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However, to our knowledge, no bioinformatics tools exist for 
automated metabolite annotation in HR imaging MS. This has 
restricted this technique mainly to targeted imaging of a few 
metabolites only10. Existing approaches either rely on visual 
examination or are based on exact mass filtering, which can pro-
duce false positives even when ultra-HR MS is used11. A chal-
lenge has been the development of algorithms that are robust 
to strong pixel-to-pixel noise and efficient enough to mine  
10–100-gigabyte data sets.

An additional obstacle is the lack of a metabolomics-compatible 
approach for estimating the FDR12,13. The FDR is defined as the 
ratio of false positives to the total number of annotations. The 
FDR is a cornerstone of the quantification of annotation quality 
in genomics, transcriptomics, and proteomics14. The proteomics 
target–decoy FDR estimation is not directly applicable in metabo-
lomics, where there is no equivalent of a decoy database of implau-
sible peptide sequences. An FDR estimate in metabolomics has 
been proposed15 but is limited to phytochemical metabolites, has 
not found widespread use, and cannot be applied to imaging MS 
because it does not allow for the incorporation of spatial informa-
tion. An alternative approach to estimating FDR would be the use 
of a phantom sample with controlled molecular content, but this 
is inherently complex and restricted to a specific protocol.

We have addressed this double challenge by developing a com-
prehensive bioinformatics framework for FDR-controlled metab-
olite annotation for HR imaging MS. Our open-source framework 
pySM (https://github.com/alexandrovteam/pySM) is based on the 
three following principles: database-driven annotation by screen-
ing for metabolites with known sum formulas, an original metab-
olite-signal match (MSM) score combining spectral and spatial 
measures, and a novel target–decoy FDR-estimation approach 
with a decoy set generated via the use of implausible adducts.

Our framework takes the following as input: (i) an HR imaging 
MS data set in the imzML format, (ii) a database of metabolite sum 
formulas in a CSV format (for sections from human tissue and 
similar biological systems we recommend the Human Metabolome 
Database)16, and (iii) an adduct of interest (for positive ion mode 
we recommend +H+, +Na+, and +K+; for negative we recommend 
−H+ and +Cl–). For a specified FDR level (we recommend 0.1), 
the framework provides metabolite annotations for metabolites 
from the database detected as present in the sample. The frame-
work cannot resolve isomeric metabolites; the provided putative  
molecular annotations are on the level of sum formulas17.

Our MSM score quantifies the likelihood of the presence of 
a metabolite with a given sum formula in the sample (Fig. 1, 
Supplementary Fig. 1, and Supplementary Note 1). For an ion 
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(sum formula plus ion adduct; for example, H+), we generate its 
isotopic pattern, accounting for the instrument’s resolving power 
with the isotopic fine structure if resolvable. Then we sample an 
ion signal from the imaging MS data set, namely, the ion images 
for all isotopic peaks with predicted intensity greater than 0.01% 
of the principal peak (Supplementary Fig. 2 and Supplementary 
Note 1). MSM is computed by multiplication of the follow-
ing measures. (i) The measure of spatial chaos quantifies spa-
tial informativeness within the image of the principal peak18. 
We introduce an improved measure of spatial chaos (Online 
Methods) that outperforms earlier proposed measures18,19 with 
respect to both speed and accuracy (Supplementary Fig. 3 and 
Supplementary Note 1). (ii) The spectral isotope measure quanti-
fies the spectral similarity between a theoretical isotopic pattern 
and relative sampled isotopic intensities. (iii) The spatial isotope 
measure quantifies spatial colocalization between isotopic ion 
images. An MSM score of 1 indicates the maximal likelihood of 
the signal corresponding to the ion.

Our FDR estimate helps experimenters select an MSM cutoff 
that allows them to be confident in the correspondence between 
the ions with MSM scores above the cutoff and metabolites from 
the sample (Fig. 1, Supplementary Fig. 1, and Supplementary 
Note 1). In accordance with the target–decoy approach14, we 
propose the construction of a decoy set as follows. We define 
a target set as ions from the selected metabolite database with a 
given ion adduct (for example, H+). We define the decoy set as 
ions for the same sum formulas but with the following implau-
sible adducts. For each sum formula, we randomly select an 
implausible adduct from the CIAAW 2009 list of the elements20  
(for example, B+, Db+, or Ag+), excluding plausible adducts. MSM 

scores are calculated for target and decoy ions. For any MSM 
cutoff, the FDR is estimated as the ratio between the numbers of 
decoy false positives (FPD; the decoy ions with MSM scores above 
the cutoff) and target positives (the target ions with MSM scores 
above the cutoff). Here we approximate the number of target false 
positives (FPT) by FPD, assuming that the target and decoy sets are 
similar. The sampling of implausible adducts is repeated, averag-
ing the resulting FDR estimate.

For FDR-controlled metabolite annotation, one specifies the 
desired value of the FDR (for example, 0.1) and chooses the 
smallest MSM cutoff that provides the desired FDR (Fig. 1, 
Supplementary Fig. 1, and Supplementary Note 1). This pro-
vides annotations of a given level of confidence, independent of 
the MSM cutoff, data set, MS settings, and operator, and can be 
used for comparative and interlab studies.

We evaluated the proposed FDR estimation (Supplementary 
Note 1). First, we studied the similarity between the decoy and 
target ions required to fulfill FPD ≈ FPT. Relative intensities of iso-
topic patterns for target and decoy ions were found to be similar 
(Fig. 2a) even though the decoy ions had higher relative intensities 
for heavier isotopic peaks owing to their more complex isotopic 
patterns. The target and decoy ions were also found to have simi-
lar mass-to-charge ratios (m/z) and mass defect spaces (Fig. 2b),  
with a positive offset in m/z for decoy adducts, which typically 
have heavier elements. Second, we compared the estimated and 
true FDRs for a simulated data set with a known ground truth 
(Fig. 2c and Supplementary Note 1). Although there were some 
differences in the low-value region, the estimated FDR followed 
the true FDR overall. Finally, negative control experiments using 
each of the implausible adducts as the target showed that FDR 
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values for implausible adducts were characteristically higher  
(Fig. 2d and Supplementary Note 1).

We showcased our framework on HR imaging MS data sets 
from fresh-frozen brain coronal sections of two (a1 and a2) 
female adult wild-type mice (Supplementary Tables 1 and 2). 
Five coronal sections were collected from each brain: three serial 
sections at the bregma +1.42 mm (s1–s3, which can be consid-
ered technical replicates), s4 at −1.46 mm, and s5 at −3.88 mm. 
The sections were imaged using an HR matrix-assisted laser 
desorption/ionization (MALDI)–Fourier transform ion cyclotron 
resonance (FTICR) imaging mass spectrometer in the positive  
mode. FDR-controlled annotation was carried out with an m/z tol-
erance of 2.5 p.p.m. and the desired level of FDR = 0.1 for metab-
olites from HMDB with H+, Na+, and K+ adducts (Fig. 2e–i).  
Venn diagrams of annotated metabolites (Fig. 2e) showed 
good reproducibility between sections from the same animal  

(especially between the serial sections from a2, in which 51 of 73 
sum formulas were annotated in all three sections) and between 
the animals (only two sum formulas were annotated in animal 
a1 only). The numbers of detected adducts were similar (Fig. 2f).  
Exemplary molecular images of annotations illustrated good 
reproducibility between technical replicates and animals (Fig. 2g);  
the full set of molecular images is shown in Supplementary Note 2.  
Most of the metabolites detected were phospholipids (phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), sphin-
gomyelin (SM), and phosphatidic acid (PA), typical for MALDI 
imaging MS of brain tissue using an α-cyano-4-hydroxycinnamic  
acid (HCCA) matrix)21; however, we did detect some other 
small molecules. From 103 overall annotations, we validated 16 
representative ones with LC-MS/MS by either using authentic  
standards or assigning fragment structures to MS/MS data 
(Supplementary Data 1).
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We demonstrated the potential of using FDR curves in two 
examples. First, we showed that MSM outperformed the individual 
measures (Fig. 2h, Supplementary Fig. 4, and Supplementary 
Note 1). The exact mass filtering performed significantly worse, 
achieving a lowest FDR of 0.25 for ten annotations (versus an FDR 
of 0 for the same number of annotations with MSM). Second, 
we demonstrated that the number of FDR-controlled annota-
tions decreased with decreasing mass-resolving power (Fig. 2i, 
Supplementary Fig. 5, and Supplementary Note 1). For this, we 
artificially reduced the mass-resolving power by using different 
m/z tolerances when sampling m/z signals: 1, 2.5 (default), 5, 30, 
100, 1,000, and 5,000 p.p.m. This indicated that high mass accuracy 
and resolution were essential for confident metabolite annotation. 
In Supplementary Data 2, we present additional results for a rat 
brain data set, and in Supplementary Figure 9, we compare results 
when using the SwissLipids lipids database instead of HMDB, 
demonstrating the general applicability of our approach.

Our framework is directly applicable to other types of HR imag-
ing MS data collected using FTICR or orbitrap analyzers (MALDI, 
desorption electrospray ionization, secondary ion MS, infrared 
matrix-assisted laser desorption electrospray ionization, etc., with 
proper adducts to be selected for each source) and other types 
of samples (plant tissue, cell culture, agar plate, etc.) for which 
proper metabolite databases are available.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Accession codes. The data are publicly available at the 
MetaboLights repository under accession codes MTBLS313, 
MTBLS378, and MTBLS317.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Imaging MS data from mouse brain samples. Samples. Two 
female adult wild-type C57 mice (a1 and a2) were obtained from 
Inserm U1085, IRSET Research Institute (University of Rennes 1, 
France). Animals were age 60 d and were reared under ad libitum 
conditions. Care and handling of all animals complied with EU 
directive 2010/63/EU on the protection of animals used for scien-
tific purposes, and protocols were approved by the University of 
Rennes 1 Animal Experimentation Ethics Committee. The whole 
brain was excised from each animal immediately post-mortem, 
loosely wrapped rapidly in aluminum foil to preserve its mor-
phology, and snap-frozen in liquid nitrogen. Frozen tissues were 
stored at −80 °C until use to avoid degradation.

Sample preparation. For each animal, five coronal 12-µm-thick 
brain sections were collected on a cryomicrotome CM3050S 
(Leica, Wetzlar, Germany) as follows. Three consecutive sections 
were acquired at a distance of +1.42 mm from bregma (sections 
s1, s2, and s3) and two further sections were acquired at −1.46 and 
−3.88 mm from bregma, respectively (data sets s4 and s5, respec-
tively). The sections were thaw-mounted onto indium tin oxide 
(ITO)-coated glass slides (Bruker Daltonics, Bremen, Germany) 
and immediately desiccated. An HCCA MALDI matrix was 
applied using the ImagePrep matrix deposition device (Bruker 
Daltonics). The method for matrix deposition was as follows: after 
an initialization step consisting f 10–15 cycles with a spray power 
at 15%, an incubation time of 15 s, and a drying time of 65 s, we 
carried out three cycles under sensor control with a final voltage 
difference of 0.07 V, a spray power at 25%, an incubation time of 
30 s, a drying time under sensor control at 20%, and a safe dry of 
10 s; six cycles under sensor control with a final voltage difference 
of 0.07 V, a spray power at 25%, an incubation time of 30 s, a dry-
ing time under sensor control at 20%, and a safe dry of 15 s; nine 
cycles under sensor control with a final voltage difference of 0.2 V,  
a spray power at 15%, an incubation time of 30 s, a drying time 
under sensor control at 20%, and a safe dry of 50 s; and finally  
20 cycles under sensor control with a final voltage difference of  
0.6 V (± 0.5 V), a spray power at 25%, an incubation time of 30 s, a 
drying time under sensor control at 40%, and a safe dry of 30 s.

Imaging MS. For MALDI-MS measurements, the prepared slides 
were mounted on a slide adaptor (Bruker Daltonics) and loaded 
into the dual source of a 7T FTICR mass spectrometer solariX XR 
(Bruker Daltonics) equipped with a Paracell at resolving power 
R = 130,000 at m/z = 400. The x-y raster width was set to 50 µm 
using Smartbeam-II laser optics with the laser focus set to ‘small’ 
(20–30 µm). For each pixel, a spectrum was accumulated from 
10 laser shots. The laser was run at 1,000 Hz and the ions were 
accumulated externally (hexapole) before being transferred into 
the ICR cell for a single scan. For animal a1, each spectrum was 
internally calibrated by one-point correction using a known phos-
pholipid with the ion C42H82NO8P+K+ at m/z = 798.5410. For 
animal a2, every spectrum was internally calibrated by multipoint 
correction using a matrix cluster of HCCA (C20H14N2O6+H+, 
m/z = 379.0925) if present plus known phospholipids present 
in the mouse brain, C40H80NO8P+H+ at m/z = 734.5694 and 
C42H82NO8P+K+ at m/z = 798.5410. Data were acquired for the 
mass range 100 < m/z < 1,200 followed by a single zero filling and 
a sin-apodization. Online feature reduction was performed in 
ftmsControl software version 2.1.0 (Bruker Daltonics) to return 
only the peak centroids and intensities.

Signal processing. Centroid data were exported into the 
imzML format using SCiLS Lab software version 2016a (SCiLS, 
Bremen, Germany). Ion images were generated with a tolerance  
of ±2.5 p.p.m. We performed hot-spot removal independently for 
each image by setting the value of the 1% highest-intensity pixels 
to the value of the 99th percentile and then applying an edge-
preserving denoising using a filter with a median 3 × 3 window. 
Individual measures used in the MSM score were defined based on 
the ion images generated from each peak within the isotope pat-
tern for a particular sum formula and adduct. Isotope envelopes 
were predicted for an ion (sum formula + adduct) at the mass 
resolution of the data set, and peak centroids were detected.

Statistics. No statistical analyses or tests were used because no 
comparative group analysis was performed. Imaging MS was  
performed on each tissue section individually.

Simulated imaging MS data. We simulated an imaging MS data 
set that contained 300 sum formulas from the HMDB metabolite 
database (version 2.5) and 300 randomly generated formulas not 
contained in HMDB. An H+, Na+, or K+ adduct was randomly 
assigned to each formula. Random-sum formulas were generated 
such that the probability distributions of the number of CHNOPS 
atoms, the C–H ratio, and the C–O ratio were the same as in all 
formulas from HMDB. Isotope patterns were generated for each 
formula at a resolving power of R = 140,000 at m/z = 400. Each 
isotope pattern was multiplied by a random intensity in the range 
[0.2–1.0]. The patterns were assigned to one of two partially over-
lapping square regions: one with sum formulas from HMDB and 
the other with sum formulas not from HMDB. Additionally, 700 
peaks at randomly selected m/z values were added independently 
to each spectrum so that a spectrum inside one of the squares 
would have 3,500 ± 127 peaks. The resulting line spectra were 
then convolved with a Gaussian function with σ = 0.015.

Measure of spatial chaos. The measure of spatial chaos quanti-
fies whether the principal ion image is informative (structured) 
or noninformative (noise). We have proposed this approach for 
image-based peak picking in the past18, but here we developed an 
improved measure based on the concept of level sets previously 
applied for image segmentation22. For an ion image, its range of 
intensities is split into a number of levels, nlevels. For each level, 
a level set is calculated as an indicator set with a value of 0 or 1,  
set at 1 for pixels with intensities above the level. Then, the 
number of closed 1-valued objects (connected areas of 1-valued 
pixels) in the resulting level set is computed. Images with struc-
ture tend to exhibit a small number of objects, which shrink in 
size as the threshold increases, whereas images with noisy dis-
tributions produce a great number of objects because the pixels 
above the threshold level are randomly spatially distributed. The 
algorithm was inspired by a concept of computational topology 
called ‘persistent homology’23and implemented using morpho-
logical image operators24. The proposed measure of spatial chaos 
returns a value ρchaos between 0 and 1, which is high for spatially 
structured images and low for noisy images. For an algorithmic 
description, please see Supplementary Note 3.

The computational complexity of the level-sets algorithm is  
O(N × nlevels) where N is the number of pixels. The nlevels parameter  
controls the smoothness of the curve seen in Supplementary 
Figure 3b, and above a certain granularity the value of ρchaos 



©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4072nature methods

stabilizes to a constant for a particular image. A value of nlevels = 
30 was found to be sufficient to provide stable results for both the 
test images from ref. 18 and random noise (data not shown).

Spatial isotope measure. The spatial isotope measure quan-
tifies the spatial similarity between the ion images of isotopic 
peaks, composing a signal for a sum formula. It is calculated as a 
weighted-average linear correlation between the ion image from 
the most intense isotope peak (i = 1) and all others (i = 2, …, p) 
where p is the number of theoretically predicted isotope peak 
centroids for a particular sum formula and adduct with an inten-
sity greater than 1% of the principal (largest) peak. Each image  
i is weighted by the relative abundance of the theoretical iso-
tope peak height ai. Negative values are set to zero so the spatial  
isotope measure returns a value ρchaos between zero and one; 
higher values imply a better match. 

r aspatial corr=
= =∑

∑1

1 2
1

i
p

i i

p

i i
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where α = 1 if corr(b1,bi) > 0; otherwise α = 0. Equation (1) is 
the spatial isotope measure quantifying the spatial similarity of 
each isotope peak to the principal peak where corr(·) returns a 
Pearson’s correlation coefficient and bi is a vector of intensities 
from ion image Bi of the ith isotope peak.

Spectral isotope measure. The spectral isotope measure quanti-
fies the spectral similarity between a predicted isotope pattern 
and measured spatial intensities. It is calculated as the average 
difference between normalized predicted isotope ratios and  
normalized measured intensities, reported so that larger values 
imply a better match. 
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In equation (2), 
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is a vector containing the mean image intensity from the ion 
images B = B1, …, Bp for the n pixels in B1 with nonzero intensity 
values and 

x x x= 2, where i p
i

n

i
p

p

x=










=

∑
1

1

| |

This can be considered as projecting both theoretical and empiri-
cal isotope patterns onto a sphere and then calculating 1 minus 
the average coordinate difference.

MSM score. The MSM score quantifies the similarity between 
the theoretical signal of a sum formula and its measured counter-
part sampled from the data set, with a higher value correspond-
ing to higher similarity. It is calculated according to equation 
(3) as a product of the individual measures (measure of spatial 
chaos, spatial isotope measure, and spectral isotope measure).  

(1)(1)

(2)(2)

This puts an equal weighting on each measure while penalizing any  
annotation that returns a low value for any of the measures. 

MSM chaos spatial spectral= × ×r r r
 

FDR-controlled metabolite annotation. Molecular annotation. 
First, we consider all unique sum formulas from a metabolite 
database of interest. We used the Human Metabolome Database 
(HMDB) v. 2.5, considering only 7,708 carbon-containing sum 
formulas16. Then we select a list of potential ion adducts. Adducts 
H+, Na+, and K+ were used as the adducts commonly detected 
during MALDI-MS tissue imaging in the positive mode25. Then 
we performed molecular annotation of an imaging-MS data set 
for each ion (combination of a sum formula and an adduct) inde-
pendently as described in Algorithm 2 in Supplementary Note 3. 
Note that in this algorithm the MSM threshold tMSM needs to be 
specified; for the updated algorithm selecting the MSM threshold 
in an FDR-controlled way, please see Supplementary Note 3.

Calculation of the FDR. To calculate the FDR among the molecu-
lar annotations provided using Algorithm 2 with an MSM thresh-
old tMSM, we developed a target–decoy approach similar to that 
of Elias and Gygi26. The innovative part of this development is in 
applying the target–decoy approach in the spatial metabolomics 
context by defining a decoy set appropriate for metabolomics.

A target set was defined as a set of molecular ions for the sum 
formulas from a metabolite database (for example, HMBD) with 
a given ion adduct type (for example, H+, Na+, and K+). A decoy 
search was defined as a set of implausible ions for the same sum 
formulas but with implausible ion adduct types. For each sum for-
mula, an implausible elemental adduct was randomly chosen from 
the CIAAW 2009 list of isotopic compositions of the elements27, 
excluding the plausible adducts, namely, from He, Li, Be, B, C, N, 
O, F, Ne, Mg, Al, Si, P, S, Cl, Ar, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, 
Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 
Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, 
Th, U and Pu. Once the target and decoy sets were defined, the 
MSM scores were calculated for all target and decoy ions.

The MSM cutoff (tMSM) is a key parameter of the molecu-
lar annotation. Setting the MSM cutoff changes the number of 
molecular annotations made. For any MSM cutoff, we define 
‘positives’ as the ions with MSM scores above the cutoff and ‘nega-
tives’ as the ions with MSM scores below the cutoff. We define 
FPdecoy as positive hits from the decoy. Because any decoy ion is  
constructed to be implausible, all decoy ions detected as positive 
are false positives. Then, we estimate FDR with FDR according 
to equation (4): 

FDR
FP

TP FP
FDR

FP

TP FP
target

target target

decoy

target targe
=

+
′ =

+
;

tt

decoy

target
=
n

n  

where FP and TP are false positives and true positives, respec-
tively, and ntarget and ndecoy are the numbers of annotations from 
the target and decoy sets for the MSM cutoff tMSM.

Similarly to the approach to FDR calculation in genome-wide 
studies proposed by Storey and Tibshirani28 and picked up later 
in proteomics, equation (4) proposes an approximation of the true 
FDR defined as FPtarget/Ptarget. This approach relies on having a 

(3)(3)

(4)(4)
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high similarity between false positives in the target set and the 
decoy set. The decoy set must be the same size as the target set and 
share the same statistical distributions as the measures used in 
the annotation. If these assumptions are satisfied, the number of 
false positives from the decoy (FPdecoy) approximates the number 
of false positives from the target (FPtarget) while the denominator 
(Ptarget) is equal between FDR and FDR′.

As the decoy generation is a randomized process, with one 
decoy search formed by a sampling of implausible adducts from 
all possible implausible adducts, FDR calculation is a repeated 
sampling process. We propose to repeat it (20 times for the pre-
sented results) and calculate the median of the observed FDR 
values. We favor median over mean for its general robustness to 
outliers and for providing integer values that can be translated 
into the numbers of annotations.

FDR-controlled molecular annotation. The term ‘FDR-controlled  
molecular annotation’ means that parameters of molecular anno-
tation are optimized so that the set of provided annotations has 
a desired FDR. This is the most widely used approach in pro-
teomics for choosing parameters of molecular identification29. 
We used this approach to select a key parameter of the molecular 
annotation, the MSM cutoff tMSM. We did this similarly to the 
procedure described by Zhang et al.30, by simultaneously sort-
ing the MSM values for the target and decoy ions, decreasing 
the MSM cutoff, and thus one by one increasing the number of 
target ions annotated, recalculating the FDR after every new ion 
was annotated and selecting the maximal number of annota-
tions that provided an FDR below the desired value (Fig. 1 and 
Supplementary Fig. 1). This process was repeated 20 times with 
the decoy adducts each time randomly sampled from the set of all 
considered implausible adducts and an observed tMSM recorded. 
After 20 repetitions, the final MSM cutoff value tMSM was set at 
the median of the observed tMSM values. The final set of molecular 
annotations was a set of target ions with the MSM scores above 
the median cutoff value. For an algorithmic description, please 
see Algorithm 3 in Supplementary Note 3.

LC-MS/MS validation of annotations. Mouse brain sample. One 
female adult wild-type C57 mouse, age 10 weeks, was obtained 
from the European Molecular Biology Laboratory animal 
resource (EMBL-LAR, Heidelberg, Germany). The animal was 
reared under ad libitum conditions within the specific patho-
gen-free facility. Care and handling of the animal complied with 
EU directive 2010/63/EU on the protection of animals used for 
scientific purposes, and protocols were approved by European 
Molecular Biology Laboratory Institutional Animal Care and 
Use Committee. The whole brain was excised from the animal 
immediately post-mortem and rapidly cryo-frozen in CO2-cooled 
isopentane. Tissue was stored at −80 °C until use.

Authentic lipid standards and chemicals. All lipid standards 
used for validation of annotations were purchased from Sigma 
Chemicals (Sigma-Aldrich Co., St. Louis, Missouri, USA) and 
Avanti Polar Lipids (Alabaster, Louisiana, USA). The LC-MS-
grade buffers and other reagents were purchased from Sigma 
Chemical. MS-grade solvents and MiliQ-grade water were used 
throughout the analysis.

Sample preparation. We extracted 20 mg of brain tissue using 
the Bligh and Dyer extraction method31. The dried extract was 

reconstituted with 100 µL of methanol and isopropanol (1:1), and 
10 µL of this sample solution was injected into the LC-MS system 
for each run. Lipid standards were prepared in the same solvent 
with a concentration of 100 ng/mL each.

LC-MS/MS methods. The separation of lipids was carried out on 
an Agilent 1260 LC system with an Ascentis Express C18 column 
(100 × 2.1 mm; 2.7 µM) and detected with HR MS (Q Exactive 
Plus from Thermo Fisher Scientific, Bremen, Germany).

Three LC-MS/MS methods were used: (i) positive, an elec-
trospray ionization (ESI) positive mode using ‘buffer 1’;  
(ii) negative 1, an ESI negative mode method using buffer 1; and  
(iii) negative 2, an ESI negative mode method using ‘buffer 2’.  
LC was run at a flow rate of 0.25 ml/min, with solvent A consisting 
of acetonitrile−water (6:4) and solvent B consisting of isopropyl 
alcohol−acetonitrile (9:1), which were buffered either with 10 mM  
ammonium formate and 0.1% formic acid (buffer 1) or with  
10 mM ammonium acetate (buffer 2). MS parameters in the Tune 
software (Thermo Fisher Scientific) were set at a spray voltage 
of 4 kV, sheath gas 30 and auxiliary gas 10 units, S-Lens 65 eV, 
capillary temperature 280 °C, and vaporization temperature of 
auxiliary gas 280 °C.

Data were acquired in full scan mode in the mass range of 
150–900 m/z (resolving power R = 70,000) and data-dependent 
MS/MS spectra were obtained for all precursors from an inclu-
sion list (resolving power R = 35,000). Tandem mass spectra were 
acquired using higher-energy collisional dissociation (HCD) with 
normalized collision energies of 10, 20, and 30 units at the mass. 
The inclusion list was composed of all annotations provided from 
imaging MS analysis and detected in all three serial sections  
(s1, s2, and s3 at +1.42 mm from bregma) for either of the two 
animals. We considered adducts relevant for LC-MS (H+, NH4

+, 
and Na+ for the positive method; H– and H+HCOOH– for the 
negative methods).

LC-MS/MS validation strategy. LC-MS/MS validation of lipid 
annotations was performed differently for annotations for which 
lipid standards were available and for annotations for which lipid 
standards are not available. When lipid standards were available, 
LC-MS/MS information—in particular the LC retention time 
(RT), MS, and MS/MS (MS2)—was used to compare the data 
from a standard with the data from a sample (both acquired using 
exactly the same LC-MS method and precursor selection range). 
First, extracted ion chromatograms (XICs) were evaluated for all 
possible adducts to confirm the presence of the ion of the sum 
formula obtained from imaging data. For the tolerance values 
for XICs, for data with standards we used a tolerance value of 
5 p.p.m.; for data with no standards we selected the best-fitting  
tolerance value from 2, 3 and 5 p.p.m. We considered possible 
adducts for each metabolite (H+, Na+, and NH4

+ for the positive 
method; H– and [FA − H]+ for the negative methods, where FA 
is formic acid) and selected the best matching adduct as follows. 
The precursor ∆m/z was calculated for the sample in both MS1 
and MS/MS data. The matching MS/MS spectrum was searched 
within the elution profile and manually interpreted for frag-
ments corresponding to head-group and fatty acid side chains. 
Only precursor and fragments with accuracies of <6 p.p.m. were 
considered for structural interpretation to identify possible 
lipid species. The lipid class was confirmed by the presence of  
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head-group fragments or their neutral loss (for example, an MS/MS 
fragment with m/z = 184.0735 corresponds to the phosphocholine 
head-group). Because lipids from the classes of phosphatidylcho-
lines (PC) and sphingomyelins (SM) have the same head-group  
(m/z = 184.0735), given a sum formula, we searched in HMDB 
to rule out the possibility of the sum formula corresponding 
to a lipid from any class other than the one annotated by our 
framework. To confirm the fatty acid side chains, the negative 
LC-MS methods were used (for example, fatty acid fragments for 
phosphocholines were obtained after fragmentation of formate 
ion precursors using the negative LC-MS method). The collision 
energy was selected as best representing the precursor and the 
expected fragments. When standards were available, the RT, pre-
cursor m/z, and MS/MS fragments corresponding to head-groups 
and fatty acid chains from the sample were matched with spectra 
from the corresponding standard. When standards were not avail-
able, the fragments were manually interpreted. Finally, structural 
annotation of the matching peaks in the MS/MS spectra was done 

with the help of the HighChem MassFrontier software (Thermo 
Fisher Scientific).

Data availability statement. Code is available at https://github.
com/alexandrovteam/pySM.
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