
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Mathematical and Computer Modelling 53 (2011) 1719–1736

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Complexity evaluation of benchmark instances for the
p-median problem
B. Goldengorin a,b,∗, D. Krushinsky b

a Department of Applied Mathematics and Informatics, Higher School of Economics, Nizhny Novgorod Branch, B. Pecherskaya 25/12, Nizhny Novgorod, 603155,
Russian Federation
b University of Groningen, Department of Operations, P.O. Box 800, 9700 AV Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 6 December 2009
Received in revised form 22 December 2010
Accepted 22 December 2010

Keywords:
p-Median problem
Pseudo-Boolean polynomial
Problem size reduction
Data complexity

a b s t r a c t

The paper is aimed at experimental evaluation of the complexity of the p-Median
problem instances, defined by m × n costs matrices, from several of the most widely
used libraries. The complexity is considered in terms of possible problem size reduction
and preprocessing, irrespective of the solution algorithm. We use a pseudo-Boolean
representation of PMP instances that allows several reduction techniques to be applied in
a straightforward way: combining similar monomials in the polynomial, truncation of the
polynomial from degree (m−1) to (m−p) implying costs matrix truncation and exclusion
of some rows from the costs matrix (preprocessing based only on compactification of the
costs matrix), decomposition of the polynomial into the minimum number of expressions
inducing the minimum number of aggregated columns (reduction of the columns’ number
in the costsmatrix).We show that the reduced instance has atmost

∑m−p
i=1 min{n,

m
i


}+1

nonzero entries.We also provide results of computational experimentswith thementioned
reductions that allow classification of the benchmark data complexity. Finally, we propose
a new benchmark library of instances not amenable to size reduction by means of data
compactification.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The p-Median Problem (PMP) is a well-known problem within minisum location–allocation problems. A detailed
introduction to this problem and solution methods appear in [1,2]. For a directed weighted graph G = (V , A, C), with
number of vertices |V |, set of arcs (i, j) ∈ A ⊆ V × V , and weights (distances, similarities, etc.) C = {c(i, j) : (i, j) ∈ A},
the PMP consists of determining p nodes (the median nodes, 1 ≤ p ≤ |V |) minimizing the total sum of weights to all other
nodes of the graph.

Further, for the sake of clarity, we will follow the terminology inherited from location–allocation applications and
represent the set of vertices V as a union of two (possibly intersecting) sets I and J , such that |I| = m, |J| = n. We will
call the elements of I locations and those of J — clients. Moreover, we treat weights c(i, j) as the costs of serving client j
(j ∈ J) from location i (i ∈ I). It should be mentioned that for the benchmark instances that we used initiallym = n, but two
of our reduction techniques break this balance.

The PMP is NP-hard [3], and has many applications in location (see [4] and references within) and clustering analysis
(see e.g., [5] and references within). A recent computational study by Avella et al. [6] shows that PMP instances with
|I × J| > 360,000 cannot be uploaded by commercial Mixed Integer Programming (MIP) codes, mainly due to memory
restrictions. For example, CPLEX could not load the instance pmed40 from Beasley’s OR-Library (|V | = 900) [7], due to

∗ Corresponding author at: University of Groningen, Department of Operations, P.O. Box 800, 9700 AV Groningen, The Netherlands.
E-mail addresses: b.goldengorin@rug.nl (B. Goldengorin), d.krushinsky@rug.nl (D. Krushinsky).

0895-7177/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2010.12.047

Author's personal copy

1720 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

its size (see [6]). These PMP instances (OR instances) are used widely (see e.g., [1,2,4,6,8] and references within) with the
purpose of comparing the computational efficiency of exact and heuristic algorithms for solving PMP. This paper is focused
on estimating the complexity of PMP instances in terms of possible size reduction. Our definition of the complexitymeasure
is universal in the sense that it is not biased to any specific solution algorithm and we claim that if some instance has high
complexity in our terms then it will be complex for any solution algorithm (existing or forthcoming).

Problem size reduction is a very common technique in integer programming and combinatorial optimization. It can be
used to find a compact representation of PMP instances, see, for example, [9–15]. Classical reductions of PMP instances
are based either on reduction tests (see e.g., [16]) or on good lower bounds (see e.g., [8]). In this paper, we present three
classes of reductions of a PMP instance using its pseudo-Boolean formulation due to Hammer [17] and Beresnev [18]. The
first reductions are aimed at minimization of the number of terms in the pseudo-Boolean polynomial by reducing similar
monomials and truncation from degree (m − 1) to (m − p). Reduction of similar monomials is indicated in [18–22]. An
analogue of truncation is used in [16]. The second technique reduces the number of columns in the costsmatrix. It is based on
covering the Hasse diagram, comprising terms of the polynomial, with the minimum number of chains. The third reduction
is a preprocessing that allows exclusion of some rows of the costs matrix from consideration as they do not contribute to
the value of optimal solutions.

All our reductions are aimed at a compact representation of instance data. Even though they sometimes provide partial
solutions as a side effect, this should be considered as a consequence of redundancy in the instance data, rather than a result
of our attempts to find an optimal solution which is beyond the scope of this paper.

For the numerical experiments with mentioned reductions we used benchmark instances from the four most popular
libraries: OR, TSP, ODM, RW. The first one, the OR library, was introduced by Beasley [23] and is available at [7]. Every node
is both a potential location and a client, and the costs are the lengths of the shortest paths between the corresponding nodes.

The TSP library was originally proposed for the traveling salesman problem (TSP) and is available at [24]. TSP instances
are defined as sets of points in a two dimensional plane. Every point is considered both a potential location and a client, and
the costs are simply Euclidean distances.

Instances from the next library that we studied are based on the optimal diversity management (ODM) problem. For the
description of this problem and instances see [8].

Finally, we considered instances proposed by Resende andWerneck [25]. These problems are defined on randomdistance
matrices. In every case the number of potential facilitiesm is equal to the number of clients n and distances are integers taken
uniformly at random from the interval [1, n]. The library contains five instances with n = 100, 200, 250, 500, 1000.

The rest of the paper is organized as follows. In Section 2 we define the notion of instance data complexity and provide
a brief overview of the existing approaches to reducing the problem size. In Section 3 we formulate the pseudo-Boolean
representation of the p-Median problem. In Section 4 our reduction techniques based on reducing similar monomials in
the pBp [18–22], its truncation and decomposition into the minimal number of columns are presented. In that section we
also prove that pseudo-Boolean formulation allows the most compact representation of the instance. Next, in Section 5 we
describe an approach to preprocessing PMP instances by excluding some rows of the costs matrix that do not contribute to
the value of optimal solutions. Two latter sections contain results of computational experiments on benchmark instances.
In Section 6 we formulate the criteria of complexity and introduce our benchmark library, the instances of which cannot be
reduced by any of the well-known approaches. Section 7 summarizes the obtained results and suggests directions for future
research.

2. Data complexity and problem size reduction

Problem size reduction is a very common technique in integer programming and combinatorial optimization that can
be used to find a compact representation of PMP instances. It is aimed at constructing an instance of smaller size that is
assumed to be more easily solvable and provide an optimal solution to the initial instance. Moreover, it is straightforward
that if the procedure of size reduction is as time-consuming as the procedure for solving the initial problem, it has no sense.
These considerations lead to the following definition.

Definition 1. We will call instance D a reduced version of instance C (D = red(C)) if it satisfies the following conditions:
1. ∅ ⊂ opt.solutions(D) ⊆ opt.solutions(C)
2. size(D) ≤ size(C)
3. D can be obtained from C in polynomial time.

The first requirement guarantees that by solving D to optimality one immediately obtains an optimal solution to C
(here we assume the feasibility of C), while the second one is related to the reduction itself. Finally, the last requirement is
needed to make the definition useful in practice: if for some NP-hard problem computing the reduced instance D is as hard
as solving C then such a reduction is senseless. Based on this definition of a reduced instance we define complexity of the
instance data in the following way.

Definition 2. By complexity of the instance data C (relative to a particular problem) we mean the minimum capacity of the
storage needed to be able to obtain an optimal solution to the initial instance:

comp(C) = min{size(D) : D = red(C)}.

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1721

It should be noticed that without a reference to a particular problem (in our case — the p-Median problem) this definition
is meaningless. However, even when the problem is fixed, it provides neither a direct way for constructing a compact
representation of the data, nor even for determining the minimum required space. Further we briefly describe existing
approaches to reducing the problem size and thus to obtaining upper bounds of instance data complexity.

As the costs matrix of a PMP instance has m × n elements, it is clear that this value is the most trivial upper bound for
comp(C). This value is achieved by the classical ILP representation (see [26]) of the p-Median problem with its objective
function defined as:−

j∈J

−
i∈I

cijxij. (1)

Here cij denote entries of the costsmatrix and xij are decision variables (xij = 1 if the jth client is served from the ith location,
otherwise xij = 0). Cornuejols et al. [19] introduced an alternative formulation of the problem. For any client j, let Kj be the
number of different distances from j to any location. It follows that Kj ≤ m. Let D1

j < D2
j < · · · < D

Kj
j be these distances,

sorted. For each client j it is possible to define a hierarchy of neighbourhoods V k
j such that each V k

j is a set of locations within
the distance Dk

j from client j. Naturally, in an optimal solution a client j is assigned to its neighbourhood with the smallest
Dk
j containing the opened location. Thus, instead of xij this formulation uses variables zkj such that zkj = 1 if and only if there

are no opened locations in V k
j . The objective function in this case is defined as:

−
j∈J


D1
j +

Ki−1−
k=1

(Dk+1
i − Dk

i)z
k
i


. (2)

Informally, this representation implies that only different elements in each column of the costs matrix are meaningful and
the problem size can be reduced by storing only the pairwise different elements from each column. A further reduction is
proposed in [20]. It states that if for some j, k, j′, k′ holds V k

j = V k′
j′ , then for any feasible solution zkj = zk

′

j′ and some terms
in (2) can be merged. Several reductions are also presented in [21], but they are similar to those described above. There are
also some papers aimed at reduction of the number of constraints in the ILP formulation of the problem (see e.g. [16,27]);
however, the number of coefficients in the objective function remains the same.

It should be noticed that most of the reduction techniques described in the literature are based on ILP formulation of the
p-Median problem and apply artificial tricks exploiting some features of the instance. On the contrary, in this studywe use a
different – pseudo-Boolean – formulation of the problem and show that this representation itself naturally leads to several
reductions that allow us to obtain better estimates of the instance data complexity and include all known reductions.

3. Pseudo-Boolean representation

Recall that given sets I = {1, 2, . . . ,m} of sites in which plants can be located, J = {1, 2, . . . , n} of clients, a matrix
C = [cij] of transportation costs (supplying costs, distances, similarities, etc.) for each j ∈ J from each i ∈ I , the number p of
plants to be opened, and a unit demand at each client site, the p-Median Problem (PMP) is one of finding a set S ⊆ I with
1 ≤ |S| = p ≤ m, such that the total costs

fC (S) =

−
j∈J

min{cij|i ∈ S} (3)

of satisfying all unit demands is minimized. Note that non-unit demands dj ≠ 1 can be scaled by c
′

i,j = ci,jdj, and the number
of served clients by each plant is unbounded (the so called uncapacitated location problem, see e.g., [1,4]). An instance of the
problem is described by anm×nmatrix C = [cij] and the number 1 ≤ p ≤ |I|. We assume that entries of C are nonnegative
and finite, i.e. C ∈ Rmn

+
. The PMP is thus the problem of finding

S⋆
∈ argmin{fC (S) : ∅ ⊂ S ⊆ I, |S| = p}. (4)

In this section we are going to reformulate the objective function fC (S) of the PMP (4) in terms of a pseudo-Boolean
polynomial (due to Beresnev [18]). It is enough to find a pseudo-Boolean representation for each addend min{cij|i ∈ S},
and sum up addends for all j ∈ J . The smallest value of min{cij|i ∈ S} is attained if S = I , i.e. the smallest value is chosen
among all entries cij for a fixed column j. It is clear that the unit demand of column j cannot be satisfied more cheaply than
this smallest value. Assume that this smallest value is attained at an entry cπ1jj of column j such thatπ1j indicates the number
of the row containing this smallest entry cπ1jj in a column j. In terms of the original PMP, if the site numbered by π1j is open,
then the unit demand of client jwill be satisfied by costs cπ1jj, otherwise (if the site π1j is closed, but all other sites in I \ {π1j}

are opened) the cheapest way to satisfy the unit demand of client j is by the value of a second smallest entry cπ2jj. The value
of a second smallest entry cπ2jj can be represented as follows: cπ2jj = cπ1jj + [cπ2jj − cπ1jj]. Similarly, if both sites π1j, π2j are
closed and all other sites are opened, then the unit demand of client jwill be satisfied by the value of a third smallest entry
cπ3jj = cπ1jj + [cπ2jj − cπ1jj] + [cπ3jj − cπ2jj], etc. In other words, depending on the set of opened and closed sites from I the

Author's personal copy

1722 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

corresponding smallest value of min{ci,j|i ∈ S} can be represented by the sum of the smallest values of entries in column j
and the corresponding differences of ordered entries in column j. By introducing a Boolean variable yπ1j = 0 if the site π1j
is opened, and yπ1j = 1 if the site π1j is closed, we are able to express, for example, the costs of satisfying the unit demand
j depending on whether the site π1j is opened or closed (if π1j is closed then we assume that π2j is open, i.e., yπ2j = 0), as
follows: cπ2jj = cπ1jj + [cπ2jj − cπ1jj]yπ1j .

To illustrate, let us consider the following first column C1 ofmatrix C , namely C1
= (c11, c21, c31, c41)T = (7, 10, 16, 11)T.

After ordering its entries in a non-decreasing order 7 < 10 < 11 < 16 we have that the corresponding permutation is
Π1

= (1, 2, 4, 3)T. If the Boolean vector (y1, y2, y3, y4) reflects an opened (closed) plant at site i = 1, 2, 3, 4, then depending
on the set of opened plants S ⊆ {1, 2, 3, 4}, the smallest value of min{ci1|i ∈ S} = [7+3y1 +1y1y2 +5y1y2y4]. For example,
if S = {2, 4}, then y = (1, 0, 1, 0), and

min{ci1|i ∈ {2, 4}} = 7 + 3 × 1 + 1 × 1 × 0 + 5 × 1 × 0 × 0 = 10. (5)

Nowweare ready to introduce a pseudo-Booleanpolynomial (pBp) related to each addendmin{ci,j|i ∈ S}by the following
definitions.

An m × n ordering matrix Π = [πij] is a matrix of which each column Π j
= (π1j, . . . , πmj)

T defines a permutation of
1, . . . ,m, reflecting an ordering of row numbers, for each column in C induced by a non-decreasing ordering of its entries
such that cπ1jj ≤ cπ2jj ≤ · · · ≤ cπmjj, for j = 1, . . . , n,. There may exist several orderings of a column j if it has equal entries,
and hence several ordering matrices for a given instance of the PMP. Given a matrix C , the set of all ordering matrices Π

such that cπ1jj ≤ cπ2jj ≤ · · · ≤ cπmjj, for j = 1, . . . , n, is denoted by perm(C).
Corresponding to an ordering matrix Π = [πij], we define differences between the costs for each j ∈ J as

1c[0, j] = cπ1jj, and (6)

1c[k, j] = cπ(k+1)jj − cπkjj, k = 1, . . . ,m − 1. (7)

These differences can be arranged into anm × n differences matrix that we denote by ∆.
Defining

yi = yi(S) =


0 if i ∈ S,
1 otherwise, for each i = 1, . . . ,m (8)

min{cij|i ∈ S} = 1c[0, j] + 1c[1, j] · yπ1j + 1c[2, j] · yπ1j · yπ2j + · · · + 1c[m − 1, j] · yπ1j · · · yπ(m−1)j

= 1c[0, j] +

m−1−
k=1

1c[k, j] ·

k∏
r=1

yπrj ,

we can indicate any solution S by a vector y = (y1, y2, . . . , ym). Its total costs given by y corresponding to an orderingmatrix
Π ∈ perm(C) is

BC,Π (y) =

n−
j=1


1c[0, j] +

m−1−
k=1

1c[k, j] ·

k∏
r=1

yπrj


. (9)

In [28] it is shown that the pseudo-Boolean polynomial is unique and does not depend on a particular choice of matrix
Π ∈ perm(C). This allows us to use a notation BC (y) instead of BC,Π (y) without any confusion.

Note that a solution y is called feasible if
∑m

i=1 yi = m − p and a pseudo-Boolean formulation of the PMP is as follows:

min


BC (y) : y ∈ {0, 1}m,

m−
i=1

yi = m − p


. (10)

4. Reduction techniques

4.1. Reduction of the number of monomials in the pBp

Given a variable vector y = (y1, y2, . . . , ym), the expressions T =
∏

i∈T yi and αT = α
∏

i∈T yi (T ⊆ {1, . . . ,m}, α ∈ R)
are called a term and a monomial, respectively. We also call two monomials similar if their terms are identical. Finally, by
reduction of monomialswe mean algebraic summation of similar monomials.

Reduction of the number ofmonomials in pBp consists of three stages. First, as some locationsmay have an equal distance
to several clients, the corresponding entries in the differences matrix are zero and the number of terms in the polynomial
is usually less thanmn (see column #T in Table 1). This reduction is similar to the one introduced by many authors [18–22]

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1723

Table 1
Reduction of the pBp for benchmark instances.

Library Instance m Entries in matrix C #T #Tr Reduction (%)

OR pmed1 100 10,000 7506 6722 32.78
OR pmed15 300 90,000 20,182 17,428 80.64
OR pmed26 600 360,000 29,963 25,694 92.86
OR pmed40 900 810,000 36,326 31,642 96.09
ODM BN48 42 411 411 329 19.95
ODM BN1284 1284 88,542 88,447 85,416 3.53
ODM BN3773 3773 349,524 348,063 341,775 2.22
ODM BN5535 5535 666,639 665,577 654,709 1.79
TSP rd100 100 9900 9394 9243 6.63
TSP D657 657 430,992 368,233 367,355 14.77
TSP fl1400 1400 1958,600 838,110 836,557 57.29
TSP pcb3038 3038 9226,406 5763,280 5759,404 37.58
RW rw100 100 10,000 6357 6232 37.68
RW rw200 200 40,000 25,351 25,099 37.25
RW rw250 250 62,500 39,542 39,228 37.24
RW rw500 500 250,000 158,007 157,362 37.06
RW rw1000 1000 1000,000 631,805 630,543 36.95

and can be illustrated by the following small example: letm = 4, n = 5 and the costs matrix is

C =

 7 15 10 7 10
10 17 4 11 22
16 7 6 18 24
11 7 6 12 8

 . (11)

A possible permutation matrix and the corresponding difference matrix are

Π =

1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2

 (12)

and

∆ =

7 7 2 7 8
3 0 2 4 2
1 8 0 1 4
5 2 4 6 8

 . (13)

Thus, the pBp isBC = [7+3y1 +1y1y2 +5y1y2y4]+[7+0y3 +8y3y4 +2y1y3y4]+[4+2y2 +0y2y3 +4y2y3y4]+[7+4y1 +

1y1y2 + 6y1y2y4] + [8 + 2y4 + 4y1y4 + 8y1y3y4]. As there are two zeroes in the differences matrix, the initial (in contrast
to reduced and truncated) pBp hasmn − 2 = 18 nonzero terms (we will denote this characteristic by #T).

Second, the pBp can be subjected to reducing similar monomials (by its essence, it corresponds to the second reduction
rule from [20], p. 11). In the considered example this procedure leads to a polynomial 33 + 7y1 + 2y2 + 2y4 + 2y1y2 +

8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4 with 10 monomials. We denote the number of monomials in such a pBp
with reduced similar monomials by #Tr .

Finally, as shown in [28], for any feasible solution y the value of truncated polynomial BC,p obtained from BC by deleting
all terms of degree higher that (m − p) is equal to the value of the initial pBp. For example, BC = 33 + 7y1 + 2y2 + 2y4 +

2y1y2+8y3y4+4y1y4+11y1y2y4+10y1y3y4+4y2y3y4 with p = 2, i.e.BC,2 = 33+7y1+2y2+2y4+2y1y2+8y3y4+4y1y4
has just seven monomials. This makes it possible for the particular problemwith a fixed number of medians to truncate the
polynomial thus reducing its size to at most (m − p) · n.

In order to determine the effect of the techniques mentioned above, a number of experiments with instances from the
four librarieswere carried out. The results of pseudo-Boolean formulation and the reduction of similarmonomials for typical
representatives of each library are given in Table 1. We computed the reduction (see the rightmost column of the table) as
(mn − #Tr)/mn × 100%. As can be seen from the table, instances from the OR library allow the highest reduction of the
number of terms in the pBp. For example, for the instance pmed40 the size of the polynomial is about 4% of the number
of entries in the costs matrix. So, from the point of view of our notion of complexity, these instances are the easiest ones.
Instances from TSP and RW libraries also allow compact representation of the polynomial, while ODM instances are the
most complex ones and allow only minor reduction of the number of terms.

Of certain interest is a relation between the instance size and the achieved reduction (rightmost column in Table 1).
For OR and TSP libraries this factor tends to increase for larger problems implying that pseudo-Boolean representation is
efficient for large instances from these classes. However, for ODM library the situation is opposite, so from this point of

Author's personal copy

1724 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

view ODM instances are also hard. With randomized graphs from RW library the reduction ratio is almost constant, so these
instances are somewhere in between the previous two groups.

Despite the differences in performance between the abovementioned libraries, truncation of the polynomial has a similar
impact on the required space for all the considered instances (resulting in atmost (m−p) ·n entries).We have observed that
nonzero entries are uniformly distributed over the rows of the differencesmatrix∆ (in otherwords, the numbers of nonzero
monomials of different degrees are approximately the same). This means that with increasing p the number of monomials
in the truncated polynomial BC,p decreases in a linear fashion from #Tr to 1 (if p = m the polynomial is just a constant).
Moreover, if we denote by p∗

≤ m the (minimum) number of rows that contain all minima in columns, then the polynomial
reduces to a constant for p ≥ p∗.

It should bementioned that a pBp can be constructed in polynomial time. Taking into account that all our reductions also
have polynomial complexity, the requirements of the definition of reduced instances are satisfied (see Definition 1).

4.2. Reduction of the number of clients (columns)

In order to show why the reduction of the number of clients (columns) is possible we have to give the following
definitions.

Definition 3. Two PMP instances defined on costs matrices C and D are called equivalent if C and D are of the same size and
BC,p(y) = BD,p(y).

Definition 4. Having an m × n costs matrix C , by aggregation of clients (columns) we mean construction of such an m × n′

matrix D that BC,p(y) = BD,p(y) and n′ < n.

This means that if there exists some costs matrix D that leads to the same polynomial as C and D has fewer columns,
then the p-Median problem defined on C can be substituted by the problem defined on D. So, the question is: given a costs
matrix C and the number of medians p, find such a matrix D that corresponds to the same truncated polynomial as C and
has the minimum possible number of columns.

The idea behind this type of processing is as follows. Each chain of embedded terms in a pBp corresponds to some
permutation and a column of differences. At the same time, over the terms of the polynomial it is possible to define a relation
of partial order, that, in turn, can be represented by the Hasse diagram. It is clear that all the terms can be covered by n chains
that correspond to n columns of the differences matrix. This means that all vertices of the Hasse diagram can be covered by
n (internally) vertex disjoint chains. However, the observation that for some instances the reduction of similar monomials
leads to a substantial decrease in their number suggests a possibility that all terms can be covered by fewer chains. Having a
chain of embedded terms it is possible to reconstruct a permutation and a row of the differences matrix. Thus, the reduced
number of chains covering all terms implies a reduced number of clients in the aggregatedmatrix and the problem of finding
the smallest n′ is reduced to finding the minimum number of chains that cover all terms of the polynomial (or all vertices of
the corresponding Hasse diagram). According to the well-known Dilworth’s decomposition theorem (see e.g. Theorem 14.2
in [29]), this minimal number of chains is equal to the maximum size of an antichain (in our case it is the maximum number
of non-embedded terms).

In order to compute the minimum number of chains we used the MINLEAF algorithm described in [30] that constructs
a minimum leaf outbranching. (MINLEAF is a polynomial-time algorithm and is essentially based on finding the maximum
cardinality matching.) Having such an outbranching it is possible to reconstruct the chains such that the number of chains
is equal to the number of leaves in the outbranching. After that, an equivalent matrix, each column of which is induced by
one of the obtained chains, can be restored. As in the formulation of the p-Median problem each column of the costs matrix
corresponds to a client whose demand is to be satisfied, the existence of the equivalent matrix with a smaller number of
columns implies that in the initial instance some clients can be aggregated.

Within the small example mentioned above (11) this procedure leads to the following. The reduced pseudo-Boolean
polynomial BC (y) = 33 + 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4 corresponds to the
following Hasse diagram:

y2 → y1y2 → y1y2y4
↗ ↗ ↗ ↘

const → y1 → y1y4 → y1y3y4 → y1y2y3y4
↘ ↗ ↗ ↗

y4 → y3y4 → y2y3y4

. (14)

It is easy to check that the size of the maximum antichain is 3, so all the terms of BC (y) can be covered by three chains
and the aggregated matrix has three columns. Below are the chains (each being presented as a column), permutation and
differences matrices:

y2 y1 y4
y1y2 y1y4 y3y4
y1y2y4 y1y3y4 y2y3y4
y1y2y3y4 y1y2y3y4 y1y2y3y4

(15)

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1725

Fig. 1. Aggregation of clients for benchmark instances from OR and ODM libraries.

Π ′
=

2 1 4
1 4 3
4 3 2
3 2 1

 ∆′
=

 0 0 33
2 7 2
2 4 8
11 10 4

 . (16)

Having these two matrices it is possible to restore the costs matrix D of the aggregated instance:

D =

 2 0 47
0 21 43
15 11 35
4 7 33

 . (17)

4.2.1. Experiments
As was mentioned above, the minimum number of aggregated clients (columns) does not exceed n. On the other hand,

it cannot be smaller then the maximum number of terms with the same degree in the reduced polynomial. In particular, for
the case of instances from OR library this leads to the following. As the costs matrix for such instances has a zero diagonal,
theminimal element of the ith column is located in the ith row and the first row of the permutationmatrix contains no equal
entries. This means that the (reduced) pBp contains n linear terms and cannot be covered by less then n chains. So, the OR
instances, if considered ‘‘as is’’, do not allow any aggregation of clients. This result brought us to an idea of considering the
corrected instances without zeroes on the diagonal (it is filled by some positive numbers during application of the Floyd’s
algorithm). Further we mark such instances with an asterisk (e.g. pmed1*). As all the other considered libraries are free of
the mentioned ‘‘hardness’’, they can be directly used for experiments with the aggregation of clients.

In our experiments we considered truncated polynomials and determined the minimum number of aggregated columns
(n′) for all values of p from 1 to m − 1 (if p = m, the truncated polynomial is just a constant and it can be covered by one
chain). Let us denote by p′′ the smallest number of medians at which the truncated polynomial can be covered by less then
n chains.

The results for typical representatives from each library are given in Figs. 1 and 2. As can be seen from the figures, for
corrected OR and ODM problems p′′

= 0 and even a non-truncated polynomial can be covered by n− 1 chains, thus making
it possible to aggregate one client. At the same time, for TSP and RW instances any aggregation becomes possible only as p
gets very close tom.

Thus, we can summarize that the reduction of the number of clients is negligible for all the considered benchmark
libraries.

Author's personal copy

1726 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

Fig. 2. Aggregation of clients for benchmark instances from TSP and RW libraries.

4.3. Minimality of the pseudo-Boolean representation

In the previous sections we described a number of reductions that are based on pseudo-Boolean formulation of the PMP
and substantially reduce the amount of data that unambiguously describes the instance. However, there emerges a natural
question: can one do better by using a different approach? The following lemma gives an answer to this question.

Lemma 1. The pseudo-Boolean formulation (10) of PMP allows the most compact representation of its instance.

Proof. Suppose the reduced and truncated pseudo-Boolean polynomial contains amonomial αT with a nonzero coefficient
that corresponds to an entry of the costs matrix cij that does not contribute to any optimal solution. This means that there
exists a client j that cannot be assigned to location i. There can be several causes for this:
1. For any subset S of p opened locations there always exists a location i′ ∈ S such that ci′j < cij. In this case client j is never

served from location i.
2. For client j location i can be replaced by location i′, i.e. there exists some location i′ such that cij = ci′j. In this case client j

can be served from location i′ instead of i.
3. For some subset of locations S client j is equivalent to some client j′. (By equivalence of clients with regard to the set of

locations S wemean that sorting locations from S by distance from j and j′ gives two equal sequences). In this case these
two clients can be viewed as one with aggregate serving costs cij + cij′ for all i ∈ S.

The latter two cases are symmetric: case 2 means that from the point of view of client j locations i and i′ are equally distant,
while case 3 means that from the point of view of the set of locations S clients j and j′ are equal. In case 1 the coefficient α is
set to 0 during the truncation. For the second case we have zero coefficient as the difference∆[., j] = cij −ci′j is zero. Finally,
for the third case equivalent clients are eliminated by the reduction of similar monomials. Thus, we have a contradiction
and the proof is completed. �

Lemma 1 has important consequences for the applicability of pseudo-Boolean formulation. Let us consider an arbitrary
model of the PMPwithin the class of mixed-Boolean linear programming (LP) models. The size of amixed-Boolean LPmodel
is determined by the following four factors:
• number of Boolean variables
• number of continuous variables
• number of constraints (and number of terms in each constraint)
• number of monomials in the objective function.

Suppose, now one tries to find the minimum model within the mentioned class. We claim that the minimum mixed-
Boolean LP (MBLP) model for PMP can be derived from its pseudo-Boolean representation. Let us now consider how such

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1727

a model can be constructed. The main question here is how to transform a (nonlinear) polynomial into a linear objective
function. In order to do that we introduce additional nonnegative variables z such that each variable zk corresponds to a
nonlinear term Tk =

∏
i∈Tk

yi of the pBp. At the same time, additional constraints are needed to represent relations between
these new variables and old variables y. If we substitute some term T =

∏
i∈T yi by a new variable z, then the following

linear constraints are sufficient:

z ≥

−
i∈T

yi − |T | + 1

z ≥ 0.
(18)

Such constraints force a z-variable to take a value of at least 1 only if all the y-variables included in T are set to 1. Taking
into account that we have a minimization problem, z-variables will be set to 0 if at least one of the y-variables in the
corresponding term is zero and to 1, otherwise. This implies that the non-negativity of the new variables is sufficient and no
additional Boolean variables are introduced. The number of terms in constraints can be somewhat decreased by observing
that if one has two embedded terms T1 and T2 (T1 ⊂ T2, i.e. T2 contains all variables from T1) and two corresponding
variables z1 and z2 subject to:

z1 ≥

−
i∈T1

yi − |T1| + 1

z2 ≥

−
i∈T2

yi − |T2| + 1
(19)

then these two inequalities can be substituted by the following two inequalities with less coefficients:

z1 ≥

−
i∈T1

yi − |T1| + 1

z2 ≥

−
i∈T2\T1

yi + z1 − |T2 \ T1|.
(20)

In order to ensure theminimum possible number of coefficients in the constraints, one has to find a cover of each term from
the pBpwith theminimumnumber of its embedded terms, i.e. to solve for each term a set covering problemwhich is known
to be NP-hard [31].

We illustrate this mixed-Boolean LP model with the following small example instance taken from [20] (see also [28]).

Example. The costs matrix

C =

1 6 5 3 4
2 1 2 3 5
1 2 3 3 3
4 3 1 8 2


leads to the following pseudo-Boolean polynomial if p = 2:

BC,p=2 = 8 + y2 + 2y4 + y1y3 + y2y3 + y2y4 + y3y4.

By introducing new variables

z5 = y1y3, z6 = y2y3, z7 = y2y4, z8 = y3y4

and constraints

z5 ≥ y1 + y3 − 2 + 1 z6 ≥ y2 + y3 − 2 + 1
z7 ≥ y2 + y4 − 2 + 1 z8 ≥ y3 + y4 − 2 + 1
zi ≥ 0, i = 5, . . . , 8

we have the following mixed Boolean LP model:

f (y, z) = 8 + y2 + 2y4 + z5 + z6 + z7 + z8 → min
s.t.
y1 + y2 + y3 + y4 = 2
z5 ≥ y1 + y3 − 1
z6 ≥ y2 + y3 − 1
z7 ≥ y2 + y4 − 1
z8 ≥ y3 + y4 − 1
yi ∈ {0, 1}, i = 1, . . . , 4
zi ≥ 0, i = 5, . . . , 8.

(21)

Author's personal copy

1728 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

The obtainedmodel has 4 Boolean y-variables, 4 nonnegative z-variables, 5 constraints and 6 terms in the objective function.
For Elloumi’s Mixed Integer Linear Programming (MILP) model [20] the numbers are 4, 17, 23 and 12, respectively. In the
model (21) each nonlinear monomial of the truncated and reduced pseudo-Boolean polynomial induces a linear inequality
which must be added to the set of constraints. In the restrictions of (21) the new variables zi must be just nonnegative
because Boolean variables yi imply that all zi are Boolean. Informally, our linear constraints in (21) indicate whether or not
a specific penalty to the linear part of the objective function in (21) should be added depending on the subset of opened and
closed sites.

Now the pseudo-Boolean formulation of PMPwith a nonlinear objective function can be presented as the followingmixed
Boolean linear programming model:

α0 +

m−
r=1

αryr +

k−
r=m+1

αrzr


→ min

s.t.
m−
i=1

yi = m − p−
i∈Tr

yi − |Tr | + 1 ≤ zr , r = m + 1, . . . , k

yi ∈ {0, 1}, i = 1, . . . ,m
zi ≥ 0, i = m + 1, . . . , k.

(22)

The objective function in (22) is split into three parts: the first part α0 is the sum of all smallest entries δ1j per column (client)
j— serving costs achieved under an assumption that all sites are open. The second part reflects the penalties δ2j incurred by
the next to the smallest entries, and the third part represents all other penalties corresponding to δij for 1 < i ≤ m − p. All
other constraints are explained similarly to the example (21).

Definition 5. A minimum MILP model is one that minimizes the following numbers:

1. Boolean decision variables;
2. nonnegative decision variables;
3. linear constraints;
4. nonzero coefficients in the objective function.

The following theorem justifies that no improvement of the above mentioned reductions is possible.

Theorem 1. A mixed-Boolean LP model (22) is the minimum model within the class of MILP models.

Proof. The number of Boolean variables can be assumed fixed as one cannot use less thanm such variables reflecting open
and closed locations (note, that Avella and Sforza [16] usem × n Boolean variables reflecting assignment of a certain client
to a certain location).

Although the original formulation of PMP contains no continuous variables, they emerge during its transformation into
mixed-Boolean LP (MBLP) form. The only possible source of additional variables here is the objective function, hence we are
interested in minimization of the number of terms in it.

The number of constraints is initially equal to 1, as the pseudo-Boolean formulation of PMP (10) has only one constraint
requiring exactly p locations to be opened. However, additional constraints result from the objective function (e.g. during its
linearization additional constraints are needed to represent relations between non-linear terms). The system of constraints
in the proposedMBLPmodel is not redundant as all of them are linearly independent. This follows from the fact that initially
any z-variable is included into exactly one constraint (18) and there is exactly one constraint that contains no z-variables —
the one that requires exactly p locations to be opened.

Thus, the only space for improvement is the size of the objective function. However, due to Lemma 1, the truncated and
reduced pseudo-Boolean polynomial is optimal with this respect.

As discussed in the formulation of ourmodel,minimization of the number of coefficients in constraints is itself anNP-hard
problem. Thismeans that the number of coefficients in constraints of the proposedmixed-Boolean LPmodel is notminimum,
while the number of constraints, number of variables and number of nonzero coefficients in the objective functions
are. �

Thus, pseudo-Boolean formulation allows not only accurate estimation of the instance data complexity, but also can
be used for construction of the most compact MBLP models for the PMP. As we will see in the following section, such a
formulation, which we call the Mixed-Boolean pseudo-Boolean Model (MBpBM), also allows some further preprocessing of
the instance.

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1729

5. Preprocessing

Even though the obtainedMBLP formulation (21) has smaller size than other knownmodels, it can be subjected to further
reduction.We have included in this paper a reduction based on bounds (similar to the one from [11]) onlywith one purpose:
wewould like to emphasize that reductions based on bounds are out of the scope of this paper irrespectively of how efficient
and useful they are.

Suppose one has computed some upper bound f UB on the optimal solution. This can even be a virtual upper bound,
i.e. without a feasible solution. Take now some term Tk from the pseudo-Boolean polynomial and define a vector yk in the
following way: for any i ∈ Tk set yki = 1 and set all other elements of yk to zero. It is easy to see that BC,p(yk) is a valid lower
bound for the subspace of solutions with all locations from Tk closed. If BC,p(yk) > f UB then, clearly, for any optimal solution
at least one of the variables in term Tk is zero. These considerations allow one to fix some y- and z-variables to zero in the
MBLP formulation and in case f UB = 9 (computed by greedy heuristic) the example model (21) reduces to:

f (y, z) = 8 + y2 + z5 → min
s.t.
y1 + y2 + y3 = 2
z5 ≥ y1 + y3 − 1
0 ≥ y2 + y3 − 1
y4 = 0
yi ∈ {0, 1}, i = 1, . . . , 4
z5 ≥ 0.

(23)

Here are details of the computations leading to the model (23). The greedy heuristic works as follows: it starts with all
locations opened (i.e. y = (0, 0, 0, 0)) and at each step closes such a location (sets such yi to 1) that results in the smallest
increase in the value of the objective function. The procedure is repeated until m − p locations are closed (m − p entries of
y are set to 1). Then, for every term Tk of the objective function we construct a vector yk and compute BC,p=2(yk):

T1 = y2 y1 = (0, 1, 0, 0) BC,p=2(y1) = 9
T2 = y4 y2 = (0, 0, 0, 1) BC,p=2(y2) = 10 > f UB

T3 = y1y3 y3 = (1, 0, 1, 0) BC,p=2(y3) = 9
T4 = y2y3 y4 = (0, 1, 1, 0) BC,p=2(y4) = 10 > f UB

T5 = y2y4 y5 = (0, 1, 0, 1) BC,p=2(y5) = 12 > f UB

T6 = y3y4 y6 = (0, 0, 1, 1) BC,p=2(y6) = 11 > f UB.

(24)

By comparing the obtained valueswith the computed upper boundwe have that in any optimal solution T2, T4, T5 and T6 are
zero, i.e. in our MBLP model we can fix variables y4, z6, z7 and z8 to zero. By substituting the fixed values into all constraints
and the objective function and observing that the third, fourth and fifth constraints in (21) become redundant we obtain the
reducedmodel (23). Further we will call our MBLP formulationMBpBM (the mixed-Boolean pseudo-Booleanmodel) and its
variation with reduction based on bounds – MBpBMb.

There also exist variations of this approach based on bounds (see e.g. [16]), however, such reductions crucially depend
on the quality (tightness) of bounds while in this paper we defined a notion of complexity that is independent of solution
algorithms. That is why we only consider here quite a restricted class of preprocessing purely based on properties of the
instance data.

The essence of preprocessing that we consider is to find such locations that can be excluded from consideration as they
are not contained in some optimal solution. In particular, let us define the p-truncation operation applied separately to each
column of the costs matrix as setting p largest entries to the value of the smallest of them. This procedure ensures that the
pBp of the p-truncatedmatrix is equal to the truncated pBp of the initial matrix. The following theorem, cited from [28] (see
Theorem 4), provides a direct suggestion for preprocessing based on p-truncation.

Theorem 2. Assume that in a given PMP instance, all the entries corresponding to a particular row i in the costs matrix C are
changed when p-truncation operations are performed on all columns of C. Then there exists an optimal solution y∗ to the instance
with y∗

i = 1.

In other words, the theoremmeans that if some variable yi is not contained in the truncated polynomial, then there exists
an optimal solution y∗ with y∗

i = 1. In order to illustrate this we would like to consider the following example. Let the costs
matrix be defined as (the rightmost column of numbers enumerates rows of the matrix):

C =


1 3 9
2 5 3
9 7 8
5 9 7
4 4 5


1
2
3
4
5.

(25)

Author's personal copy

1730 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

Table 2
Values of p′ and p∗ for benchmark instances.

Library Instance m p′ p∗

OR pmed1* 100 90 93
OR pmed15* 300 180 285
OR pmed26* 600 452 581
OR pmed40* 900 644 882
ODM BN48 42 27 35
ODM BN1284 1284 653 1211
ODM BN3773 3773 3385 3742
ODM BN5535 5535 2179 5503
TSP rd100 100 97 97
TSP D657 657 477 653
TSP fl1400 1400 1177 1395
TSP pcb3038 3038 3026 3033
RW rw100 100 90 95
RW rw200 200 186 193
RW rw250 250 241 243
RW rw500 500 489 492
RW rw1000 1000 978 992

Also, let p be p = ⌈m/2⌉ = 3 (which corresponds to the hardest case from a combinatorial point of view). The p-truncated
matrix Cp=3 is:

Cp=3 =


1 3 7
2 5 3
4 5 7
4 5 7
4 4 5


1
2
3
4
5.

(26)

The objective function can be represented by the pseudo-Boolean polynomial BC (y) = 7 + 2y1 + 2y2 + 2y1y2 + 1y1y5 +

2y2y5 +3y1y2y5 +1y2y4y5 +4y1y2y4y5 +2y1y2y3y5 +1y2y3y4y5. After truncation one obtains BC,p=3(y) = 7+2y1 +2y2 +

2y1y2 +1y1y5 +2y2y5. As can be seen, the truncated pBp does not contain two variables y3, y4, so they can be set to 1 as this
does not affect the value of BC,p=3(y). This means that the initial matrix C given by (25) can be reduced to matrix D with
fewer rows:

D =

1 3 7
2 5 3
4 4 5

 1
2
5.

(27)

It should be noticed that if one sets all other variables y1, y2, y5 to 0, this immediately gives the optimal solution. Thus, for
this small example the problem can be solved just by data preprocessing.

However, with large instances this technique does not always allow one to solve the problem. Given a PMP costs matrix,
we studied how the possibility of preprocessing depends on the value of p. As the value of p grows, the number of entries
in any column whose values are revised increases. So, the higher the value of p, the greater the chance that a row of C is
eliminated due to Theorem 2. This explains why PMP instances with p = p0, p0 < m/2, are more difficult to solve than
instances on the same costs matrix with p = m − p0, even though the number of feasible solutions for both cases are
identical. Let p′ be the smallest value of p for which p-truncation eliminates at least one row in C . Let us also denote by p∗

the minimum number of rows that contain the minimum entry of each column of C . Then, the PMP instance defined on C
with p > p∗ has open facilities that do not serve any client. Hence, for p1 > p∗, the number of optimal solutions has a lower
bound of


m−p∗

p1−p∗


. So, for PMP instances with p > p∗ it becomes progressively more difficult to prove the optimality of a

solution as the value of p increases from p∗ to (m−p∗)/2. However, this becomes progressively easier as p increases further.
Table 2 presents a characterization of benchmark instances introduced in Table 1 in terms of p′ and p∗.

6. Complex benchmark instances

In this sectionwe consider the aspects of constructing complex benchmark instances that can be used for testing solution
algorithms and introduce our library of such instances.

To have maximum possible complexity, a PMP instance defined on anm× n costs matrix should not be amenable to any
of the reductions described above. Thus, first of all, the entries of the differences matrix should be non-zero, such that all
monomials in the pBp have non-zero coefficients, or, equivalently:

Claim 1. The most complex instances have pairwise different and nonzero entries in every column of the costs matrix (assuming
that the sizes of the costs matrix are fixed).

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1731

However, as explained below, these two restrictions on the entries of the differences matrix are not sufficient to ensure
the complexity. Suppose, for some column j the difference between the minimal and second minimal element 1c[1, j] is
comparable to the (unknown) costs of the optimal solution. In this case the location (row), at which the minimum for jth
client (column) is attained, will be included into any optimal solution. Such additional structure can be exploited by the
solution algorithms and thus reduces the complexity of the instance. This particular case can be generalized in the following
way. Suppose, the (truncated) pseudo-Boolean polynomial contains a monomial αT = α

∏
i∈T yi with a large enough

coefficient α that exceeds the costs of the optimal solution (or its somehow computed upper bound). Then, clearly, for any
optimal solution y holds T (y) = 0, implying that at least one of the variables in T must be set to zero and at least one of the
corresponding locations is opened. In fact, this condition can bemade even stronger if one considers not only the coefficient
α at T , but the sum of α and the coefficients of all monomials with terms embedded in T . It is also quite straightforward
that this test is more likely to fail as the range of the entries of the differences matrix (or, equivalently, coefficients of the
pseudo-Boolean polynomial) becomes smaller, up to the limit case when they are all equal. These considerations lead to the
following claim.

Claim 2. Instances that lead to the pseudo-Boolean polynomialwith all coefficients equal (except a constant—monomial of degree
zero) are the most complex ones (assuming that the number of monomials is fixed).

Once we know how to construct a ‘‘complex’’ pseudo-Boolean polynomial, we are interested in maximizing the number
of monomials in it. To achieve this, there should be no similar monomials in the pBp representation of the problem. It
should be mentioned that constants obtained from pseudo-Boolean representation of all the columns can be reduced into
one monomial, so every PMP instance has a complexity of at most

comp(C) ≤ mn − (n − 1) = n(m − 1) + 1. (28)

To ensure that only constants can be aggregated, the permutation matrix Π must conform with the following
requirement: the sets of the first k entries of columns Π j in Π should be pairwise different for any k : 1 ≤ k ≤ m.
This requirement can be expressed in an alternative form. Let us consider a Hasse diagram defined over the subsets of
{1, . . . ,m}. It is easy to see that each permutation Π j

= (π1j, π2j, . . . , πmj)
T corresponds to a chain of embedded subsets

{π1j} ⊂ {π1j, π2j} ⊂ · · · ⊂ {π1j, . . . , πmj} that, in turn, corresponds to a ∅ − {1, . . . ,m} path in the Hasse diagram. Now the
requirement can be formulated as follows.

Claim 3. In order to prohibit the reduction of similar monomials, the permutation matrix should correspond to a collection of
internally vertex-disjoint ∅ − {1, . . . ,m} paths in the Hasse diagram defined on subsets of {1, . . . ,m}.

Taking into account that there are at mostm such paths, for PMP instances with n > m it is always possible to reduce at
least n−m linear monomials in the pBp, so for instances in our benchmark library holds n ≤ m. Due to these considerations
it is possible to formulate the problem of constructing a permutationmatrix that leads to a complex instance as a problem of
finding n vertex disjoint paths in a graph obtained from theHasse diagram. Though this problem is known to be polynomially
solvable [32], the fact that the complete Hasse diagram has 2m vertices makes the procedure very time consuming for large
m. However, there exists a trivial solution:

πij = (i + j) mod m + 1. (29)

In case n = 4,m = 5 this solution leads to the following permutation matrix Π :

Π =


3 4 5 1
4 5 1 2
5 1 2 3
1 2 3 4
2 3 4 5

 .

Based on a representation of the monomials as a collection of chains it is possible to estimate the complexity of a PMP
instance (the maximum number of monomials in the pBp). Consider a complete Hasse diagram that contains all subsets of
{1, . . . ,m}. Clearly, themaximum length of a chain of embedded non-constant terms ism−1, as it is themaximumpossible
degree of the pBp. The number of chains of this maximum length is exactly m =

m
1


as there exist m linear terms (as well

asm terms of degreem− 1). Each of these chains uses exactly one term of each degree from 1 tom− 1. Once all maximum
length chains are used, the next availablemaximum length of a chain ism−3 (terms of degree 2, . . . ,m−2). The number of
such chains is

m
2


−
m

1


which is exactly the number of quadratic terms that were not included in chains of lengthm−1. If

we have enough columns to use all these chains (i.e. n is sufficiently large) then we switch to chains of lengthm − 5 (terms
of degree 3, . . . ,m− 3) and there are

m
3


− [
m

2


−
m

1


] −

m
1


=
m

3


−
m

2


such chains, which is exactly the number of

cubic terms not used by chains of lengths m − 2 and m − 1. We continue picking the longest possible chains until we have
n of them. It is not hard to understand that the number of terms of some degree k (1 ≤ k ≤ m − 1) in such a collection of n
longest chains is bounded by n and, at the same time, cannot exceed

m
k


. Fig. 3 gives a graphical representation of how the

number of terms in such a collection of chains of maximum length can be calculated.

Author's personal copy

1732 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

Fig. 3. Estimating the maximum number of nonzero terms in a pBp.

In the left part of Fig. 3 an example form = 5 is shown. Circles denote terms of a pBp that are arranged in such a way that
terms of the same degree are within one column. Links correspond to possible chains of embedded terms. If one is aimed
at having n chains containing the maximum number of terms then he picks n longest chains starting from the lower part of
the picture. In particular, it can be seen that it is impossible to get more than 5 full chains. For example, if n = 6 at least one
linearmonomial will be reduced. For arbitrarym and n themaximumnumber ofmonomials in the reduced pBp corresponds
to the area of the shaded region in the right part of Fig. 3. Thus the complexity (equivalently, the number of monomials in
the corresponding pBp) of a PMP instance C defined by anm × n costs matrix is bounded by

comp(C) ≤

m−1−
i=1

min

n,
m

i


+ 1. (30)

The main peculiarity here is that for a number of clients n exceeding the number of locations m the addition of new
clients has a progressively smaller impact on the complexity of the instance that is always less than n(m− 1) + 1, while for
n ≤ m there exist instances of complexity n(m − 1) + 1.

It is easy to see that in case n < m all the minima are contained in at most n rows (i.e. all minima are achieved on at
most n < m locations) and preprocessing will eliminate at least m − n variables (rows of the costs matrix). This leads to
a conclusion that instances with n = m are, potentially, the most complex ones (provided the entries of the costs matrix
satisfy the requirements considered above).

Possibility of truncation of the pseudo-Boolean polynomial depends only on the number of medians and is not affected
by the values of the costs matrix. Thus, we cannot negate this reduction by adjustment of the costs matrix and if p is fixed
(30) can be improved in the following way:

comp(C) ≤

m−p−
i=1

min

n,
m

i


+ 1. (31)

Our benchmark library contains complex (in terms of the possibility of problem size reduction) PMP instances defined
on square matrices of different size. As costs matrices are dense, they are stored explicitly in files named ‘‘XmatrY , Z .txt’’,
where X is ‘t ’ if the permutation matrix Π is defined by (29) and X is ‘r ’ if Π is a randomized permutation matrix obtained
as a solution to the disjoint paths problem mentioned above. Y reflects the values of m and n (in our instances n = m), and
costs are selected in such a way that entries of the differences matrix ∆ are uniformly distributed random integers from
{1, . . . , Z}. Due to Claim 2 instances with smaller Z are harder to solve. For example, the file named ‘‘tmatr4,1.txt’’ defines
the following instance:

C =

3 4 1 2
4 1 2 3
1 2 3 4
2 3 4 1

 . (32)

It is easy to check that the permutationmatrix is the same as costs matrix C and the differencematrix has all unit entries.
The structure of the files is as follows. The first line contains the numbers of clients and potential locations (columns

and rows of the costs matrix). Next all entries of the costs matrix are explicitly listed row by row. The library is available at
http://www.hse.ru/en/org/persons/22927115.

We would like to finish the description of our complex instances by mentioning that under certain conditions optimal
objective values can be computed by a simple formula (see Lemma 2 below). This property is especially useful for the
developers of heuristic methods and makes it possible to estimate the quality of the generated solutions.

Lemma 2. If the m × n costs matrix of a PMP instance satisfies the following conditions:

(i) m = n,
(ii) a permutation matrix is defined by (29),
(iii) all entries of the differences matrix are equal to some constant d,

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1733

Fig. 4. Ranges of complex instance data size for which our MBpBM and Elloumi’s NF can be loaded by Xpress.

then the optimal objective value can be computed as:

d(n′
+ 1)

[
n′p
2

+ (nmod p)
]

, (33)

where n′
= ⌊n/p⌋.

Proof. The conditions of the lemma ensure that each row (and each column) of the costs matrix can be obtained from
(d, 2d, . . . ,md) by cyclic shift, i.e. each multiple of d is contained in each row exactly once. This implies that at most p
clients can be served at a cost d. Also, at most p clients can be served at costs 2d, 3d, etc. Thus, the minimum can be obtained
by serving first p clients at a cost d, next min{n− p, p} clients at a cost 2d, next min{n− 2p, p} clients at a cost 3d, etc., until
we serve all n clients. By a simple combinatorial reasoning, the total costs in this case can be computed as

d
[
n′(n′

+ 1)
2

p + (n′
+ 1)(n mod p)

]
= d(n′

+ 1)
[
n′p
2

+ (nmod p)
]

. (34)

This minimum is achieved by the p locations (rows of the costs matrix) that fall within the following pattern:

(d 2d . . . pd md)
(. md d 2d . . . pd)
(. md d 2d . . .)
. . . .

� (35)

Lemma 2 and its constructive proof have an important corollary. It can be checked that in the instances satisfying the
condition of the lemmaeach location is open in p optimal solutions and thenumber of optimal solutions isn (does not depend
on the number of medians p). This means that these instances are degenerate and may be easily solvable, irrespectively of
their size.

In order to check the properties of our instances we held a number of computational experiments. For the sake of
comparison we used two formulations of PMP: our MBpBM and Elloumi’s NF [20] (which is the most compact MILP
formulation of PMP, to the best of our knowledge). Fig. 4 shows the ranges of m and p for which the model can be loaded
into the MILP solver (in our case Xpress). For different sizes of them × m input matrix we checked for which range of p the
formulation can be loaded into the MILP solver (i.e., is small enough to fit into the memory). Clearly, this range is bounded
from above by the line p = m. As Elloumi’s formulation does not account for the number of medians, there exists some
critical size of the cost matrix beyond which the formulation becomes prohibitively large, irrespectively of p. At the same
time, our formulation based on the pseudo-Boolean representation of the instance data can be loaded by a general-purpose
MILP solver for some values of p even if the input matrix is of huge dimension (see Fig. 4).

Finally, we compared the running times of two solution approaches (our MBpBM and Elloumi’s NF) applied to selected
OR instances and to our generated instances of the same size and with the same number of medians p. As was presumed,
instances with permutations given by (29) are easy for the MILP solver and the running times are of the same magnitude
as running times for OR instances (even though the number of coefficients in the formulation is much larger). Thus,
we compared the running times of OR instances and our complex instances with randomized permutation matrices and
differences matrices containing all unit entries. The results of this comparison are presented in Table 3 and show that our
benchmark instances are also complex in terms of running time. In particular, for small values of p computation times

Author's personal copy

1734 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

Table 3
Running times in seconds for our MBpBM and Elloumi’s NF for OR instances and our complex instances of the corresponding size.

m p OR instances Our instances
MBpBM MBpBMb Elloumi MBpBM MBpBMb Elloumi

100 5 0.22 0.20 0.25 4434.66 3443.13 24684.42
10 1.47 0.58 4.08 878.78 1141.05 3926.20
20 0.11 0.06 0.14 92.95 26.25 62.94
33 0.22 0.05 0.13 0.28 0.11 0.61

200 5 15.22 17.67 17.06 a a a

10 0.73 0.55 0.77 a a a

20 0.49 0.31 0.55 a a a

40 0.41 0.28 0.45 1616.33 1218.45 1753.47
67 0.27 0.14 0.41 1.08 0.63 1.34

300 5 4.00 4.61 4.50 a a a

10 8.59 8.33 7.36 a a a

30 0.80 0.56 1.25 a a a

60 1.05 1.13 2.34 a a a

100 0.48 0.30 0.86 1.16 0.27 1.81
400 5 42.47 30.78 23.38 a a a

10 25.16 21.19 32.02 a a a

40 1.73 1.31 2.97 a a a

80 0.97 0.72 1.61 a a a

133 0.73 0.80 1.25 3.83 1.86 6.28
500 5 4.52 3.92 6.22 a a a

10 51.63 64.05 98.59 a a a

50 1.74 1.31 2.77 a a a

100 1.42 0.97 2.33 a a a

167 1.44 0.88 1.84 14.91 4.14 18.56
600 5 163.84 111.81 180.31 a a a

10 27.59 21.31 43.73 a a a

60 2.48 2.13 3.61 a a a

120 1.78 1.31 2.91 a a a

200 1.50 0.78 4.81 49.81 15.41 201.39
700 5 153.22 57.05 90.95 a a a

10 33.13 43.39 37.64 a a a

70 3.09 2.69 4.73 a a a

140 3.72 1.97 7.11 a a a

800 5 70.30 154.41 514.72 a a a

10 2256.83 4252.13 6737.25 a a a

80 3.91 3.08 7.00 a a a

900 5 1328.34 2041.28 1143.97 a a a

10 572.81 444.08 473.95 a a a

90 5.39 4.02 8.42 a a a

a Not solved within 24 h.

explode even for 100 × 100 input matrices. Also, for the unsolved instances we compared the best found integer solutions
with solutions obtained by heuristics and it was observed that heuristics produced better solutions. This contradicts the
common observation that MILP solvers based on branch-and-bound procedures spend only a very small portion of the total
running time on finding the optimal solution (while most of the time is spent on proving its optimality). Thus, from this
point of view, our instances with randomized permutation matrices are also complex.

7. Summary and future research

Initially, the space required to represent an instance of the p-Median problem (PMP) is the size of the costs matrix of
this instance. However, as shown in [28], it is always possible to represent such an instance in a more compact manner
and according to our computational experiments this reduction can be quite substantial. This implies that the size of the
stored PMP instances is always less thanmn. In this paper we introduced a notion of data instance complexity and presented
several techniques for estimating this complexity by the construction of reduced instances. We have used a formulation of
the PMP in terms of a pseudo-Boolean polynomial that we call the truncated Hammer–Beresnev polynomial. Based on this
formulation we developed several size reduction techniques.

The first reduction is directly derived from the polynomial representation of the problem and excludes all equal entries
per column in the original instance. The second one is achieved by reducing similar monomials in the pBp and aggregates
columns entries with the same monotonicity w.r.t. the original numbering of rows in the costs matrix. According to our
computational experiments, these techniques lead to a significant reduction for OR, TSP and RW instances, although with
ODM instances the effect is minor. The third reduction is based on truncation of the polynomial from degree (m − 1) to
(m − p). The fourth technique is aimed rather at dense representation of the problem than at reduction of its size itself,
since it does not affect the number of monomials in the pBp. It suggests aggregation of the clients (or columns of the costs

Author's personal copy

B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736 1735

matrix). Computational experiments show that the first of the latter two techniquesworks equallywell for all libraries (e.g. if
p = m/2 and the number of feasible solutions is the largest, truncation leads to halved size of the stored instance), while
the second one has a negligible effect.

We also showed that our reductions can be used to construct the minimum mixed-Boolean LP model for the p-Median
problem.

In Section 5 we presented a preprocessing procedure for the p-Median problem based on truncated Hammer–Beresnev
polynomial formulation. This formulation allows p-truncation of the costs matrix of the instance, which, in turn, allows
exclusion of certain facilities fromconsideration as they are guaranteednot to belong to an optimal solution. If combined, this
p-truncation and aggregation of clients (described in Section 4) allows reduction of both sizes of the costs matrix (numbers
of columns and rows). Moreover, in terms of truncated polynomials it becomes quite straightforward why PMP problems
with p1 close tom are easier than those with small p2 = m − p1, even though the number of feasible solutions is the same.

Summarizing the experimental results, we claim that OR instances (which are most commonly used in the literature)
have the least complexity while ODM instances are the most complex ones, compared to the other considered libraries, as
they allow the smallest reduction. Thus, the ODM library provides the most reliable data for testing exact and heuristic PMP
solving algorithms.

In Section 6 we examined the properties of the complex instances and introduced our benchmark library of PMP
instances. Some of our benchmark instances (those with a permutation matrix given by (29)) have the following attractive
properties: (i) the optimal value and an optimal solution are easily (polynomially) computable (see Lemma 2) and, hence,
useful for the quality evaluation of both exact and heuristic algorithms for PMP; (ii) the set of optimal solutions is of large
cardinality; hence, the corresponding MILP models are highly degenerate. These instances should be easy for the solution
algorithms. On the contrary, our benchmark instances with randomized permutation matrices are expected to be very
difficult for any exact solution algorithm.

Taking into account that pseudo-Boolean representation allows the highest problem size reduction (comparatively to
other representations of the PMP), the obtained results suggest the following direction of future research: the design of new
exact and heuristic algorithms for solving large-scale PMP instances based on the truncated Hammer–Beresnev polynomial
and the preprocessing scheme demonstrated in Section 5.

Acknowledgements

Both authors are thankful to the Editor and Reviewers for the constructive suggestions which led to an improved
presentation of this paper. The financial support from The Higher School of Economics within the project 11-04-0008
‘‘Calculus of tolerances in combinatorial optimization: theory and algorithms’’ is gratefully acknowledged by the first author.

References

[1] J. Reese, Solution methods for the p-Median problem: an annotated bibliography, Networks 48 (3) (2006) 125–142.
[2] N. Mladenovic, J. Brimberg, P. Hansen, J.A. Moreno-Peréz, The p-Median problem: a survey of metaheuristic approaches, Eur. J. Oper. Res. 179 (2007)

927–939.
[3] O. Kariv, L. Hakimi, An algorithmic approach to network location problems, part II: the p-Medians, SIAM J. Appl. Math. 37 (3) (1979) 539–560.
[4] C.S. Revelle, H.A. Eiselt, M.S. Daskin, A bibliography for some fundamental problem categories in discrete location science, Eur. J. Oper. Res. 184 (2008)

817–848.
[5] B. Mirkin, Clustering For Data Mining: A Data Recovery Approach (Chapman & Hall/Crc Computer Science), Chapman & Hall/CRC, 2005.
[6] P. Avella, A. Sassano, I. Vasil’ev, Computational study of large-scale p-Median problems, Math. Program. A 109 (2007) 89–114.
[7] O.R. Library, Available at the web address http://mscmga.ms.ic.ac.uk/info.html.
[8] O. Briant, D. Naddef, The optimal diversity management problem, Oper. Res. 52 (4) (2004) 515–526.
[9] E.D. Andersen, K.D. Andersen, Presolving in linear programming, Math. Program. 71 (1995) 221–245.

[10] H. Crowder, E. Johnson, M.W. Padberg, Solving large-scale zero one linear programming problems, Oper. Res. 31 (1983) 803–834.
[11] B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the simple plant location problems using a data correcting approach, J. Global Optim. 25

(2003) 377–406.
[12] K.L. Hoffman, M.W. Padberg, Improved LP-representations of zero-one linear programs for branch-and-cut, ORSA J. Comput. 3 (1991) 121–134.
[13] A. Martin, Integer Programs with Block Structure, Technische Universität Berlin, Habilitations-Schrift, Berlin, Germany, 1998.
[14] A. Martin, General mixed integer programming: computational issues for branch-and-cut algorithms, Lect. Notes Comput. Sc. 2241 (2001) 1–25.
[15] U.H. Suhl, R. Szymanski, Super node processing of mixed-integer models, Comput. Optim. Appl. 3 (1994) 317–331.
[16] P. Avella, A. Sforza, Logical reduction tests for the p-Median problem, Ann. Oper. Res. 86 (1999) 105–115.
[17] P.L. Hammer, Plant location — a pseudo-Boolean approach, Israel J. Technol. 6 (1968) 330–332.
[18] V.L. Beresnev, On a problem of mathematical standardization theory, Upravliajemyje Sistemy 11 (1973) 43–54. in Russian.
[19] G. Cornuejols, G. Nemhauser, L.A. Wolsey, A canonical representation of simple plant location problems and its applications, SIAM J. Alg. Disc. Meth.

1 (3) (1980) 261–272.
[20] S. Elloumi, A tighter formulation of the p-Median problem, J. Comb. Optim. 19 (2010) 69–83.
[21] R.L. Church, COBRA: A new formulation of the classic p-Median location problem, Ann. Oper. Res. 122 (2003) 103–120.
[22] P. Dearing, P.L. Hammer, B. Simeone, Boolean and graph theoretic formulations of the simple plant location problem, Transport. Sci. 26 (2) (1992)

138–148.
[23] J.E. Beasley, A note on solving large p-Median problems, Eur. J. Oper. Res. 21 (1985) 270–273.
[24] G. Reinelt, TSPLIB: a traveling salesman problem library, ORSA J. Comput. 3 (1991) 376–384.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
[25] M.G.C. Resende, R.F. Werneck, On the implementation of a swap-based local search procedure for the p-Median problem, in: R.E. Ladner (Ed.),

Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, ALENEX’03, SIAM, 2003, pp. 119–127.
[26] C.S. ReVelle, R. Swain, Central facilities location, Geogr. Anal. 2 (1970) 30–42.
[27] P. Avella, A. Sassano, On the p-Median polytope, Math. Program. 89 (2001) 395–411.

Author's personal copy

1736 B. Goldengorin, D. Krushinsky / Mathematical and Computer Modelling 53 (2011) 1719–1736

[28] B.F. AlBdaiwi, D. Ghosh, B. Goldengorin, Data aggregation for p-Median problems, J. Comb. Optim. 21 (2011) doi:10.1007/s10878-009-9251-8
(in press).

[29] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer, 2003, p. 218.
[30] G. Gutin, I. Razgon, E.J. Kim, Minimum leaf out-branching and related problems, in: Proc. AAIM’08, in: Lect. Notes Comput. Sc., vol. 5034, 2008,

pp. 235–246.
[31] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
[32] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint path problem, J. Comb. Theory B 63 (1995) 65–110. doi:10.1016/j.physletb.2003.10.071.

