Проведенная работа позволила с успехом использовать разработанную конструкцию двухступенчатого коллектора в созданной в последнее время линейке ЛБВ, работающих в С-X-Ки диапазонах частот с выходной мощностью от 100 до 200 Вт.

Библиографический список

- 1. Роговин В.И. Коллекторы с рекуперацией для ЛБВО и клистронов / В.И. Роговин, С.О. Семенов // Обзоры по электронной технике. Серия 1. Электроника СВЧ. М.: ЦНИИ «Электроника», 1986. Вып. 4 (1167). 70 с.
- 2. Роговин В.И. Многоступенчатые коллекторы для ламп бегущей волны / В.И. Роговин, С.О. Семенов // Радиотехника. 2002. № 2. C. 57-62.
- 3. Патент № 2291514 РФ, МКИ Н 01 J 23/027. Многоэлектродный коллектор электровакуумного СВЧ-прибора О-типа / С.О. Семенов, В.И. Роговин, А.Б. Данилов (Россия). ФГУП «НПП «Алмаз» (Россия) № 2005122534/09; Заявлено 15.07.2005. Опубл. 10.01.2007. БИ 1.
- 4. Журавлева В.Д. Комплекс программ расчета трехмерных электронно-оптических систем / В. Д. Журавлева, С. О. Семенов // Прикладная физика. 2006. № 3. С. 97-102.
- 5. Анализ трансформации электронного сгустка в широкополосной лампе бегущей волны на основе усовершенствованной двумерной модели / Е.М. Ильина, С.П. Морев, В.И. Роговин и др. // Радиотехника и электроника. 1999. Т. 44. № 10. С. 1271-1274.

УДК 621.385.632

В.А. Солнцев

Московский государственный институт электроники и математики, e-mail: soln05@miem.edu.ru

РАЗНОСТНОЕ УРАВНЕНИЕ ВОЗБУЖДЕНИЯ ПЕРИОДИЧЕСКИХ ВОЛНОВОДОВ НЕСТАЦИОНАРНЫМ ПРОДОЛЬНЫМ ТОКОМ

V.A. Solntcev

Moscow State Institute of Electronics and Mathematics

DIFFERENCE EQUATION OF EXCITATION PERIODIC WAVEGUIDE UNSTEADY AXIAL CURRENT

The difference equation of excitation of periodic waveguide by a non-stationary longitudinal current is deduced. The application opportunity for the description of an electron-wave interaction in the passband and stopband of slow-wave structures is demonstrated.

Возбуждение собственных волн гладких волноводов и замедляющих систем нестационарным током неоднократно рассматривалось в литературе, и полученные уравнения возбуждения использовались в теории переходных процессов ламп обратной волны (ЛОВ) и ламп бегущей волны (ЛБВ), например, в [1]. Уравнение возбуждения собственных волн периодических волноводов нестационарными токами общего вида дано в [2].

Оно имеет вид

$$\Delta^{2}\vec{E}_{q} + 2\vec{E}_{q}[1 - Cos\varphi_{s}] + 2i\frac{d\varphi_{s}}{d\omega}Sin\varphi_{s}\frac{\partial\vec{E}_{q}}{\partial t} = \vec{G}_{q} \quad , \tag{1}$$

где $\Delta^2 \vec{E}_q = \vec{E}_{q+1} - 2\vec{E}_q + \vec{E}_{q-1}$ - конечная разность второго порядка для амплитуды электрического поля \vec{E}_q в q-м зазоре; \vec{G}_q - функция возбуждения в q-м зазоре, определяемая возбуждающими токами; $\varphi_s = \varphi_s(\omega_0)$ - сдвиг фазы рассматриваемой собственной волны на периоде волновода L при некоторой частоте ω_0 , из узкополосного спектра нестационарного тока.

В настоящей работе приведен вывод разностного уравнения 2-го порядка вида (1) при возбуждении периодического волновода продольным нестационарным током, что позволяет получить простое выражение для функции $G_{q,z}$ и использовать полученное уравнение возбуждения в одномерной нестационарной теории ЛБВ и ЛОВ с дискретным взаимодействием электронного потока и электромагнитного поля.

Рассматриваем отрезки периодической замедляющей системы, включающей Q зазоров взаимодействия, q=0,1,2...Q. При переходном процессе возбуждающий наведенный ток в q-м зазоре взаимодействия $J_{q,\ in}(t)$ имеет медленно меняющуюся во времени комплексную амплитуду $J_q(t)$. Спектр частот $\omega_{\rm K}$ возбуждающего наведенного тока лежит в узкой полосе частот $\Delta\omega$ около некоторой частоты ω_0 . Применим интеграл Фурье и приближенно представим его суммой по частотам $\omega_{\rm K}$. Имеем:

$$J_{qi}(t) = \text{Re} J_q(t)e^{-i\omega_0 t}, \quad J_q(t) = \sum_k J_{q,k}e^{-ik(\omega_k - \omega_0)t},$$
 (2)

где $J_{q,k}$ - наведенный ток q-го зазора на частоте $\omega_{\rm K}$, который вычисляем через ВЧ-ток электронного пучка известным образом (см., например, [3]).

Разностное уравнение возбуждения монохроматическим током, приведенное в [3,4], имеет вид:

$$\Delta^{2}U_{q,k} + 2U_{q,k}(1 - Cos\varphi_{k}) = iZ_{k}J_{q,k} , \qquad (3)$$

где $U_{q,k} = -E_{z,q,k} \cdot d$ - ВЧ-напряжение в q-м зазоре на частоте $\omega_{\rm K}$; d-эффективная ширина зазоров; $\varphi_k = \varphi_s(\omega_k)$; $Z_k = Z_s(\omega_k)$ - сдвиг фазы и локальный импеданс связи зазоров на к-й частоте, рассматриваемой s-й собственной волны системы. Локальный импеданс связи, в отличие от сопротивления связи Пирса, является непрерывной функцией частоты внутри, вне и на границе полос пропускания периодических волноводов [2] и поэтому, так же как сдвиг фазы, может быть представлен рядом Тейлора по частоте около ω_0 . Ограничиваясь двумя членами ряда, имеем:

$$\begin{split} \varphi_k &= \varphi_s(\omega_0) \frac{d\varphi_s}{d\omega}(\omega_k - \omega_0), \quad Z_s = Z_s(\omega_0) + \frac{dZ_s}{d\omega}(\omega_k - \omega_0), \\ Cos\varphi_k &= Cos\varphi_s(\omega_0) - Sin\varphi_s(\omega_0) \cdot \frac{d\varphi}{d\omega}(\omega_k - \omega_0). \end{split} \tag{4}$$

Подставим эти разложения в уравнение (3), учитывая, что

$$\frac{dU_q(t)}{dt} = -i\sum_k U_{q,k}(\omega_k - \omega_0)e^{-i(\omega_k - \omega_0)t}$$

(и аналогично для тока), и проводя суммирование уравнений по всем частотам, получим нестационарное уравнение возбуждения в конечных разностях 2-го порядка для $U_a(t)$

$$\Delta^{2}U_{q} + 2U_{q}[1 - Cos\varphi_{s}] + 2i\frac{d\varphi_{s}}{d\omega}Sin\varphi_{s}\frac{dU_{q}}{dt} = iZ_{s}J - \frac{dZ_{s}}{d\omega}\frac{dJ}{dt}. (5)$$

В дальнейшем это уравнение будет использовано для моделирования переходных процессов дискретного электронно-волнового взаимодействия в ЛБВ и ЛОВ. При этом для численного интегрирования и общего анализа уравнений электронно-волнового взаимодействия введем безразмерные переменные, как в работе [3]:

$$F_q = \frac{d}{L} F_q^m = \frac{1}{2h_e \varepsilon^2 L} \frac{U_q}{U_e} e^{-ih_e z_q}, \quad I_q = \frac{J_q}{J_0} e^{-ih_e z_q},$$
 (6)

где $h_e = \frac{\omega_0}{v}; \quad \varphi_e = h_e L; \quad v_e$ - начальная скорость электронов,

соответствующая ускоряющему напряжению U_{e} ; ε - произвольный $Z_{a\pm 1} = Z_a \pm L$ - координаты соответствующих параметр малости; Получим из (5), (6) нестационарное конечно-разностное уравнение возбуждения в безразмерном виде:

$$F_{q+1}e^{i\varphi_{e}} + F_{q-1}e^{-i\varphi_{e}} - 2F_{q}Cos\varphi_{s} + 2i\varepsilon\omega_{0}\frac{d\varphi_{s}}{d\omega}Sin\varphi_{s}\frac{dF_{q}}{d\tau} =$$

$$= -i\overline{Z}_{s}I_{q} + \varepsilon\omega_{0}\frac{d\overline{Z}_{s}}{d\omega}\frac{dI_{q}}{d\tau}\delta,$$

$$\overline{Z}_{s} = \frac{-J_{0}Z_{s}}{U 2\omega \varepsilon^{2}}$$
(8)

где

- нормированный локальный импеданс связи; $\tau = \varepsilon \omega_0 t$ - безразмерное медленное время; J_0 - ток электронного пучка.

Если взять параметр є как параметр усиления в теории ЛБВ

$$\varepsilon^3 = \frac{-J_0 Z_s}{4U_e \varphi_e^3} \,\,\,(9)$$

(8)

TO $\bar{Z}_{s} = 2\varepsilon\varphi_{s}^{2}$.

Убедимся, что при переходе к гладкой замедляющей системе, когда совпадает с уравнением $L \rightarrow 0$, уравнение (7) возбуждения. ЛОВ. При $L = dz \rightarrow 0$ имеем нестационарной теории $F_{a+1} - 2F_a + F_{a-1} = \Delta^2 F_a \to d^2 F$, $F_{a+1} - F_{a-1} \rightarrow 2dF$,

$$F_{q+1} \to F_q \to F_{q-1} \to F$$
, $\varphi_e \to 0$, $\varphi_s = h_s L \to 0$, $Cos\varphi_s \approx 1 - \frac{1}{2}\varphi_s^2$,

 $Sin\phi_spprox \phi_s$ и получаем из (7) пренебрегая в правой части производной тока

$$\varepsilon \frac{\partial^2 F}{\partial \zeta^2} + 2i \frac{\partial F}{\partial \zeta} + \frac{h_s^2 - h_e^2}{\varepsilon h_e^2} F + 2i\omega_0 \frac{dh_s}{d\omega} \frac{h_s}{h_e^2} \frac{\partial F}{\partial \tau} = -2iI. \quad (10)$$

Учитывая, что в окрестности синхронизма электронов и волны 3С h_s - $h_e = arepsilon \cdot h_e \cdot \xi << h_e$ (ξ - параметр расстройки скоростей электронов и волны) и пренебрегая членами $\sim \varepsilon$ ввиду малости параметра усиления ε , получим

$$\frac{\partial F}{\partial \zeta} - i\xi F + \frac{v_e}{v_{zp}} \frac{\partial F}{\partial \tau} = -I, \qquad (11)$$

что совпадает с уравнением (12) работы [5].

В общем случае для периодического волновода в нестационарное конечно-разностное уравнение (7) входят безразмерный параметр

$$\omega \frac{d\varphi_s}{d\omega} Sin\varphi_s = \frac{\omega L}{v_{_{ep}}} Sin\varphi_s$$
, вместо $\frac{v_e}{v_{_{ep}}}$ в уравнении (11). Нетрудно

убедиться, что этот параметр имеет конечные значения на границах полос пропускания и поэтому нестационарное конечно-разностное уравнение (7) не имеет особенностей на частотах отсечки, так же как и в стационарном случае.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 10-02-00859.

Библиографический список

- 1. Трубецков Д.И. Лекции по СВЧ-электронике для физиков: в 2 т. / Д.И. Трубецков, А.Е. Храмов. М.: Физматлит, 2003. Т.1. 496 с.
- 2. Солнцев В.А. Возбуждение периодических волноводов стационарными и нестационарными источниками / В.А. Солнцев // Материалы 12–й зимней школы семинара по СВЧ-электронике и радиофизике. Саратов: Изд-во ГосУнц «Колледж», 2002. С. 69-75.
- 3. Солнцев В.А. Анализ уравнений дискретного электронноволнового взаимодействия и группировки электронных потоков в периодических и псевдопериодических замедляющих системах / В.А. Солнцев, Р.П. Колтунов // Радиотехника и электроника. 2008. Т.53. №6. С. 738-751.
- 4. Солнцев В.А. Теория возбуждения волноводов / В.А. Солнцев // Изв. вузов. Прикладная нелинейная динамика. 2009. Т.17. №3. С. 55-89.
- 5. Мелихов В.О. Моделирование нестационарных процессов в лампе обратной волны с автомодуляцией эмиссии (карсинотроде) / В.О. Мелихов, М.В. Назарова, В.А. Солнцев // Радиотехника и электроника. 2009. Т.54. № 12. С. 1481-1490.