simpler one, the model
problem. We limit ourselves to considering the situa-
tion in which a robot perceives only three input sig-
nals—from the obstacle transceiver, from the battery
level transceiver, and from the transceiver that deter-
mines the accuracy of the robot’s positioning in the
movement zone. It is necessary to create a robot action
planning system as a function of the intensity of these
input signals.

The signals from the sensors are analogous, repre-
senting intensity level values. It is necessary to develop
a control system that, based on signal magnitudes,
plans the action of the robot at a certain time segment.

As well, it is assumed that signals have different pri-
orities or significance (a signal from the obstacle trans-

ceiver has higher priority, a safety requirement). The
plan of action should determine the precisely desired
reaction of the system; i.e., it should not directly assign
a controlling action, but only determin which problem
the robot should solve (reaction to an obstacle, posi-
tioning on the line, or launching of the reaction proce-
dure for a decrease in the battery level). Thus, we are
talking about dynamic planning of the robot’s behav-
ior at a high level. There are many ways of solving sim-
ilar types of problems—from application of fuzzy
logic and knowledge engineering methods to con-
struction of automatic regulators. Here we consider
the problem of applicability of artificial neuron net-
works (ANNSs) as grounds for a system for dynamic
planning of the behavior of complex systems. As well,
the network should not be constructed of known for-
mal neurons, but of so-called intellectual neurons.

3. 1. Artificial Neuron Network

It is believed that the basis of the neurointellectual
direction in Al is the system model proposed in 1943
by W.S. McCulloch and W. Pitts, consisting of thresh-
old neuronlike elements—formal neurons (FNs).
Further development of this model let to the creation
of the Rosenblatt perceptron (1962), harsh criticism of
it, and its subsequent disregard, which let to a certain
stagnation in the development of robots in this direc-
tion. The situation was rescued by the creation of var-
ious multilayer-system models of nonlinear elements
by the start of the 1970s.

Initially, there were two main directions in ANN
theory. The first, collectionist, declared that the basis of
the ANN model should consist of simple functional
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Fig. 2. (a) Location of sensors; (b) obstacle transceiver sensitivity zones.

elements. The entire variety of structures reflecting the
device and behavior of real neurons can, according to
this approach, result from unification of simple FNs.

Fig. 3. Robot: external view.
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The second, neurobiological, direction is character-
ized by the creation of networks consisting of complex
neurons approximated to biological models [4].

At present the dominant direction in Al is the con-
nectionist approach. It has primarily resulted from
sufficiently well-formalized models. However, the
main problem of the connectionist approach is the
fundamentally small dimensionality of problems being
solved and, as a consequence, its narrow specializa-
tion. As soon as we switch from approximation or
more multidimensional optimization problems to
solving complex, multilevel problems requiring the
involvement of semantic levels, it becomes necessary
to introduce functional elements that are more com-
plex than formal neurons. Attempts at “growing” a
similar type of complex neurons from a network of
simple neurons have led to the fact that the number of
FNs increases catastrophically, virtually unremovable
complexities arise in training such networks, etc. Let’s
say, to model a detector neuron, something on the
order of tens of FNs are necessary, and the memory of
a neuron already requires several tens of FNs.

The main difficulties of the neurobiological
approach are, first of all, the absence of unambiguous
models of biological neurons (different schools
describe neurons differently), and second, problems in
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the formation of a network from complex neurons and
the description of connections between them. If the
model of an FN network is constructed just on the
principle of its self-organization, i.e., the establish-
ment of connections and their weights between ele-
ments, then in the neurobiological approach, it is nec-
essary to create both the network itself and its param-
eters a priori, adjusted to a specific problem. In this
sense, it is possible to consider the connectionist
approach more universal (in the class of solvable opti-
mization problems).

This paper considers one of the neurobiological
models of constructing an ANN. V.B. Val’tsev, the cre-
ator of this model, calls it the brainputer [1, 7]. Its
basis consists of the model of a real nerve cell—the
neuron.

4. THE CONCEPT OF INTELLECTUAL
NEURONS

The microstructure of the functional unit of the
brain is the neural module, consisting of a population
of nerve cells having a common effector output. A
large pyramidal neuron (LPN) and the group of neu-
rons connected to it that use the LPN effector output
represent such a module. The LPN has the largest
branching of dendrites responsible for perception of
information, which allows it to collect information
from neurons of all layers of the brain cortex. The LPN
has the maximum set of functional blocks [2, 3]. The
LPN’s dominance in intellectual mechanisms is con-
firmed by the fact that the LPN predominates in asso-
ciative zones. It is believed that the evolution of the
brain was accompanied primarily by growth in LPNs;
ontogenetic maturation of the human brain coincides
with the largest increase in the number and sizes of
precisely LPNs.

According to the brainputer approach, develop-
ment of intellect is characterized not by simple growth
in flows of perceived and analyzed information, but by
adaptative fargeted activity of an organism. The pur-
posefulness (motivation) of behavior is determined by
an actual requirement being satisfied—removal of
influences causing the requirement. As a conse-
quence, the purposefulness principle is a common one
for the psyche, the brain, and an LPN [3, 5]. An LPN
is considered basic microstructural link of the brain’s
intellectual mechnism.

5. CONSTRUCTION OF AN INTELLECTUAL
NEURON

Figure 4 shows the external view and construction
of intellectual neuron cell inputs:

The main functional elements of the cell are its
body, in which accumulation of the potential from
inputs occurs, and the axon hillock, which, when the
cell potential exceeds a certain threshold value, gener-
ates nerve impulses from the cell’s output.

SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING

347
Memory Deceleration
Requirement Restriction
Cell body
Stimulation Axon hillock

Fig. 4. Structure of intellectual neuron.

The nerve cell restriction input acts as a brake for the
axon hillock. Owing to it, impulse transfer from the
cell can be terminated, and its internal potential will
not be changed.

Braking input. As neural impulses are fed to it, the
internal potential of the cell decreases, reducing its
activity.

Requirement input (regulation). When impulses are
fed to the requirement input, the nerve cell potential
grows; however, if there are only impulses at this input,
it cannot exceed its threshold value necessary for the
onset of output impulse generation.

Stimulation input. When there are impulses only at
this input, the nerve cell potential cannot exceed a
value equal to about 30% of the threshold value.

Memory input. The most complex, trainable input.
When impulses are fed to the most-trained memory
input, the nerve cell potential cannot rise above a value
of 70% of the threshold value. In a state of zero train-
ability, impulses to the memory input do not increase
a nerve cell’s potential. Memory training occurs when
there certain combinations of impulses are present at
the regulation, memory, and stimulation inputs. As well,
the memory input is frained: the potential introduced
by this input into the nerve cell increases by 20%. In
the absence of impulses at the memory inut, a neuron
unlearns over time.

Potentials introduced by all inputs except for the
restriction input, are added to the overall nerve cell
potential, which when this cell’s threshold value is
exceeded induces its reaction at the output.

We will not dwell extensively on the mathematical
model of a neuron, noting only that a nerve cell adds
up the input potentials:

here, @, is the initial potential, and ¢, (n = 1.4) repre-
sents the memory, regulation, stimulation, braking,
and restriction inputs, respectively.
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Fig. 5. ANN of the RG control system.

When the potential exceeds the threshold level and
the potential at the restriction input does not exceed a
certain threshold level, a neuron generates impulses
directly proportional to the amount by which the
potential exceeds the threshold:

o = QAo+ Q,

where Ap = ¢ — y; y is the neuron’s threshold; Q is
the coefficient of the generation rate from the above-
threshold potential.

6. DESCRIPTION OF NEURAL
NETWORK FUNCTIONING

As has already been mentioned, one of the main
concepts of the functioning of a neural network is the
requirement. The purposefulness of the network’s
behavior is determined precisely by the transition to
such a state during which the influences caused by
these requirements are removed (satisfaction of actual
requirements). Requirements were chosen from the
following types:

1. Battery. The requirement of the availability of a
certain battery charge level for the robot.

SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING

2. Line. The requirement to follow a designated
route line.

3. Obstacle. The requirement not to run into any
obstacles, i.e., reaction to an obstacle.

On this basis, the network should be constructed in
such a way that behavior satisfying (removing) these
requirements is ensured. For instance, with decreasing
battery charge level, a robot should send a certain
warning signal; if the line is lost, the robot should strive
to return to the movement zone; when there is an
obstacle, the robot should shut down, avoid, or give a
warning depending on the distance to the obstacle
(i.e., on the intensity of the arising requirement). As
well, precisely the intensities of robot reactions
depending on the magnitude of the arising require-
ment are of course of the most interest.

A control neural network is shown in Fig. 5. The
network consists of standard building blocks—train-
ing, regulation, filters, etc.

Impulse generators (Obstacle, Battery, and Line)
generate at the neuron-stimulation inputs of the Reg-
ulator block impulses proportional to be intensity of
input signals. An impulse raises the level of the poten-
tial at these neurons to a certain prethreshold value.
Vol. 38
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Fig. 6. Filter action.

As well, signals of the Obstacle generator reach the
Regulator Obstacle, Regulator Battery, and Regulator
Line neuron regulation inputs. It can be interpreted
that the reaction to the obstacle has a requirement for
each of the listed types of regulators. Signals of the
Line and Battery generators only reach the regulation
inputs of corresponding neurons, i.e., reaction to loss
of the line and battery discharge experience no other
requirements.

Regulator block. These three neurons represent the
robot’s requirements, which are reflected in the level of
the output impulse of corresponding neurons. Further,
this impulse is fed to the neuron-stimulation inputs of
the dominant filter block.

Filter. The output of each of the three neurons of
the neuron filter is connected to the braking input of
the two remaining neurons. The impulse values from
the filter and neuron outputs will be network output
values. The task of the filter is to allow a neuron with
the highest output impulse intensity to brake neigh-
boring neurons. This is the so-called dominant filter.
Thus, in removing the information from three filter
neurons, it is possible to unambiguously determine the

SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING

neural network output that was activated. Corre-
spondingly, an intense impulse at one of the dominant
filter outpus indicates the recommendation of the
neural network toward deriving a requirement corre-
sponding to the neuron name.

The role of the dominant filter is illustrated in Fig. 6.

In the graphs we can seen that despite the intense
impulse of regulator neurons, the corresponding filters
produce a partial or full cutoff of the output impulse.
Figure 6b shows the graph of a filter neuron potential
that is close to the threshold, but it cannot exceed it.
Apparently, in this situation we are dealing with
explicit dominance of the Obstacle regulator signal.

In the design of the neural network, along with the
main blocks, service blocks are provided for—auto-
matic regulation of amplification, back training, and
restoration.

Automatic regulation of amplification block (ARA).
The task of this block is to increase the neuron sensi-
tivity of the Regulator block to the smallest influences.
The fact of the matter is that a weak impulse of gener-
ators responsible for giving measurable parameters can

Vol. 38 No. 5 2011
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lead to the absence of any reaction at a neural network
output.

Training block. The neural network is trained in
time periods determined by the training period gener-
ator. For this, in the necessary periods, the generator
delivers an intense uniform impulse lasting over the
course of the training period. Output from this gener-
ator reaches the neuron regulation inputs of the Gate-
way block, and outputs from the dominant filter neu-
rons are fed to the stimulation inputs of these neurons.

A uniform stimulating impulse from the Battery,
Line, and Obstacle generators reaches the memory
inputs of the aforementioned neurons. Neurons are
trained with a certain combination of impulse packets
at memory and stimulation inputs. The neuron out-
puts of the Training block reach the neuron braking
inputs of the Regulator block. Thus, trained neurons
will brake regulator neurons, in so doing removing
their relevance. This is necessary when there are long-
term unchanging generator parameters in order to sat-
isfy as many parametric categories as possible and not
concentrate only on one; i.e., the network will always
reflect several requirements and not be limited to only
one.

The Recovery block is designed to prepare the sys-
tem for making a new decision. Its essence is reduced
to elimination of a remnant dying impulse.

Here we should point out one important moment.
The considered diagram is almost an exact copy of a
neural network diagram that was proposed at one time
for problem solving in a completely different area. It
concerned the problem of distribution of resources
under competitive conditions—distribution of televi-
sion air time. It turned out that, despite their dissimi-
larity, these problems can be successfully solved based

SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING

on one neural network structure. Apparently, we are
talking about the possible availability of certain neural
network invariants.

7. MODELING

Since the program is an upper level control system,
its task is decision making and not immediate process-
ing of control signals to the robot’s operation units.

Figure 7 depicts the design of planning system
operation.

Signals from the sensors (line, obstacle, battery) are
converted into impulses—the parameters of the cor-
responding generators of signal levels. The established
generator parameters are an integral part of the neural
network configuration. Further, operation of the ANN
is modeled, during which signals are taken from dom-
inant filter neurons. To receive the impulse of output
neurons represents a time scan of the intensities of
corresponding requirements, i.e., the robot’s plan of
action. Further, this impulse is converted into a fre-
quency-time characteristic and can be scanned into
the robot’s plan of action (reaction). In accordance
with this plan, a complex of controlling actions to the
robot’s operation mechanisms is generated (Fig. 8).

Thus, in assigning the impulse intensity of the
Level block generators, the current activity of neural
network signals is determined. The readout of output
neuron impulses of the Filter block makes it possible
to obtain a time scan of the relevance of corresponding
network reactions, i.e., a time scan of the system reac-
tion (action) plan.

Vol. 38
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8. EXPERIMENTS

The network was adjusted in such a way that the
dominant requirement was Obstacle. This means that
at equal input generator signal levels, the system pri-
marily plans a reaction just to obviate an obstacle
(safety requirement).
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Below we give the results of certain experiments at
characteristic input signal values. Figure 9a shows the
reaction of the system at zero transceiver signal values.
In this situation, in the first half of the period, the sys-
tem plans to process tracking of obstacles (despite the
fact that the obstacles are not yet visible) and further
plans to analyze the battery charge state.

2011
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It is interesting that nearly the same plan of action
is also generated at the most intense input signal val-
ues; i.e., in the situation when obstacles are detected,
the battery charge is almost dead, and the robot has
lost the line (Fig. 9b).

The system’s reaction to one implicitly dominant
signal is also trivial: the system determines the reaction
just to it. Here, only one thing can be of interest: plan-
ning the reaction to a stimulus at the beginning of the
period, the system still determines the reaction to the
obstacle in the second half of the period (Fig. 10).

The fact that the system primarily plans to process
the Obstacle signal is clear from Fig. 11.

Only when the level of other secondary stimuli is
implicitly exceeded does the system either plan a reac-
tion to the obstacle in the second period (Fig. 12a) or
plan no reaction to it (Fig. 12b).

CONCLUSIONS

The conducted experiments have shown the funda-
mental possibility of using intellectual neural networks
in solving problems of controlling complex technical
objects. In addition, we obtained confirmation of the
pieces that they are apparently should exist certain
invariants of ANN structures that can be applied for a
wide circle of the most various problems—from the

SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING

aforementioned problem of distributing resources to
the considered problem of dynamic planning in con-
trolling of am equipment object. This is especially
important because the design process for a similar type
of networks, determination of connections, nomen-
clature, and parameters of the network elements is
extremely labor-intensive (in contrast to formal neural
networks with their self-organization mechanisms
based on training).

Furthermore, of undoubted interest are such sys-
tem properties as frequent nontriviality (reasonable-
ness) of suggested solutions. This concerns, for
instance, how a system plans its behavior in the case
when there are no explicit stimuli.

In addition, the system possesses peculiar flexibil-
ity in the sense of simplicity and naturalness of chang-
ing its behavior—it suffices to change the generator
parameters of the requirement block so that the net-
work alters the priority of its aims.

Of course, a whole series of problems exist related
to using the suggested method. These are the purely
technical complexities connected with the necessity of
rapid simulation (ideally, parallel computations would
be the most suitable), the labor intensity of creating
and adjusting the network, and what is called the weak
controllability of the decision-making process. The lat-
ter case concerns the fact that, in contrast to the

Vol. 38 No. 5 2011
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majority of formal systems, it is impossible to obtain
an explanation as to why a system has developed pre-
cisely such a plan of action. By the way; this is peculiar
to all neural-like structures [6].
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