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a b s t r a c t

Instantonic theories are quantum field theories where all correlators are determined by
integrals over the finite-dimensional space (space of generalized instantons). We consider
novel geometrical observables in instantonic topological quantum mechanics that are
strikingly different from standard evaluation observables. These observables allow jumps
of special type for the trajectory (at the point of insertion of such observables). They do
not (anti)commute with evaluation observables and raise the dimension of the space of
allowed configurations, while the evaluation observables lower this dimension. We study
these observables in geometric and operator formalisms. Simple examples are explicitly
computed; they depend on the linking of points.

The new ‘‘arbitrary jump’’ observables may be used to construct correlation functions
computing, e.g., the linking numbers of cycles, as we illustrate on Hopf fibration.

We expect that such observables could be generalized in an interesting way to
instantonic topological theories in all dimensions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Instantonic field theories were introduced and studied in [1–3]. These supersymmetric theories are defined by
localization on instanton space. TheseQ -supersymmetric theoriesmay be considered as an extension ofWitten’s topological
theories [4] including all local observables (not necessarily Q -closed).

We consider a class of such theories, where Q is the de Rham differential on the target manifold and fermions are
identified with differentials. In particular, we study geometric topological QuantumMechanics, where Hamiltonian is given
by Lie derivative along the given vector field.

In this paper, we introduce a large class of Q -closed local observables in topological Quantum Mechanics.
One of the possible constructions is to associate observables to fibrations of the target space. Another possibility is to

associate observables to cycles in the group of diffeomorphisms. All these observables do not commute with evaluation
observables. We show that even the simplest observable of this type – corresponding to U(1) fibrations – appears in natural
problems of geometry.

We start this paper by quick reminder of the formalism of instantonic topological theories, evaluation and vector field
observables in Section 2. This section is borrowed from [2].

Novel results start in Section 3, where we will address the question: How do we write down geometrical observables in
topological quantum mechanics that do not commute with the evaluation observables and are non-zero in cohomologies?
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One type of such observables (corresponding to diffeomorphisms that cannot be connected to identity) is well known. Are
there any other observables that have geometrical meaning?

One way to find appropriate generalization is to note that nontrivial diffeomorphisms correspond just to zero cycles in
the space of all diffeomorphisms, and we may generalize this to an arbitrary cycle in the space of diffeomorphisms.

Another generalization arises if we treat allowed diffeomorphisms as allowed jumps of the trajectory (at the prescribed
time). Simple inspection shows that this may be generalized to jumps along compact fibers of an arbitrary fibration.

These two classes of generalizations have one common representative that we will study in detail in this paper —
it corresponds to the U(1) fibration. From the point of view of cycles in diffeomorphisms, we study S1 in this space,
corresponding to the U(1) action on the total space of the fibration.

We think that it is instructive to discuss such observable starting with the vector field that generates the U(1) action.
Vector field observables are Q -exact and seem to be irrelevant for the purpose of constructing nontrivial observables since
they are zero in cohomology. However we may use them in construction of α-jump operators, corresponding to the U(1)
rotation by the angle α.

Still such operators are equivalent to unity. To get the novel operators we first supersymmetrize the space S1 of angles α
and construct a super-jump operator, parametrized by such superspace. That is, the super-jump operator turns out to be a
differential form on S1. It is easy to show that the integral of super-jump against a cycle is a Q -closed operator. In particular,
the zero-cycle, corresponding to a point α, gives the α-jump itself. While the super-jump, corresponding to a fundamental
cycle of the circle, has no reason to be trivial in cohomologies of Q . This operator will be denoted K and is a prototype of the
main object of study in this paper.

The above construction may be generalized as follows. Consider a finite-dimensional cycle C in the group of
diffeomorphism of the target X . Take the operator that pulls back the forms on X to C × X along the diffeomorphism action
on X and then integrates over the cycle C .

In Section 4 we present the simplest example of correlation functions with the observable K and justify our expectations
that it is nontrivial in cohomologies and does not commute with evaluation observables. It follows from noncommutativity
that the correlation functions may depend on order of times. Hence we may get worldsheet linking numbers.

In Section 5 we discuss integrated observables (integrated against time). These are commonly known as ‘‘descent
observables’’ [5]. They correspond to deformations of Q and hence of the Hamiltonian. Geometrically they correspond to
counting intersections that may happen at arbitrary time.

We consider deformations Q → Q + τK and compare them to Novikov–Witten deformation Q → Q + τω. Note that
the cohomology of the former differential are just equivariant cohomology of the fibration.

We see that in case ofNovikov–Wittendeformations thehigher differential corresponds to trajectory passing successively
through cycles, while in case of deformationwithK the higher differential corresponds to trajectorieswith successive jumps.

In Section 6 we present conclusions.

2. Sketch of geometric formalism in quantummechanical instantonic theories

2.1. Idea of geometrical formalism (zero-dimensional instantonic field theory)

Let X be a finite-dimensional manifold, VX a vector bundle over X , and v a section of V . We will call it the defining vector
field. Then

⟨F(x, ψ) ⟩ =

∫
dpadπadxidψ i exp(ipava(x)− iπa∂jv

aψ j)F(x, ψ) =

∫
zeros of v

ωF (1)

where ωF denotes the differential form on X corresponding to the function F on theΠTX (with even coordinates xi and odd
coordinates ψ i). The variables pa and πa correspond to the even and odd coordinates on V .

Let us now deform v. In other words, let

vϵ = v0 + ϵαvα, (2)

where v0 and vα are sections of V , and ϵ ∈ Cn are (formal) deformation parameters.
Consider X × Cn, and call a projection to the first factor by prX and call by prϵ a projection to Cn. The space of zeros of vϵ

for all values of ϵ we call the extended instanton space Mext . Its immersion into X × Cn we denote by ι: Mext ↩→
ι X × Cn. The

space Mext is fibered over Cn with projection given by prϵ ◦ ι; the fibers Mϵ of this fibration are zeros of vϵ for given ϵ.
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Given a form ωF on X we may consider it as form on X × Cn (it is just pr∗

XωF ). Now we restrict it to Mext (so, we get
ι∗pr∗

XωF ), and integrate the resulting form against the fibersMϵ of projection prϵ ◦ ι (the operation of direct image (prϵ ◦ ι)∗).
This waywe get a form on the base Cn. The whole operation corresponds tomultiplyingωF (considered as a form on X ×Cn)
by the δ form on X × Cn that localizes to zeros of vϵ and integrating the result over the fiber. The integral representation of
δ-form on X × Cn is built exactly as in Eq. (1) (we simply replace X with X × Cn there):∫

dpadπadxidψ i exp(ipavaϵ(x)− iπa∂jv
a
ϵψ

j
− iπadϵαvaα)F(x, ψ) =

∫
Mϵ

ωF ≡ ω̂F . (3)

In a more rigorous language

ω̂F ≡

∫
Mϵ

ωF = (prϵ ◦ ι)∗ι
∗pr∗

XωF . (4)

Acting with Lie derivative L ∂
∂ϵα

we get Ovα observable, defined as

Ovα = ipavaα(x)− iπa∂jv
a
αψ

j (5)
or acting with substitution ι ∂

∂ϵα
we get πvα observable:

πvα = iπav
a
α. (6)

So ω̂F is a generating function for πvα and Ovα observables1:

⟨πvα1 . . . πvαl Ovαl+1
. . .Ovαn−l

F(x, ψ)⟩ = ι ∂
∂ϵα1

. . . ι ∂

∂ϵαl
L ∂

∂ϵ
αl+1

. . .L ∂

∂ϵ
αn−l

ω̂F |ϵ=0. (7)

The main idea of the geometrical definition of correlators in an infinite-dimensional case is to consider an infinite-
dimensional version of the above statements as the definition of the generating function for the correlators.

2.2. Three points of view on instantonic quantum mechanics

2.2.1. Geometrical formulation of instantonic QM
For geometrical definition of correlation function we need the following data: the space X , the differential form ω and

the defining vector field together with its ϵ deformations. Quantum mechanics is a one-dimensional quantum field theory,
so we consider a vector field on the space of parametrized paths γ in the target space,

γ ∈ Maps([0, T ], X) (8)
with appropriate boundary conditions; say, γ (T ) = γ (0) for periodic maps or γ (0) ∈ Cin and γ (T ) ∈ Cout (where Cin/out are
cycles in X).

The defining vector field V0 gives a set of equations describing the evolution along the vector field V0 on X:

dX i
= dtV i

0(X(t)). (9)
Local observables come from the evaluation map, namely,

evt : γ → γ (t). (10)
So for any differential form ω on the target space we may consider its pullback to the space of parametrized paths, that we
denote as ω(t):

ω(t) = ev∗

t ω (11)
and a general evaluation observable, corresponding toωF above, is a product of local evaluation observables at various times
ωF = ev∗

t1ω1 . . . ev∗
tmωm.

To define a deformation (9) we pick up vector fields vα and put them at times tα as

dX i
= dtV i

0(X(t))+

−
α

ϵαδ(t − tα)viα(X(t)) (12)

then we may introduce local observables Ov and πv . Note, that geometrically the deformation (12) corresponds to jump of
the trajectory at t = tα by diffeomorphism that is the flow along the vector field v during the time ϵα , i.e. to eϵαLvα , where
L is the Lie derivative on X .

We would like to stress that this already defines basic set of correlators
⟨πv1(t1) . . . πvm(tm)Ovm+1(tm+1) . . .Ovk(tk)ωF ⟩

in the theory in finite-dimensional terms.
Wemay define more local observables by fusing the generating ones, namely, given two local observables O1 and O2 we

may define correlator of O1∗2(t1) as follows:
⟨O1∗2(t1) . . .⟩ = lim

t2→t1+0
⟨O1(t1)O1(t2) . . .⟩. (13)

1 For definition of these observables it is sufficient to consider the formal neighborhood of zero in Cn rather than the full Cn .
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2.2.2. Functional integral representation
The language of functional integrals in a fashionable way to represent QFT, despite it is rarely rigorously defined.

Therefore it is instructive to represent instantonic QM in this language. This representation is just the l.h.s. of Eq. (3),
symbolically∫

DX i(t)Dψ i(t)Dpi(t)Dπi(t)e

ipj


dXj
dt −V j

0


−iπj


dXj
dt −∂kV

j
0ψ

k

dt
F1(X, p, ψ, π)(t1) . . . Fn(X, p, ψ, π)(tn)

The measure is considered to be Beresin canonical supermeasure, one may hope that due to balance between bosons and
fermions it is independent of the coordinate system taken.

In naive functional integral paradigm one should consider as local observables functions F of X , ψ , π and p. However,
such functions do not give well-defined observables due to noncommutativity between X and p and non-anticommutativity
between ψ and π .

Fixing their order means that we have to construct these observables by fusing generating ones. And generating ones do
have interpretation in geometric terms:

X i(t) = ev∗

t X
i (14)

ψ i(t) = ev∗

t dX
i (15)

i pi(t) = O∂/∂X i(t) (16)

iπi(t) = π∂/∂X i(t). (17)

The supersymmetry generator Q = dX = piψ i is a de Rham differential, it acts as: QX i
= ψ i and Qπi = pi.

2.2.3. Operator approach
The operator approach to quantummechanics has historically been the first one [6]. In this approach we have a space of

states H , Hamiltonian H and a set of local operatorsΦi. The correlators are given by

⟨Ψout |Φn(tn) . . .Φ1(t1)|Ψin⟩ = ⟨Ψout |e−(T−tn)HΦn . . . e−(t2−t1)HΦ1e−t1H |Ψin⟩ (18)

where |Ψin⟩ ∈ H , ⟨Ψout | ∈ H∗,Φi,H ∈ End(H). In the physics of real world the spaceH is Hermitian andH = iHphys, where
Hphys is Hermitian. However in the context of general one-dimensional QFT this condition may be omitted, for example, in
statistical mechanics and in theories with complex Lagrangians.

Instantonic QM in operator approach is described as follows. The space of states is the space of differential forms on the
target and Hamiltonian is just the Lie derivative along V0, which is Q -exact.

In this correspondence the evaluation operators correspond to multiplication by differential forms while vector field
operatorsOv and iπv correspond to the Lie derivative and to operation of contractionwith the vector field respectively (hence
{dX , ιv} = Ov is a Cartan formula). All operators we consider below have geometric meaning and correlation functions are
solutions of particular geometric problems.

To relate the two approaches it is convenient to introduce a geometric basis on the space of wave forms. Consider a
chain C on the target X . Then we may write a corresponding δ-form localized on this chain: δC , roughly speaking this is a
δ-form in the directions orthogonal to the cycle [7].2The degree of this form is deg δC = dim X − dim C . There is a property:
dXδC = δ∂C . Cycles (i.e. chains without boundaries) correspond to closed forms and non-contractible cycles correspond to
de Rham cohomologies of X . Taking |δC ⟩ as ket-vectors we can define bra-vector as a chain itself, then the pairing is an
intersection number:

⟨C1|δC2⟩ =

∫
C1
δC2 = intersection(C1, C2) (19)

Therefore, if we compute correlator in the operator approach one may show that in general the position operator approach
coincides with the geometrical one. For example, the evolution operator in the operator approach means that we take the
incoming chain, deform it along the flow of the vector field (corresponding to Hamiltonian) and then intersect it with the
outgoing chain. Thus, we compute the number of intersection points. However, if we consider the set of all preimages of
these intersection points under the flow we restore the set of trajectories, starting on an incoming chain and ending on the
outgoing one, as it should be in the geometrical approach.

This geometrical approach in a form described above is a bit naive, since intersection of chains is defined only if they are
transversal to each other. This problemmay be solved by ‘‘smoothening’’ of the incoming and outgoing chains, in particular,
by replacing chains by smooth differential forms. Chains may be considered as limits of smooth differential forms (and
intersection is computed by the integral of the wedge product). Therefore correlator in operator approach (with states given
by smooth forms) always exist, and if the chain limit may be taken, it equals to the correlator in geometrical approach.

2 For example, on 2D plane (x, y) a form δ(x)(θ(y)− θ(y − 1))dx corresponds to an interval [(0, 0), (0, 1)].
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If we compactify time to a circle, then in the geometric approachwe compute the number of periodic trajectories (subject
to some additional requirements determined by observables). In order to compare it to the operator approachwe have to cut
the circle at somemoment of time to get an interval, compute an operator on the space of differential forms, corresponding
to this interval, and take a supertrace of it (by supertrace we mean weighting contributions of odd forms with the minus
sign).

2.3. Searching for novel local geometric observables

As it is clear from the definition of evaluation observables, they form supercommutative algebra, that goes down to
supercommutative algebra on cohomology.

Observables that correspond to vector fields are either not closed or exact, so they seem to produce nothing on the level
of cohomology.

Looking at these observables one may even mistakenly conclude that all geometrical observables form a
supercommutative structure.

However, it is well known that diffeomorphisms that cannot be deformed to identity provide an example of
nonsupercommutative geometrical observable. We see that diffeomorphisms not connected to identity are not small
deformations and in general do not allow an expansion in powers of small deformation parameters — thus, there is no
simple expression for such observables in terms of the ‘‘fields’’ (14)–(17). But diffeomorphisms have a clear geometrical
meaning and one can normally work with such observables in geometric formalism.

Below we will generalize this example. We will find many observables that have geometrical meaning, do not commute
with evaluation observables, and decrease the degree of the wave-form. Thus, we study here a non-perturbative completion
of evaluation and small-deformation observables, studied in [1–3].

3. Integrated super-jump operator and its generalizations

3.1. Super-jump operator

In this section we construct a new observable in operator formulation and then explain its geometrical meaning.
Consider a jump operator, associated with a vector field v on X:

Jumpϵv = eϵLv . (20)

Since Lv is {dX , ιv},

Jump − 1 = {dX , . . .} (21)

so we are not getting anything interesting.
In order to get something interesting we need to consider a super-jump operator

SJumpv(ϵ) = eϵLv+dϵ ιv (22)

that is a differential form on the space of parameters ϵ.
Note, that this operator is dX + dϵ closed, therefore, being integrated along the cycle in the ϵ-space it gives the dX -closed

operator (we remind that Q = dX ).
We may interpret Jumpϵv for different ϵ as integrals of the super-jump operator against points (zero cycles) in ϵ-space,

corresponding to different values of ϵ. Since ϵ space is connected, all of them are equivalent to zero jump, which also follows
from Eq. (21).

Now it is clear how to get something more interesting — we just need to have the space of parameters with more
nontrivial cycles.

The simplest choice is to consider the ϵ-space being a circle. It means that the action of the vector field is lifted to the
action of the circle, i.e. it has periodical trajectory with equal periods (that we may take to be 1), in other terms

Jumpv = eLv = 1. (23)

In this case the ϵ-space has a nontrivial cycle — fundamental cycle, and we have a new operator Kv defined as integral of the
super-jump operator along this cycle

Kv =

∫
ϵ∈S1

SJumpv(ϵ) =

∫
S1

dϵ eϵLv ιv (24)

The geometrical meaning of insertion of Kv at time tK is to allow trajectories that are the trajectories of the vector field V0
everywhere outside tK (solving Eq. (9)) but they may have a jump at time tK along the orbit of the circle action.

Later we will see that operator K is nontrivial in cohomology and does not supercommute with the evaluation
observables. However, formulas above show that it is built out of observables associated to vector field — how could this



Author's personal copy

A. Losev, S. Slizovskiy / Journal of Geometry and Physics 61 (2011) 1868–1880 1873

happen? The tricky point is that the operator K is Q -closed in a nontrivial way. It is built using non-closed operator π , and
the integrand in (24) is non-closed. However, the integral is closed since the vector field v produces a circle action.

Let us make simple operator computations for the case where the target space is a circle itself, and X is an angle on that
circle. Then K ≡ K ∂

∂X
operator acting on degree 0 forms gives zero, and acting on degree one-form gives a number, which is

an integral of this form over the circle. Now it is clear that K acts nontrivially in cohomologies since it gives 1when acting on
delta-form δ(X)ψ (which can be nontrivial in cohomologies of X), but it gives zero if it acts on the vacuum 1 prior to δ(X)ψ .

Thus we see that K is Q = dX closed but not exact. In Section 4 we will use this for operator computations of correlation
functions.

3.2. Generalization 1: projection operator

The above construction implies the following generalization. Consider a projection from the target X to base manifold B:

pr : X → B. (25)

This defines a fibration and we assume that fibers are compact.
Define the operator Kfib that acts on differential forms as follows: first integrate the differential form against fibers of pr

to get a form on B. Such operation is called pr∗ (the differentials transverse to fibers are identified with base differentials).
Then take a pullback of the integrated form from B back to X (this we denote by pr∗), thus

Kfib ω = pr∗pr∗ω = pr∗

∫
fiber

ω. (26)

Such an operation (anti)commutes with de Rham differential dX since both operations pr∗ and pr∗ (anti)commute with dX
for compact fibers without boundary, thus it acts in cohomologies.

In quantum mechanics the evaluation observables correspond to multiplication of the wave function by some form
(consider, e.g. a δ-form), which obviously does not commute with integration of the wave function over the fiber.
Geometrical meaning In geometric formalism the insertion of Kfib(t) has an effect of jump in the instanton solution at instant
t to any point on the fiber, containing the point X(t). So, it is an arbitrary jump along the fiber. This definition tells what is
the resulting instanton space (space of trajectories in case of QM). Since all correlation functions are computed as integrals
over instanton space, the definition is constructive.

3.3. Generalization 2: compact cycles in the group of diffeomorphisms of X

The example with the circle, described in Section 3.1 can be interpreted in terms of yet another construction. We may
consider rotations along the arbitrary angle as a special one-dimensional cycle in the group of diffeomorphisms of X . It turns
out that the construction above may be generalized to an arbitrary cycle in this group.

Indeed, consider the group Diff X of diffeomorphisms of X , denote its action on X by Act : (Diff X) × X → X . Choose a
finite-dimensional compact cycle in diffeomorphisms: C ⊂ Diff X .

Forms onX maybe pulled back toDiff X×X and integrated against the cycle C .Wemay define the corresponding operator

KC ω =

∫
C
Act∗ω. (27)

In geometric formalism this construction corresponds to allowing such jumps that start- and end-points of the jump may
be connected by a diffeomorphism in C . It is clear that the action of KC in dX -cohomology is independent on the continuous
deformations of C .

The simplest example of this construction is a point (i.e. zero-cycle) in the space of Diff X . This means that some fixed
diffeomorphism is inserted. Such constructions were already studied in the literature under the name character-valued
index [8,9]. The particular case of it for de Rham complex is known as Lefschetz number. Our jump constructions reduce
then to twisting of the boundary conditions on the worldsheet circle used in these works.

3.4. Digression: cutting operator

Note that local observable in Hamiltonian language is an operator V → V where V is a vector space (V = Ω•(X) in our
case). Any operator can be formally represented as an infinite sum of its matrix elements: O =

∑
Cij|ψi⟩⟨ψi|.

Now observe that a simplest operator K on X = S1 can be represented as

K = |δX ⟩⟨X | (28)

where |δX ⟩ corresponds to unit wave function. This formula holds for arbitrary target if K allows jumps to any point of the
target. It is then natural to interpret such K as cutting a time interval with free boundary conditions for both ends of the cut.
This hints another possible generalization. Let us choose two cycles C1 and C2 on X and consider the corresponding wave
functions δC1,2 which are δ-forms, corresponding to these cycles.
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Consider the operator

KC1,C2 = |δC1⟩⟨C2| (29)

that cuts the time interval and creates particular boundary conditions. In geometric formalism it enforces the trajectory to
pass through cycle C2 and after passing it the trajectory jumps to arbitrary point of cycle C1. It is easy to express KC1,C2 in
terms of K (arbitrary jump to any point of X) and evaluation observables:

KC1,C2 = δC2 K δC1 (30)

the fermion degree of KC1,C2 is nf (KC1,C2) = deg δC1 + deg δC2 − dim X = dim X − dim C1 − dim C2. This operator obviously
does not commute with evaluation observables.

4. Examples of geometrical computation of correlators with K

4.1. Correlator with one insertion of K

To have a simplest example, consider a quantummechanics on the circle and take the target manifold to be also a circle.
Recall that K = K ∂

∂X
corresponds to arbitrary jump on the circle.

Take an evaluation observable corresponding to one-form ω: ev∗
t2ω = ω(t2)ψ(t2) and compute

⟨K(t1)ev∗

t2ω⟩ =

∫
S1
ω. (31)

Let us start with geometrical computation of ⟨K(t1)ω(t2)ψ(t2)⟩. Note, that the space of allowed trajectories is a space of
constantmaps— so it equals to S1 and is compact. If V0 = c (see (9) for definition of V0) then the space of allowed trajectories
is X(t) = X(t1)+ c(t − t1) and also equals to S1 (being parametrized, say, by X(t1)).

When we compute evaluation observable on this space we still get

S1 ω (it is independent of c as we expected, because

S1 ω(X1 + c(t2 − t1)) =

ω). The example with non-zero c shows that allowing a jump is really necessary, otherwise there

are no solutions.
The operator computation for the same correlator gives STr(Kω). Since the image of K is only constants, the computation

of STr reduces tomultiplying 1 byω, actingwith K and projecting to constants. From themultiplication table (last paragraph
in Section 3.1) it follows that the result is


S1 ω.

4.2. Example with two K observables and two evaluation observables

From the very beginning of topological theories there was a lot of confusion about the nature of topological observables
Ci

Oi, associated to cycles Ci on the worldsheet. The original proposal of Witten implied that correlator should be
independent under deformation of cycles in the same homology class. However, it was again Witten (in the Chern–Simons
theory) who gave an example of correlators that are linking numbers. The resolution of the confusion is in different behavior
of correlators of integrands

⟨O1(x)O2(y)⟩

of the observables. If this correlator is smooth when x and y coincide, the correlator of topological observables really goes
to homology of cycles Ci. However, if it is singular, the only allowed moves of cycle C1 are in the complement to C2 in the
worldsheet, sowe get a linking. This goes to dimension 1 of theworldsheet as follows. Correlator of observables associated to
points (times) may be either smooth (supercommutative when points are interchanging their position) or not. In the latter
case we have a one-dimensional linking, that is the dependence of the correlator on the order of points (usually linking is
defined as a pairing between d-dimensional contractible cycles in (2d + 1)-dimensional space, in our case d = 0).

Since the operators K do not commutewith evaluation observables, we expect to get invariants, such as linking numbers,
by computing the correlation functions. Consider two one-forms ω1 and ω2.

From the operator approach the linking is almost obvious since K 2
= 0 andω1ω2 = 0 by the form degree considerations.

Still, we would like to reproduce this result in geometrical way. Two K operators geometrically split the circle in two
intervals, each of these intervals may be mapped to its own point on X (or a trajectory if c ≠ 0), so when each of the
intervals contains ω, the answer is


S1 ω1


S1 ω2, and is zero otherwise. Taking V0 to be non-zero does not really change the

answer.

⟨K(t1)K(t2)ev∗

t3ω1ev∗

t4ω2⟩ =

∫
S1
ω1

∫
S1
ω2 Link((t1, t2), (t3, t4)) (32)

where to define Link((t1, t2), (t3, t4)) we fix an oriented paths connecting (t1, t2) on S1 and count intersections of it with
points t4 and −t3 with signs, determined by the relative orientation. This gives the linking number.
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5. Integrated observables

We considered above the observables that were placed at fixed times, so they corresponded to some geometrical event
(like jump of prescribed type or passing through the chain of prescribed type) that happened at this particular moment. But
there is an important class of problemswhere one is interested in geometrical event that happens at some (unspecified) time.
To deal with such problems we integrate over time of insertion of observables, and these observables are called integrated
observables.

It is instructive to compare the operator and geometric approaches to construction of such observables.
Let us beginwith themost known example of integrated evaluation observable. Consider the evaluation observable ev∗ω,

which is a form on both the time of evaluation and the instanton space:Ω(Rt × M). Explicitly, having a space of instanton
solutions X(t,m), the evaluation observable equals to:

ev∗ω(X, dX) = ω


X(t,m),

∂X(t,m)
∂t

dt +
∂X(t,m)
∂ma

dma


.

wherema stand for coordinates on the moduli space. The component of ev∗ω that has zero degree along the space of times
of evaluation is the fixed time evaluation observable ev∗

t ω discussed above. The component containing dt is the observable

ev∗

t (ι ∂X
∂t
ω)dt = ev∗

t (ιVω)dt

and is known as a descent observable. This observable may be integrated against a subspace in the space of times. If there
are no other observables (or if correlator is smooth in the sense described above) and if the space of times is a circle, one
can integrate this observable against this circle (that is howwe get integrated observables). However, if the space of times is
an interval (or there are other observables such that the correlator is singular and we may integrate only along the interval
of continuity) we meet the phenomena of boundary in the space of integration and it makes the meaning of integrated
correlators more interesting — they correspond to deformations of the Q -operator.

In order to see this we consider the operator approach in general topological quantum mechanics.

5.1. Integrated observables and deformations of Q -operator

5.1.1. Topological quantum mechanics as a particular case of general topological quantum field theory
Consider a general topological field theory. In Atiyah formulation we should consider manifolds with boundary.

Components of boundary are labeled as incoming and outgoing, and each component (incoming or outgoing) is associated
to vector space V in

i or V out
i respectively. Themain object in Atiyah formulation of TFT is amap that associates to anymanifold

with boundary a linear map I

I ∈ V in
1 ⊗ · · · ⊗ V in

p → V out
1 ⊗ · · · ⊗ V out

q (33)

that factorizes under cutting manifold into pieces. Applying this formulation to quantum mechanics we consider intervals
and associate the same vector spaces V to both incoming and outgoing boundaries. According to Atiyah we should associate
to an interval a linear operator

U ∈ End(V )

such that

U2
= U,

i.e. I is a projector onto some space V0; since correlators of all operatorsΦ are given by their restriction to V0: IΦI , we may
start with V = V0. This is nice but it is not exactly what we have in geometrical theories.

To include such theories in the formalism we need to extend Atiyah’s formulation to Segal’s one - namely, we have to
replace manifolds by manifolds equipped with local geometrical data. By local data we mean the data on X that uniquely
determines the data on any piece of X , i.e. there is a map

Cuti : Geom(X) → Geom(Xi).

As an example of such data we may take metric or complex structure.
According to Segal, the main object is a map I from Geom(X) to the space (33), i.e.

I ∈ V in
1 ⊗ · · · ⊗ V in

p ⊗ V out,∗
1 ⊗ · · · ⊗ V out,∗

q ⊗ Funct(Geom(X)) (34)

such that for X = X1 ∪ X2

I(X) = Cut∗1 I(X) · Cut∗2 I(X) (35)
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here · stands for the natural contraction between vector spaces corresponding to boundaries that appear in cutting. In
application to quantum mechanics (where we take the metric on time as a local geometrical data) it means that

U(t1)U(t2) = U(t1 + t2)

where ti are lengths of the intervals. This equation is solved by

U(t) = exp(−tH),

that is a well-known evolution process in operator formulation of quantummechanics, where H ∈ End(V ) is a Hamiltonian
(in Euclidean signature).

In order to define topological theory we replace spaces V and Funct(Geom(X)) by complexes. For the space V we may
take the same space but with a differential Q that squares to zero, while Funct(X) has to be replaced by the spaceΩ(X) of all
differential forms on the space of geometrical data, so that operator dGeom acts on it. Themain condition for I is the closeness
of I with respect to the total action:

(Q + dGeom)I = 0 (36)

together with factorization condition that looks exactly like (35) with space of functions being replaced by the space of
differential forms on the geometrical data.

The universal solution to Eq. (36) in the case of quantum mechanics is given by

U(t, dt) = exp(−[Q + dt , tG]) = exp(−tH − dtG), with H = {Q ,G}. (37)

Nowwemay define observables, we will do it here for the case of manifold X equipped with the Riemannmetric. People
use to study local observables, however, we will define here the notion of subspace observables as follows. Consider the
subspace Y of the worldsheet space X , and consider the ϵ tubular neighborhood of Y ,

Yϵ = {x ∈ X, dist(x, Y ) < ϵ}

where dist(x, Y ) is a distance between the point x and the subspace Y , and we will take ϵ to be small enough.
Consider I(X \ Yϵ), it has additional boundary formed by points

Γ (Yϵ) = {x ∈ X, dist(x, Y ) = ϵ}.

This boundary contains one component when dimension of X is bigger than 1, while it contains two components for one-
dimensional X . In the former case wewill take the boundary to be incoming, while in the latter case we take one component
to be incoming and the second — outgoing. Finally, let us take the state vϵ in the multidimensional case and the operator
Φϵ in the one-dimensional case such that the ϵ → 0 limit of the contraction between I and v exists. So we define in the
multidimensional case

I(X,O(Y )v) = lim
ϵ→0

I(X \ Yϵ)vϵ (38)

and in the one-dimensional case

I(X,O(P)Φ) = lim
ϵ→0

I(X \ Pϵ) · Φϵ (39)

where P is a point and · stands for the contraction between the operator and V ×V ∗ associated to the two boundaries of the
tubular neighborhood of the point P .

While peculiarities of the limit are rather interesting in the multidimensional case, in the one-dimensional case the
situation is rather simple. Therefore, the generic correlator in quantum mechanics is given by a well-known formula

⟨out|U(T − tn)Φn . . .U(t2 − t1)Φ1U(t1)|in⟩ (40)

and the only difference in the topological quantummechanical case is given by replacement of evolution operators U(t) by
their superanalogues.

This means that the generic correlator of local observables in quantum mechanics and the universal correlator on an
interval equals to

I = ⟨out|U(T − tn, dT − dtn)Φn . . .U(t2 − t1, dt2 − dt1)Φ1U(t1, dt1)|in⟩ (41)

here ti are the positions of marked points on the interval of length T . One may show that

dI = 0 (42)

for Q -closed operators and initial and final states. In particular, the zero-form component is independent of t — that is the
topologicity in strict sense. The topologicity for higher forms is not that obvious — it only means that integrals of I along
cycles do not depend on smooth deformations of these cycles.
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5.2. Integrated observable

5.2.1. Integrated descent observable and non-Q-closeness of its integral
Now we are in position to give the universal definition of the integrated observable - (recall that in geometrical

incarnation it stated that corresponding geometrical event happens at nonspecifiedmoment) it means that we integrate the
differential form (41) along the position of themarked point. Therefore, from the perspective of original quantummechanics
it corresponds to insertion of the operator

Φ
(1)
i = {G,Φi}

at point ti and integration of it along the time manifold. Symbolically, we may say that we study∫
X
Φ
(1)
i Φ1(t1) . . .Φi−1(ti−1)Φi+1(ti+1) . . .Φn(tn)


.

Such operator was introduced by Witten as descendant operator, since it obviously solves the descent equation

{Q ,Φ(1)
} = [H,Φ] =

d
dt
Φ (43)

where the last equality holds under correlator.
Naively, one may think that such observables preserve Q — the naive argument goes as follows: Take Q -exact operator

Φ1 = [Q ,Ψ ] and put it under correlator. Take Q from Ψ and act with it on Φi — it would give a total derivative. Suppose
that we integrate along a compact time manifold without boundaries — then the integral of total derivative is zero.

Naiveness of this argument shows up already when we consider time manifold with boundaries — in this case total
derivative results in action of operator Φ on boundary states. It makes us think that decoupling of Q -closed observable
happens under additional condition that boundary states are annihilated byΦi. Moreover, close inspection of the region of
integration reveals another type of boundaries —when integrated operator hits operators, placed at fixedmoments t1, . . . tn.
In this case the boundary contributions are expressed as commutators

[Φi,Φj].

5.2.2. Homological meaning of integrated observable
One may think that boundary contributions for integrated observables obstruct the homological interpretation

of integrated observable. However, situation is simpler than one may expect: integrated observables correspond to
deformations of Q -symmetry. In particular, consider deformation of Q symmetry of the following form:

Qτ = Q + τΦ,

where we assume that

Φ2
= 0.

If we keep the superpartner of the Hamiltonian – G – intact we conclude that the zero degree component of the evolution
operator changes as follows

exp(−t(H + τ {G,Φ})) = exp(−tH)+ τ

∫
dt1 exp(−(t − t1)H){G,Φ} exp(−t1H)+ · · ·

and one-form component is not changing (here we also assume that G2
= 0) i.e. we just have the generating function

for integrated observable with generating parameter τ . Now we may easily interpret the boundary contributions — they
correspond to the action of Qτ on states and observables, and vanishing of boundary terms means that such states and
observables are annihilated by the family of operatorsΦ .

But this is not natural — rather one would expect that there is a family of operators Φτ or a family of states annihilated
by Qτ :

(Q + τΦ)(|in0⟩ + τ |in1⟩ + τ 2|in2⟩ + · · ·) = 0. (44)

It is easy to show that taking into account the change of initial state |in1⟩ we cancel the non-closeness of the integrated
observable.

However, even this is not the end of the story— belowwewill show that there are obstructions in finding of such families.
Moreover, these obstructions are also expressed in terms of integrated correlators.
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5.2.3. Obstructions and integrated correlators
Consider the problem of construction of perturbative family of Qτ closed states like in (44), modulus Qτ exact states.

Clearly, |in0⟩ should be a representative of Q -cohomology class. What about |in1⟩? It should be a solution to

Q |in1⟩ = Φ|in0⟩. (45)

The right hand side of (45) is Q -closed while the equation itself states that stronger statement holds — it is Q -exact. The
obstruction for this belongs in the cohomology class of the right hand side of (45), i.e. it is measured by

Obstr1 = ⟨out0|Φ|in0⟩ (46)

where ⟨out0| is an element of the dual space of states representing a generic class ofQ -cohomology. If the obstruction equals
to zero we may proceed to the second order problem where we compute

Q |in2⟩ = Φ|in1⟩ = ΦQ−1Φ|in0⟩ (47)

and the second order obstruction equals to

Obstr2 = ⟨out0|ΦQ−1Φ|in0⟩. (48)

In the case of topological quantum mechanics there is a natural candidate for Q−1, namely, let us take

hQM =

∫
+∞

0
G dt e−tH . (49)

If H = {Q ,G} satisfies the Hodge condition, i.e. it is positive definite outside the cohomology and vanishes on the
cohomology, then the integral in the right hand side of (49) exists and

{Q , hQM} = 1 −Π, (50)

whereΠ is the projector on the space of zero modes of H . It means that

QhQMΦ|in0⟩ = Φ|in0⟩ −ΠΦ|in0⟩ = Φ|in0⟩

where the second equality holds when the first obstruction vanishes, so hQM really works as Q−1.
This construction is called Hodge construction since it was extensively studied on the example of de Rham cohomology

of compact Riemann manifold. In this case

G = d∗ and H = ∆

such topological quantum mechanics is well known as N = 1 supersymmetric quantum mechanics.
It could be that hQM may serve as Q−1 even if Hodge condition is not satisfied. To see this we consider

Q
∫

+∞

0
G dt e−tHΦ|in0⟩ = Φ|in0⟩ − e−∞HΦ|in0⟩ (51)

Therefore, in this case hQM may work as inverse Q if the limiting action of exp(−∞H) on the state Φ|in0⟩ does not only
exist but also equals to zero.

Interestingly enough this may happen in geometrical quantum mechanics where the Hamiltonian is the Lie derivative.
In general, vector field may have limiting cycles (this may be cured by considering Morse vector field), and still the limiting
action of the Morse flow may be non-vanishing. However, we will encounter below the example where everything works.

All this means that it is reasonable to consider the following correlator in topological quantum mechanics

⟨u0|ΦhQMΦ|v0⟩ =

∫
+∞

0
⟨u0|ΦG dt e−tHΦ|v0⟩ (52)

that under condition discussed above leads to the second obstruction to solution of homological problem (44).
From the point of view of general topological quantummechanics it is an integral over the space ofmetrics on an interval.

Such object is often called an answer in topological gravity since we integrate against the space of metrics on a space–time,
that is time in our case. From the point of view of geometrical topological theory it means that some geometrical event
(given by the action ofΦ on |in0⟩) has happened at the beginning of time, then evolution took place until the second event
happened (given by ⟨out0|Φ).
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5.3. Geometrical examples of deformation of Q

5.3.1. Massey operations
The first example of deformed operator Q comes from evaluation observables. In this case we consider Witten–Novikov

operator
d + τω

where differential form corresponds to evaluation observable associated to ω.
Interestingly, obstructions (starting from the second one) that wementioned above correspond to Massey operations. In

particularly, it means that theymay be computed in geometrical formulation of quantummechanics, i.e. in terms of number
of trajectories of the vector field passing through cycles (associated to differential form ω). In this sense we see that higher
obstructions are nothing but one-dimensional analogues of the celebrated Gromov–Witten invariants that compute the
number of holomorphic curves passing through the prescribed set of cycles. We will discuss it in more details elsewhere,
but it is not the main topic in the present paper — here we would like to concentrate on K operators, that correspond to
integrated jumps.

5.4. Equivariant cohomologies and jump operators

It turns out that geometrical problems associated to arbitrary jump operator K arise in computation of equivariant
cohomology.

Suppose that we have a U(1) bundle X with the base Y . One may study equivariant cohomology, i.e. cohomology on the
space of U(1) invariant forms with differential

Qeq = d + τ ιv, (53)
where the vector field v generates theU(1) action. It is known that equivariant cohomology in the space of differential forms
taking values in polynomials in τ are related to the cohomology of the base as follows: one has to substitute τ with the first
Chern class of the bundle, i.e. with the class of curvature of the U(1) connection.

In the case of integrated K observable we should study the operator
Qdef = d + τK (54)

acting on the space of all differential forms. Since K involves integration along the fiber it projects forms to invariant ones.
It seems that people have missed the operator (54) since it is not differential operator, but we pay attention to it since it is
geometrical.

Really, computation of obstructions for such new operator turns out to be an interesting geometrical problem in
geometrical quantum mechanics. In particular, we may consider a Hopf bundle, that is a sphere S3 fibered over a sphere
S2. Let us compute the second obstruction for deformation of the three-form that is a delta function on a point that we will
call P . It is clear that the first obstruction vanishes. Really, the action of K on the three-form gives a two-form that is a delta
function on a fiber passing through this point. Since all two-cycles on a three-sphere are contractable the first obstruction
vanishes.

The quantum mechanical expression for contraction provides a more detailed information on how this contraction
happens. Really, consider as a Hamiltonian the special vector field V0 on a three-sphere that leaves one point invariant
and contracts the rest of the sphere to another point such that these fixed points of the vector fields do not coincide with
the point P . The integral∫ T

0
exp(−tH)G dt δFiberP

is given by a one-form delta-form on an annulus formed by evolution lines of the special vector field V0 that happens in time
T and that starts on the fiber passing through the point P . When T goes to infinity this annulus tends to a disc (and the fiber
passing through the point P is its only boundary). It means that conditions of special homotopy (see (51) and below) hold.

Now we need to apply K operator to it and intersect with the outcoming cycle. However, geometrically it is more
convenient to apply K -operator to the outcoming cycle and intersect it with the disc.

Really, if we take another point R as an outcoming cycle then the action of K on it gives the delta function on the fiber
passing through the point Q . Therefore, the second obstruction equals to intersection of the fiber passing through the point
Q and the disc, whose boundary is the fiber passing through P , i.e. it equals to linking number between fibers. This number
equals to 1 for Hopf fibration.

Putting everything together, we get∫
+∞

0
⟨R|K ιV0dte

−tLV0K |P⟩ = FiberR ∩ DiscP = Link(FiberR, FiberP) = 1. (55)

Geometrically, the only trajectory contributing to the correlator looks as follows: it starts at point P , jumps along the fiber,
then it moves along the trajectory of vector field over the disc toward the intersection with the second fiber. At this point
trajectory jumps again to point R. That is how jump operators reveal themselves in computations in equivariant cohomology
(really, in a problem equivalent to computation of equivariant cohomology).
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