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O N  M A P P I N G S  O F  B O U N D E D  V A R I A T I O N  

V.V. CHISTYAKOV 

ABSTRACT. We present the properties of mappings of bounded vari- 
ation defined on a subset of the real line with values in metric and 
normed spaces and show that major aspens of the theory of real- 
valued functions of bounded variation remains valid in this case. In 
particular, we prove the structure theorem and obtain the continu- 
ity properties of these mappings as well as jump formulas for the 
variation. We establish the existence of Lipschitz continuous geodesic 
paths and prove an analog of the well-known Helly selection principle. 
For normed space-valued smooth mappings we obtain the usual inte- 
gral formula for the variation without the completeness assumption 
on the space of values. As an application of our theory we show that 
compact set-valued mappings (------ multifunctions) of bounded varia- 
tion admit regular selections of bounded variation. 

1. INTRODUCTION 

T h e  a im of  this paper  is to obta in  the  properties of  mappings  of  b o u n d e d  
var ia t ion (BV, for short)  in the  classical sense of Camille Jordan.  Consider  
a B V - m a p p i n g  f : E --+ X defined on the  nonempty  subset  E of  the  real 
line • wi th  values in the  metr ic  (or normed)  space X .  If  X = I~ and  E is a 
closed b o u n d e d  closed interval [a, b] or an  open interval ]a ,  b [, the  theory  
of  BV-funct ions  is well established and known (for instance, N a t a n s o n  [19], 
Ch. 8, or  Fol land [9], Ch. 3). In  particular,  f : E --+ R is a BV-func t ion  if 
and only  if it is the  difference of  two bounded  nondecreasing funct ions ( the 
J o r d a n  decomposi t ion) .  This criterion reduces the  theory  of  BV-fi lnct ions 
to  t h a t  of  bounde d  nondecreasing functions, and the  main  results follow 
immediately.  However, for metr ic  or normed space-valued mappings  the  BV- 
theo ry  seems to  be  less known (see, however, Schwartz [20], Ch. 4, Sec. 9 and  
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Barbu [2], Ch. 1, Sec. 2). I f X  is a metric space, then the Jordan criterion is 
inapplicable, yet we will show that  the major aspects of the theory of real- 
valued BV-functions remains valid in this case. Our decomposition theorem 
reads as follows (Sec. 3): f : E --* X is a BV-mapping if and only if it is 
a composition of a bounded nondecreasing function qo : E -* ]~ and an 
X-valued mapping defined on the image of ~ and satisfying the Lipschitz 
condition with the Lipschitz constant _< 1 (a particular case of this result was 
outlined by Federer [8], Sec. 2.5.16). Of course, the theory of metric space~ 
valued BV-mappings is poorer than tha t  of real-valued BV-functions, but  we 
point out that  no special structure of the domain E such as connectedness 
(closed and open intervals, etc.) is needed to obtain the usual properties 
of BV-mappings. In this way, we establish the continuity properties of BV- 
mappings and present the "intuitively clear" relations between the total 
variation of a mapping on the whole of E and its variation on E without a 
limit point (Secs. 4 and 5). 

With the decomposition theorem at hand, in the case of the compact met- 
ric space X, we prove that  there always exist Lipschitzian geodesic paths 
between two points of X if there is at least one path of finite length con- 
necting these points (Sec. 6) and that  any infinite family of paths in X of 
uniformly bounded length (variation) admits a sequence which converges 
pointwise to a BV-mapping (the HeUy selection principle, see Sec. 7). 

In Sec. 8 we obtain additional properties of BV-mappings with values in 
normed vector spaces. In particular, we prove that  the total variation of a 
continuously differentiable mapping is equal to the integral of the norm of 
its derivative without assuming that  the normed vector space under consid- 
eration is complete. 

Finally, in Sec. 9 we consider the set-valued mappings of bounded varia- 
tion, which play an important role in optimal control theory, especially for 
nonlinear systems with relaxed controls like impulse controls, and in the 
theory of differential inclusions (see Lee and Markus [13], Sec. 4.2, Aubin 
and Cellina [1], Ch. 2, and Mordukhovich [17]). We show that  i f a  set-valued 
mapping from a closed bounded interval into nonempty subsets of a Banach 
space is of bounded variation and its graph is compact, then it admits a 
selection of bounded variation. 

Acknowledgment.  I am very grateful to S. A. Vakhrameev for suggestions 
improving the original text, advice and encouragement. Also, I would like 
to thank M.I.  Sumin for several stimulating conversations. 

2. NOTATION, DEFINITION, AND MAIN PROPERTIES 

Throughout this paper we use the following notation: • ~ E C ]~, 
E~- = E N ]  - c~,t] ,  and E + = E A [~,oo[ i f~  e E,  E b = E n [a,b] if 
a, b E E, a _< b (where [a,b] C R is a closed interval), X is a metric 
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space with a fixed metric (or distance function) d = d ( . ,  �9 ), X E is the set 
of all mappings f : E --* X from E i n t o  X. I f f  �9 X E, we denote by 
f(E) the image of f in X,  and by w(f, E)  = sup{ d(f(t), f ( s ) )  : t, s �9 E } 
the oscillation of f on E (or the diameter of the image f(E)). Given two 
mappings f : E --+ X and qa : E1 --+ E,  their composition f o qa : Ez --* X is 
defined as usual by ( f  o ~)(~') = f(qa(r)) for all r �9 El .  

Def in i t ion .  We denote by 

t m T ( E ) = { T = { i } ~ = o C E : m � 9  < t ~ , i = l , . .  , m }  

the set of all partitions of E by finite ordered collections of points in E.  
m T(E) and a mapping f : E --* X,  we set Given a part i t ion T = {ti}i=o �9 

w'$ 

V(f, T) = ~ d(f(t,), f ( t , -1 ) ) ,  
i = l  

and extend it to the whole E by the formula 

V(f, E) = sup{ Y(f, T): T e T(E) }. 

The quanti ty V(f,  E) 6 [ 0, ~ ]  is called the tota /var ia t ion of f over E.  If 
V(f,  E)  < cx~, a mapping f is called a bounded variation mapping (BV- 
mapping, for short). The set of all BV-mappings from E into X is denoted 
by ~2(E; X) .  If ~) # A C E,. we set V(f, A) = V(flA, A), where flA is 
the restriction of f to A, and we set T(O)  = 0 and V(f, 0)  = 0 (so that  
sup 0 = 0). The functional V : X E x 2 E --~ R0 + ID {cx~} is called a variation. 

The above definition is classical and is due to C. Jordan (cf. [20], Ch.4, 
Sec. 9). Note that  this definition is also suitable for mappings defined on 
any linearly ordered set E.  A number of results of this paper are valid in 
the case where < is a linear ordering on E. 

The  following assertions constitute the main (almost axiomatic) pro- 
perties of the variation and are easy to prove, and so we omit the proofs 
(of. [6]). 

G e n e r a l  p r o p e r t i e s  o f  t h e  v a r i a t i o n .  Let f : E --+ X be an arbitrary 
mapping. We have 

(P1) miaimality: if t, s 6 E ,  then d(f(t),f(s)) < w(f,E) <_ V(f,E); 
(P2) monotordcity: if A C B C E, then T(A) C T(B) and 

V(f ,  A) < V(f,  B); 
(P3) additivi*y: if t 6 E ,  then V(I, E) = V(f,  E?) + V(I, E+);  
(P4) the change of a variable: if Ez C R and ~ : Ez -+ E is a (not 

necessarily strictly) monotone function, then V(f, qo(E1)) = V( f  o 

(P5) regularity: V(f ,E)  = sup{ V(f,  Eba) : a, b �9 E, a <_ b}; 
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(P6) the limit properties: let s = s u p E  E IRU {~} ,  and let i = i n f E  E 
R U {-oo},  then 

(P61) if s q~ E, then Y ( f , E )  = limE~t-.s V(f,E~'),  
(P62) if i ~ E, then Y( f ,  E) -- limE~t--.i Y(f ,  E+), 
(P63) if s ~ E and i ~ E, then, in addition to (P61) and (P62), we have 

V(f ,  E) = limEga-.i V(f ,  Ea b) = lim lira 
EDb---*s EBb---*s EBa--*i 

= lira lim V(f ,  Eb); 
EBa---*i E~b--*s 

= 

(P7) lower semicontinui~: if the sequence of mappings {f~}n~176 C X E 
converges pointwise to f as n --* o~ (i.e., limn-~oo d(fn(t),  f ( t ) )  ---- 0 
for all t E E), then V( f ,E )  <_ liminf,~_~o~V(fn,E). 

A few remarks are in order. Note that  we do not assume the boun- 
dedness of V(f ,  E). Property (P3) is not valid if t ~ E (for example, 
E = [ -1 ,1 ]  \ {0}, X = R, f : E --~ X,  f = 0 on [ -1 ,0 [ ,  f = 1 
on ]0,1], and t = 0; see Sec. 5). If s e E, then V( f ,E )  = V(f ,E~')  
so that  (P61) is not true in general (consider f : [0,1] --* R, f = 0 on 
[0, 1 [ and f(1) = 1), and analogously for (P62) and (P63). Property (P7) 
holds if the pointwise convergence of fn is replaced by a weaker condition: 
liminfn-~oo d(fn(t), f(t)) = 0 for all t e E. However, the inequality < in 
(P7) cannot be replaced by an equality and lira inf cannot be replaced by lira 
even if the convergence of fn to f is mfiform (in fact, fn(t) = (sin(21rnt))/n, 
t E [0, 1], converges uniformly to f --- 0, but V(fn, [0, 1]) = 4). 

Property (P1) implies that  a BV-mapping is a bounded mapping in the 
sense that  its image has a finite diameter. The following proposition is a 
refinement of this property (cf. [7], Ch. 7, Sec. 6, Problem 3 in the case 
E = [a, b]). 

P r o p o s i t i o n  2.1. If f E ]2(E; X),  then the image f (E)  is totally boun- 
ded in X and separable. If, in addition, X is complete, then f (E)  is pre- 
compact (i.e., the closure of f (E)  in X is compact). 

Proof. In order to prove that  f (E)  is totally bounded, we have to show tha t  
for any E > 0 the set f (E)  can be covered by a finite number of balls from X 
of radii ~ centered at f (E) .  On the contrary, suppose that  for some e > 0 

oo there is no cover of this kind. Consider a sequence {xn}n=o C E which is 
given inductively as follows: if to E E ' i s  fixed, set x0 = f(t0), and if xo, 
X l ,  . . .  , 33n--1 e f (E)  are already chosen, take x ,  e f (E)  \ ~Jj=l"~-I B~(xj), 
where B~(xj) = { y e X : d(y, xj) < ~ ). Let xn -~ f(~n) for some t,~ E E,  
n e N. Since d(xn,xk) >_ ~ for n ~ k, we hayer , ,  ~ tk. Without loss 
of generality, we can suppose that  tn-1 < t,~ for all n E N. Then, for 
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= t m T(E),  have T { ~}~=o e we 

~r~ ff~ 

V(f ,  E) > V(f ,  T) = ~ d(f(ti), f ( t , -1))  = ~ d(x,, xi-1) >_ m~. 
i = 1  i = 1  

By virtue of the arbitrariness of m E N, we infer that  V(f ,  E) = oc; this is 
a contradiction. 

A totally bounded set in a metric space is known to be separable, and 
precompact if the metric space is complete. [] 

Since continuous mappings from the closed interval [a,b] into X play 
an important role in theory (they are called paths in X), we are going to 
recall an equivalent definition of the variation V(f ,  [a,b]) for (one-sided) 
continuous mappings f : [a,b] --* X. We denSte by 

7 2  = { T  = (t,)7'=0 c in,  b] : m e N, a = to < t l  < . - -  < t ~ - i  < t ~  = b}  

the set of all partitions of [ a, b ] containing the points a and b and we set 

V~(f) = sup{ Y ( f  ,T) : T e T b }. 

Obviously, vab(f) = V(f ,  [a,b]). If T = {ti}~0 6 Ta b, then we define the 
fineness of T by )~(T) = maxl<i<m(ti - ti-1), and we set B~ = { T 6 Tab: 
A(T) _< 6 } if 6 > 0. We define a//I ter  base in Ta b to be the set { B , :  6 > 0 }, 
which is denoted by A(T) --* 0. 

T h e o r e m  2.2. If the mapping f : [ a,b ] --* X is continuous from the 
right on [ a, b [ or continuous from the left on ] a, b ], then we have the fol- 
lowing equalities: 

(a) Vab(f) = lim~(T)--.0 V(f ,  T), 
(b) vb( f )  = limx(T)-.012(f, T), 

7r~ 

where f~(f,T) = ~ w(f,  [ t~-l , t i ])  i f T  = {ti}}n=0 e Tab. 
i = 1  

(Note that we do not suppose Vab(f) to be finite, and that the assumption of 
one-sided continuity of f is essential for the validity of both (a) and (b).) 

Proof. Although this is a well-known fact (cf. [19], Ch. VIII, Sec. 5, The- 
orem 2 or [20], Ch. 4, Sec. 9) for completeness we recall the proof of this 
assertion here. 

(a) Let f be continuous from the right on [ a, b [ (a similar argument holds 
for f which is continuous from the left on ] a, b ]). 

�9 ra. 1. First, note that  if T = {t,}i= 0 6 T b and t~_l < t < t~ for some 
1 <_ k < m, then 

V(f ,  T O {t}) <_ V(f ,  T) + 2d(f(tk), f(t)). (2.1) 
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Indeed, we have 

k - 1  

V ( f ,  T U {t}) = ~ d(f(t~), f ( t i -1))  + d(f( t ) ,  f( tk-1))  + 
i=1 

+ d(f ( t ) ,  f ( tk) )  + ~ d(f( t i ) ,  f( t~-l))  = 
i=k+l 

= V ( f ,  T) + d(f( t ) ,  f( tk-1))  + d(f( tk) ,  f ( t ) )  - 

- d(f( tk) ,  f ( tk -x) ) ,  (2.2) 

so that  if we take into account the triangle inequality 

d(f(t), f(tk-1)) <_ d(f(tk), f(tk-~)) +'d(f(tk), y(t)), 
then we get (2.1). 

2. To prove (a), we have to show that  

for any e > 0 such that e < vab(f) there exists a 
6 = 6(e) > 0 such that V ( f , T )  >>_ e for all T E Ta b with 
a(r)  <_ 6. 

(In other words, we will prove that  Vab(f) < lira6--,+0 infTes~ V ( f ,  T).)  
Let el E ]R be such that  e < el < vb( f ) .  Then there exists a parti t ion 

= {~j}jn__ 0 E Tab such that  V( f ,~ )  > el. Since, in particular, f is continu- 
ous from the right at each point ( j ,  j = 1, . . . ,  n -  1, 6 > 0 can be chosen 
such that  

(i) d( f ( t ) , f (~ j ) )  < (el - e) /2n for all j = 1 , . . . , n  - 1 and all 

t m (ii) 6 < min{~j - ~ j - 1  : 1 < j < n},  so that  i f T  = { i}i=o E Tab and 
A(T) < 6, then every closed interval [t~-l, t~] contains at  most  one 
point ~j. 

Let us show now that  V ( f ,  T) >_ e if T = {t,}i= 0 E Ta b and A(T) < 6. 
Indeed, for such a partition T we have, due to (P2), 

el < V(f ,~)  < V ( f ,  T U ~ )  = V ( f ,  T U S ~  ln- l~ -- -- t JJj=l 1" 

If, by virtue of (ii), we assume tha t  tk-1 < ~1 --< tk for some 1 < k < m, 
then, from (2.1) with T replaced by T n-1 U {~j }5=2 and t = ~1, we have 

V ( f ,  T U  n-1 n-1 {~J}j=l ) < V ( f ,  T O {~J}j=2 ) + 2d(f(tk) ,  f(~l)) .  

Noting that  Irk-~11 <- t k - t k - 1  <_ A(T) < 6, i.e., t~ E [~1,~1 +6] ,  by virtue 
of (i), we have d( f ( tk) ,  f (~l))  <_ (ez -- e) /2n so that  

el <_ V ( f ,  T O {~j }i=2n-1) + 2(el - e)/2n. 
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Now a similar argument with ~2, . . . ,  ~n-1 instead of ~1 gives 

~1 <_ V ( f , T )  + 2 ( n -  1)(E1 - ~ ) / 2 n  <_ V ( f , T )  + e l  - ~; 

this implies the inequality V(f, T) :> ~. 
(b)  I f  T - -  { t i ) i ~ o  �9 7"5, then by virtue of (P1) we have 

d(f( t i ) ,  f ( t i -1) )  <_ w ( f  , [~i_l,ti]) ~ Vt',~_l (f) ,  

so that  summing up over i = 1, . . . ,  m ,  and taking into account (P3), we 
obtain the inequalities 

V( f ,  T) << ~ ( f ,  T) < Vab(f), T �9 Ta b. 

Passing to the limit as A(T) --+ 0, we obtain (b). [] 

Remark. Theorem 2.2 will not be used until Sec. 8. 

3. STRUCTURE THEOREM 

Def in i t ion .  A mapping f : E --+ X is of locally bounded variation (in 
the notation, f e ~Jloc(E; X))  if V ( f ,  Ea b) < oo for all a, b E E,  a _< b. 
Clearly, V(E; X)  C ~loc(E; X).  

A mapping f : E --+ X is Lipschitzia~ if there exists a number C E R+ 
such that  d(f( t ) ,  f ( s ) )  <_ CIt - s] for all t, s e E. The minimal number C 
satisfying the above inequality is called the Lipschitz constant of f and is 
denoted by Lip(f) .  

A mapping g : E --+ X is naturalized if V(g, E b) = b - a for all a, b G E, 
a <_ b. Clearly, the naturalized mapping g : E --+ X is of locally bounded 
variation and is Lipschitzian with Lip(g) < 1 since, by virtue of (P1), we 
have 

d ( g ( t ) , g ( s ) ) _ < V ( g , E ~ ) = s - t ,  t, s e E ,  t < s .  

The main result of this section is the following 

T h e o r e m  3.1. A mapping f : E --+ X is of locally bounded variation 
(resp., is a BV-mapping) i f  and only if  there are a nondecreasing (resp., 
a bounded nondecreasing) function ~ : E --+ R and a naturalized mapping 
g : ~(E)  --~ X (and, hence, g is Lipschitzian with Lip(g) <_ 1) such that 
f = g o ~  o n E .  

The proof of this theorem is contained in the following two lemmas. The 
first lemma (sufficiency) gives a large number of examples of mappings of 
(locally) bounded variation. 

L e m m a  3.2. If  ~ : E --+ R is monotone, g : ~o(E) --~ X is Lipschitzian, 
and f = g o ~, then f �9 Yloc(E; X) .  If, in addition, ~ is bounded, then 
f �9 V(E; X). 
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Proof. Suppose that qa is nondecreasing. Since 

~ ( E n [ a , b ] ) = ~ ( E ) n [ ~ ( a ) , ~ ( b ) ] ,  a , b � 9  

by virtue of (P4), we have 

V ( f ,  Eba) V(g  ~, E b) V(g, ~(Eb))  V E ~(b) = o = = 

t m If T = { ~}i=o is a partition of the set in (3.1), then 
m 

V(g, T) < Lip(g) ~--~.(ti - t~-l) < Lip(g)- (~(b) - ~(a)), 
i=1 

so that 

(3.1) 

v ( f ,  _< Lip(g) .  (v(b) - V(ai)  < o0. 

Now property (P5) and the monotonicity of ~ yield 

v(S, E) _< Lip(g). (sup ~(t) - i~f  ~(t)) = Lip(g).w(~,E).  
xtEE / 

If, in addition, ~ is bounded (w(~, E) < oo), then f E ])(E; X). 
If ~ is nonincreasing, the proof is analogous. [] 

Remarks. (a) If the mapping g in Lemma 3.2 is naturalized, then, in 
addition, we have 

V ( f ,  Eba) ---- Iqa(b) - ~(a)l , a ,b  �9 E, a < b: and V ( f , E )  = w ( v , E  ). 

In particular, if f : E --* R is monotone (resp., bounded and monotone), 
then, setting X = R, ~ = f and g(s) = s if s �9 f ( E )  in Lehman 3.2, we 
have f �9 ])lot(E; R) (resp., f �9 V(E; R)). 

(b) If f : E -~ X is Lipschitzian (and E is bounded resp.), then 
f �9 Vloc(S; X) (resp., f �9 1)(E; X)) and 

Y ( f , E  b ) < _ L i p ( f ) . ( b - a ) ,  a , b � 9  

resp., V ( f ,  E)  g Lip(f)- (sup E - inf E). 

To this end, it suffices to consider ~(t) = t for t �9 E and g = f in Lemma 3.2. 
The second lemma (necessity) gives the canonical decomposition of a 

mapping of (locally) bounded variation. 

Lemrna 3.3. Let f �9 Vloe(E; X) .  Then there exist a nondecreasing func- 
tion ~ : E --* R and a naturalized mapping g : E1 = ~(E)  --* X such that 

(a) f = g o ~  o n E ;  
(b) g(E1) = f ( S )  in X;  
(c) V(g,  E1) = V ( f , E )  in [0, oo]. 

If, moreover, f �9 V(E; X) ,  then, in addition, the function ~ is bounded and 
the values in (c) are finite. 
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Proof. Fix a point a E E,  and set 

V( f ,  Eta) if t � 9  +, 
~ ( t ) =  - Y ( f , E ~ )  if t � 9  t � 9  

The function qa : E --* ]R is well defined, nondecreasing by (P2), and ~(a) = 
0. If r E El ,  we denote by qo-l(~ -) = {t  �9 E : qa(t) = r }  the inverse 
image of the one-point set {~-} for the function qa. We define the mapping 
g : E1 --* X as follows: if v �9 Ez, we set 

g(v) = f ( t )  for any point t �9 ~-z(7-). (3.2) 

This is correct, i.e., f ( t )  is one and the same element of X for all t �9 ~ - z ( r )  
since, by virtue of (P1) and (P3), we have 

d(f(s) ,  f ( t ) )  <_ V( f ,  E~) = qo(s) - qo(t), t �9 E,  s e E + ; (3.3) 

indeed, if t, s E ~a-l(r),  t < s, then ~(t)  = 7- = ~(s), so that  (3.3) implies 
f ( t )  = f (s) .  

Now, the representation of f in (a) follows from (3.2), since if t E E ,  then 
T = ~o(t) �9 E1 and t �9 ~ - l ( ' r ) ,  so that  (3.2) yields f ( t )  = g(r)  = g(~(t)) = 
(go~)( t ) .  I tem (b) follows from (a), and item (c) follows from (P4) and (a). 

It remains to prove that  g is naturalized. Taking into account (3.1), we 
have 

E 1 A [ O , T ] = q o ( E n [ a , t ] ) ,  O < _ r � 9  t e q o - l ( r ) ,  

so that  applying (P4), we have 

V(g, (Ez)~) = V(g, ta(Eta) ) = V(g o ~, Eta) = V( f ,  Eta) = ~(t) = r. 

Similarly, 

V(g,(E1) ~  if 0 > ~ ' � 9  

Hence, if a,  fl �9 E l ,  0 < a </3,  then, by virtue of (P3), we have 

Y(g, (E1)~) ---- V(g, (E1)~o) - Y(g, (E1)~) = /3  - c~. 

The cases where a _< 0 _~ f~ and ~ _< fl _~ 0 are completely analogous. [] 

Remarks. 
Ca) Note that  the mapping g in the proof of Lemma 3.3 satisfies the 

following property: if a, ~ �9 El ,  and t �9 qo-l(a), s �9 ~o-l(j3), then 

d(g(a), g(13)) = d(g(~a(t)), g(~(s))) = d(f( t) ,  f (s)) .  

(b) In the case where ~ : E --* E1 is strictly increasing, it is a bijection, 
so that  the equality f = g o qo on E is equivalent to the equality g = f o ~ - i  
on El ,  where qo -1 : E1 --, E is the inverse function of ~o. 
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(c) If, in addition, f E ~2(E;X), then I~(t)[ < V ( f , E ) ,  t E E ,  so tha t  
the function ~ is bounded and the two values in Lemma 3.3(c) axe finite. 
In this case, one can replace ~0 by the function E ~ t ~-+ V ( f ,  E~') E R+o . 

(d) If f : E --+ R, then the Jordan decomposition is valid as was men- 
tioned in the Introduction: f E Yloc(E;R) (resp., f E ]2(E;~))  if and only 
if f is the difference of two nondecreasing (resp., bounded nondecreasing) 
functions on E.  The sufficiency is clear from the fact that  a monotone (resp., 
bounded monotone) function is of locally BV (resp., BV) and that  the dif- 
ference of two functions of this kind is again of locally BV (resp., BV). Th e  
necessity follows from the equality f = ~o - (~o - f )  with ~o(t) = V ( f ,  E~-), 
t e E,  and (3.3) since, if t, s E E,  t _< s, then f ( s )  - f ( t )  <_ ~o(s) - ~o(t), or, 
equivalently, (~o - f )  (t) _ (~o - f )  (s). 

Now we shall briefly present an algebraic aspect in the construction of 
a naturalized mapping. The arguments in Theorem 3.1 (necessity) go back 
to the factorization of a mapping. We describe these aspects here. Th e  
mapping ~o : E -* E1 induces an equivalence relation on E as follows: t ..- s 
in E ~ ~o(t) = ~o(s) in El .  Let t = { s E E : s ~ t } be the equivalence 
class of t E E in the quotient set E/~o, and let lr : E --* E/~o be the 
canonical surjection given by 7r(t) = $ for t E E.  We have t = ~o-l(v), where 
~" = ~o(t) E ~(E) ,  and if we set ~(~) = ~(s) for any s E t, or ~ o 7r = ~, then 
the mapping ~ : E / ~  --* E1 is well defined and is called the factorization 
of ~ ;  in other words, we set W(~o-~(~')) = r for all r e ~(E) ,  so that  ~ is 
(always) injective. In general, ~ is not surjective, but if ~o is surjective, as 
is the case in Lemma 3.3, then so is ~, and, therefore, the bijection ~ has 
the inverse ~ - I  : E l  --* E/~o given by ~ - - l ( r )  = (~--1(7") if r E Z~ = ~(E) .  

f 
E �9 X 

E / ~ ,  ' E1 

Given a mapping f :  E --* X,  let f :  E/~o ~ X be defined by f'(t) = / ( s ) .  

if ~ E E/~o and s E t (see the diagram), so that  f o  7r --- f .  The  mapping f 
is well defined only if ~, s E E and t .~ ~ imply f ( t )  = f ( s )  in X ,  which is 
satisfied in Lemma 3.3 due to (3.3). Now, i fg  --- f ' o ~  -1 : E1 --* X,  then it 
follows tha t  f = g o ~, and we have the "characteristic" representation 

.f = 7o - = (g o o = g o  = g o v .  
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Comparing the decompositions f = f'o~r -- f ' o ~ - I  o ~ and g - -  f o ~  - I ,  we 
infer that  (a) the "interesting" properties of f contained in f are preserved 
by g (see Lemma 3.3(b) and (c)); (b) g "simplifies" f (in particular, the 
cardinality # ( E )  of E is not less than the cardinality # ( E l )  --- ~ ( E / ~ ) ) ;  
(c) practically, the mapping g is more "valuable" than f (since it is more 
interesting and simpler!). 

Finally, note that  in the case where qa~ E ~ E1 is strictly increasing, it 
is a bijection, so that  E / ~  = E, ~ = qo, f = f and g --- f o ~-1.  

4. CONTINUITY PROPERTIES 

We now turn to continuity properties of BV-mappings which, at  the same 
time, will result (in Sec. 5) in the intuitively clear formulas relating the total  
variation of a mapping to its variation on th@ set from which a limit point 
is removed. 

In this section and in the next one f : E -+ X is a fixed BV-mapping 
and the function ~o : E --* 1~ is defined by ~p(t) = V(f ,  E~-) for t e E. 

T h e o r e m  4.1.  
(a) f is continuous from the right at the point t E E, t ?~ s u p E  (resp., 

from the lef~ at the point t e E, t ~: inf E) if and only if the function ~o has 
this property; 

(b) f is continuous on E outside, possibly, of a countable subset of E. 

Proof. (a) We only consider the case of continuity from the right. If t E E, 
t ?~ supE,  is an isolated (i.e., not limit) point of the set E +, the assertion 
is obvious. Hence, in the rest of the proof we assume that  t is a limit point 
of the set E +. 

Sufficiency follows from (3.3), which holds for all s e E +. 

Necessity. It suffices to prove that  for every e > 0 there is to = t0(~) E E 
with C0 > t such that  

~o(s) - ~o(t) <_ d(f(s) , f ( t ) )  +e  Vs e S~ ~ (4.1) 

Since V(f ,  E +) <_ V( f ,  E) < co, by (P2), for ~ > 0 there exists a partit ion 
T = {t~}}n=0 e T ( E  +) with t < to such that  

V(f ,  E +) < d(/(t0), f ( t ) )  + V(f,  T) + e. 

Noting that,  actually, T e T ( E ~ )  and applying (P1) and (P3), we have, for 
all s E E~ ~ 

V(f, E$) <_ d(f(to), f(s)) + d(f(s), f(t)) + V(f, E~) + e < 

< _ v ( : ,  E o) + d ( / ( s ) ,  : ( t ) )  + V ( : ,  E,o) + + = 

= v(:, + d(y(s), :(t)) + 
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and again applying (P3), we have 

V( / ,  Es )  - V(I ,  E~-) = V( / ,  E +) - V(I ,  E +) < d(/(s), y(t)) + e; 

this is (4.1). 
(b) This assertion follows from the fact that  a nondecreasing function 

on E has at most a countable number of points of discontinuity and that,  
by (a), the sets of discontinui W points of y and the nondecreasing function 
qa are the same. 

Note that  a similar theorem holds for the mappings f E Vloe(E; X).  [] 

T h e o r e m  4.2. Let t E E be a limit point of the set E~" (resp., E+). 
Then 

(a) V( f ,  E t  ) - V ( f ,  E ? \ t )  = ~(t)-~o(t-)  = limE~s--,~-o V(f ,  Ets) (resp., 
V( f ,  E +) - V( f ,  E + \ t) = ~( t+)  - ~p(t) = limEB,--t+o V(f ,  Eg) ); 

(b) f is continuous from the left (resp., from the right) at the point t i f  
and only if V( f ,  E~-) = V( f ,  E~- \ t) (resp., V( f ,  E +) = V( f ,  E + \ t) ); here 
~(t:k) = limsgs--.t+o ~(s) E R +. 

Proof. Note, first of all, that the limit ~ ( t - )  (resp., ~( t+) )  exists since it 
is equal to sup{ ~(s) : s E E~- \ t } and the function ~ is bounded and 
nondecreasing on E.  

(a) Property (P61) (resp., (P62)) with the set E~- \ t (resp., E + \ t) instead 
of E implies (resp., by virtue of (P3), implies) 

= nm V( f ,  E s ) = ~ ( t - )  V ( f ,  E?  \ t) = E~s--.,-olim V(f ,  (E~- \ t)-j) E~s--.t-o 

(resp., V( f ,  E + \ t) = _ lim _ V(f ,  (E + \ t) +) = lira V(f ,  E +) = 

= V ( f , E )  - lim V( f ,  ES)  = V( f ,E+)  + qo(t) -qa(t+) ). 
E ~ s - - - ~ t + O  

Thus, if we again apply (P3), (a) follows from the equations 

= lim V(f ,E~) ~(t) - ~ ( t - )  = _ lim (V(f ,  Et- ) - V ( f . E : ) )  E~s-~t-O 
�9 ~ E g s - - * t - O  �9 

(resp.,  v ( t + ) - v ( t )  = _ ( v ( Y ,  E l ) )  = _ lira _ V(Y, E D  ). 
l ~ B s  t + O  E g s - - - , t + O  

(b) follows from (a) and Theorem 4.1(a). [] 

T h e o r e m  4.3. Let t E E be a limit point of each of the sets E~- and E +. 
Then 

(a) V( f ,  E) = V( f ,  E? \ t) + V( f ,  E + \ t) + (~(t+) - wi t - ) ) ,  and f is 
continuous at t if and only if  V ( f  , E) = V ( f  , E~- \ t) + Y ( f  , E + \ t) ; 
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(b) V( f ,  E) = V( f ,  E \ t) + (qo(t+) - qo(t-)) - lim~9~_~t_o V(f ,  E b \ t), 
EBb--*t+O 

and if  f is continuous at t, then V( f ,  E) = V( f ,  E \ t) ; in general, 
the converse statement is false. 

Proof. (a) We can obtain the equality in (a) by adding the equalities from 
Theorem 4.2(a) and applying (P3), and the assertion in (a) follows from 
Theorem 4.2(a), the equality in (a), and the inequalities ~o(t-) <_ ~(t) < 
v(t+). 

(b) We give the proof in steps for clarity. 
(1) To prove the equality in (b), we note that  for all a, b 6 E such that  

a < t < b, we have, due to (P3), 

Y ( f ,  E) - V( f ,  Z \ t) = (V(f ,  S : )  + V.(f, E b) + V( f ,  E+)) - 

- ( V ( f ,  S : )  + V ( f ,  E b \ t) + Y ( f ,  E+))  = (4.2) 

= (qo(b) - qo(a)) - V( f ,  Eba \ t). 

The equality in (b) follows if we take into account the fact that  

qa(b) - qo(a) --+ qo(t+) - qo(t-) = (qo(t) - qo(t-)) + (qo(t+) - qo(t)), 
(4.3) 

v ( : ,  E~ \ t )  -* inf{ V( f ,E~  \ t) : a e Z~-, b e Z~ +, a < t < b} e ~o + 
(4.4) 

as E 9  a --~ t - O and E 9 b ---* t + O. 
(2) Before proving the second part of (b), we show (not assuming the 

continuity of f at t) that,  on the one hand, 

d ( f ( b ) , f ( a ) ) ~ V ( f , E  b \ t )  V a 6 E ~ - , V b 6 E  + , a < t  <b, (4.5) 

and, on the other hand, 
for every ~ > 0 there ex/st ao = no(e), bo = bo(6) 6 E, ao < t < bo, such 

that  

V( f ,  Eba\ t )<_d( f (b) , f (a ) )+r  V a 6 E ~ o \ t  , V b 6 E b ~  (4.6) 

Inequality (4.5) is a consequence of (P1). To prove (4.6), fix r > 0, 
and, by the definition of the variation V(f ,  E \ t) which is < V( f ,  E) < oo, 
consider a parti t ion T = {t~}In=o 6 T ( E  \ t) such that  

t o < t l < _ ' " < _ t k - l < t < t k < _ ' " ' < _ t m - l G t m  for some l < k < m  

and 

V(f, E \ t) <_ V(I,T) + ~ = Z d(f(ti), f(ti-1)) + ~. 
i----I 



274 V.V. CHISTYAKOV 

Setting T1 = {ti}i= 0 ,k-1 7'2 = {t~}i=k,m ao = tk-1, b0 = tk, and noting that ,  
actually, :/"1 U {a} e T(E~)  and {b} tA T2 e T(E+), we have the following 
calculations for all a, b E E such that  ao < a < t < b < b0: 

V( f ,  E \ t) <_ V( f ,  T1) + d(f(tk), f( tk-1))  + V( f ,  T2) + e <_ 

< Y ( f ,  T1) + d(f(a), f( tk-1)) + d(f(b), f(a)) + 

+ d(f(tk), f(b)) + V(I ,  7"2) + e < 

<_ V( f ,  E : )  + d(f(b), f(a)) + V( f ,  E +) + e, 

so that  now (4.6) follows from (4.2). 
(3) Assuming the continuity of f at t, we obtain the assertion in (b) from 

the equality in (b) since limit (4.3) is zero by Theorem 4.1(a) and limit (4.4) 
is zero by (4.6). 

(4) The converse assertion in (b) is false: consider, for instance, E = 
[ -1 ,1 ] ,  f : E - - ~ R ,  f = - i  on [ -1 ,0 [ ,  f(0) = 0, f = 1 on ]0,1], and 
t = O .  [] 

5. JUMP FORMULAS 

Up till now we have made no assumptions concerning the metric space X 
under consideration. In this section we assume that  X is a complete metric 
space, f : E --* X is a fixed BV-mapping, and the function ~o : E --* R is still 
given by r = V( f ,  E~-) for all t E E. We are going to obtain relations 
between the total  variation of the BV-mapping on E with its variation on 
E without a (deleted) limit point. 

L e m m a  5.1. (a) At every point t ~ E, which is a limit point of the set 
E + (resp., E~'), there exists a limit (in the metric d) from the right f ( t+)  = 
limE~s--.t+0 f (s)  e X (resp., from the left f ( t - )  = lims~s--.t-0 f (s)  e X).  

(b) Moreover, if  sup E e (R \ E) U {oo) (resp., if inf E e (R \ E)  U 
{-oo}),  then there exists a limit in X of f (s)  as E ~ s -* sup E (resp., as 
E ~ s ~ inf E).  

Proof. (a) Consider the case of a limit from the right. As was already 
mentioned at  the beginning of the proof of Theorem 4.2, the limit r 
exists in R~, so that  the function ~o satisfies the Cauchy criterion of the 
existence of r In view of (3.3), it follows that  the Canchy criterion for 
the existence of the limit f ( t+) is valid in the complete metric space X. 

(b) As in (a), this follows from the existence of the corresponding limit of 
the function ~o(s) which, by virtue of (P6), is equal to V( f ,  E) < c~ (resp., 
zero). [] 

Now the jumps of the function ~o in Theorem 4.2(a) and Theorem 4.3 
can be considered as the jumps of the desired mapping f .  
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L e m m a  5.2. The following formulas hold: 
(a) i f  t E E is a limit point of the set E~-, then 

qo(t) - ~o(t-) = d(f( t) ,  f ($- ) ) ;  

(b) i f  t E E is a limit point of the set E +, then 

qo(tq-) - qo(t) = d( f ( t+  ), f(t));  

(c) i f  t E E is a limit point of the sets E~- and E +, then 

lira _ V ( f  , E~ \ t) = d( f ( t+) ,  f ( t - ) ) ;  
E~a--*t--t} 
E~b-.-*t-bO 

here f ( t+)  and f ( t - )  are as in Lemma 5.1. 

Proof. Since (a) is analogous to (b), we provd only (b) and (c). 
(b) can be obtained by passing to the limit as E ~ s --* t + 0 in (3.3) and 

(4.1) if we take into account the arbitrariness of z > 0 in the second limit; 
(c) can be obtained by passing to the limit as E 9 a --* t - 0 ,  E ~ b --* t + 0  

in (4.5) and (4.6) if we take into account the arbitrariness of e > 0 in the 
second limit. [] 

The formulas in Theorems 4.2(a) and 4.3 assume the most applicable 
form. 

T h e o r e m  5.3. Let X be a complete metric space, and let f : E ~ X be 
a B V-mapping. Then we have 

(a) if  t E E is a limit point of the set E t  , then 
W( f  , E~-) = V ( f  , Z~- \ t) + d(f( t ) ,  f ( t - ) ) ;  

(b) if  t E E is a limit point of the set E +, then 
V(f ,  E +) = V(I,  E + \ t) + d(f(t+), f(t)); 

(c) i f  t E E is a limit point of each of the sets E i- and E +, then 

V(f ,  E) = V(f ,  E~-\t)+V(f, E+\t)+d(f(t), f ( t - ) )+d( f ( t+) ,  f(t)), 

and, moreover, 

V ( f  , E) = V ( f  , E \ t) + d(f(t), f ( t - )  ) + d(f(t+), f(t)  ) - d(f(t+), f ( t - )  ), 
(5.1) 

V ( f ,  E \ t) = V( f ,  E t  \ t) + V( f ,  E + \ t) + d( f ( t+) ,  f ( t - ) ) .  

Proof. It is obvious from the above considerations, [] 

It is interesting to study the formulas in Theorem 5.3 even in the case of 
the closed interval E = [ a, b]. 

C o r o l l a r y  5.4. Let X be a complete metric space and f E V([a,b]; X).  
Then we have 
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(a) V( f ,  [a, t D = vt~(f) - d(f( t) ,  f ( t - ) ) ,  t 6] a, b]; 

(b) V( f , ] t ,b] )  = vtb(f) - d ( f ( t+) , f ( t ) ) ,  t 6 [a ,b[ .  

I f  t E] a, b [, then 

(c) v$(y)  = v (y ,  [a, t D + V ( L  ] t, b]) + d(y(t), l i t - ) )  + d(y( t+) , / ( t ) ) ;  

(d) V(] ,  [a, b]\t) = 'v~iY)-d(y( t ) ,  y ( t - ) ) - d ( Y i t + ) ,  Yit))+d(Yit+),  f i t - ) ) ;  

(e) V( I ,  [a, b] \ t) = V(I ,  [a, t D + v (y ,  ] t, b]) + d (y ( t+ ) , / ( t - ) ) ;  

and 

(f) v (y ,  ] a, b D = V2(y)  - d ( y (a+) ,  y(a))  - d(y(b),  y ( b - ) ) .  

Remark. Note that  the equalities in Theorem 57.3 are some kind of "limit 
forms" of more elementary equalities. Consider, for instance, formula i5.1). 
If we h a v e a s e t T c E o f m + 2 p o i n t s t 0  < t l  < . . .<__ tk -1  < t  < t k  < 
�9 -- < t,~-x < t , , ,  then, obviously (see the equality (2.2)) 

V ( f  , T) = V(I ,  T \ t) + d(f( t) ,  f ( t k -1)  ) + d(f( tk) ,  f ( t )  ) - d(f(tk),  f ( t k -1)  ). 

This equality has a "limit" in the form of equality i5.1). 

6. GEODESIC PATHS 

We denote by C([a~b];X) the set of all continuous mappings from 
[a,b] into the metric space X. A path in X is a continuous mapping 
f : [a,b] --+ X;  its trajectory is the image f ([a,b])  which, as is well known, 
is a compact subset of X. The domain [ a, b ] of f is said to be a set of  param- 
eters of (on) the path; in this case we also say that  the path is parametrized 
by the closed interval [a,b]. The length of the path f : [a,b] --* X is its 
total  variation vab(f). Two points x, y 6 X are said to be connected by 
a path  in X if there exists a path f : [a,b] --* X such that  f (a)  = x and 
f(b) = y; in this case we say that  f is a path between x and y. 

T h e o r e m  6.1. Let K C X be a compact subset. I f  the points x, y E K 
can be connected by a path in K of finite length, then there e.vists a Lips- 
chitzian path in K between x and y of minimal length (such a path is called 
a geodesic path between x and y). 

Proof. The theorem is trivial if x -- y. Hence we suppose that  x ~ y. Since 
any path f : [a,b] --* X can be replaced by a path of the same length (and 
the same trajectory) and the set of parameters [0, 1] (see (P4)), it suffices 
to restrict our consideration to paths defined on [0,1 ]. Thus, consider the 
set of paths in K defined on [0, 1], and connecting the points x and y: 

W ( x , y )  = { f  e C ( [ 0 , 1 ] ; g ) :  f(0) = x , / ( 1 )  = y},  
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and set 

= inf{ v01(/): / e w(x ,  y) }. 

By the assumption, W ( x ,  y) contains a path f0 of finite length, so that  
g<_V~(fo) is finite. On the other hand, for any f 6 W ( x , y )  we have, by 
virtue of (P1), 

go1(/) > d ( f ( O ) , f ( 1 ) )  = d ( x , y )  > 0, (6.1) 

so that  g > d(x,  y). Since g < oo, there exists a sequence {fn}n~176 1 C W ( x ,  y) 
such that  

lim g,~ =g ,  where gn = Vol(fn) > 0 by (6.1). 
n--*oo 

The existence of the latter limit implies that  if L = sup~eNgn, then L is 
finite > 0, so that  the sequence {f,~} is of uniformly bounded variation. By 
Lemma 3.3, for any n 6 N there exists a naturalized path g,~ : [ 0, gn ] --~ X 
with the properties 

d(gn(a),gn(t3)) _< Io, - ~'1, c~, f i e  [o ,~ . ] ,  

A = g ~ o ~  on [o, 1], where ~ . ( t ) = V ~ ( A ) , t e [ 0 , 1 ] ,  

and, in particular, gn(O) = fn(O) = x, 9n(gn) -- fn(1) = y, gn([O, gn]) = 
f,~([0,1]) C g and Vo~'~(g,~) = Vol(fn) = g,~. ) ) w e  set hn(r )  = g,~(~'gn), 
~" 6 [0, 1], then we have 

hn E W ( x ,  y),  

Vol(hn) = gn "~ g as n --~ oo (by (P4)), 

d( h,~ ( a) ,  hn (fl) ) <_ s - fll <- n l a  - /31, a, Z 6 [0,1]. 

It follows tha t  the sequence {h,~}~= 1 C C([0, 1]; K)  is equicontinuous, so 
that  by the Ascoli-Arzel~ theorem (cf. [9], p. 131, Theorem (4.44)), this 
sequence has a subsequence {hn~ }~~ 1 such that  

lira sup d(hnk (v ) ,h (T ) )  = 0 for some h 6 C( [0 ,1 ] ;g ) .  
k" * co  ~-e[ 0,1 ] 

Obviously, h 6 W ( x ,  y), and h is Lipschitzian with Lip(h) < L. From (P7) 
we infer tha t  

Vo 1 (h) < lim inf Vo 1 (h,~,) = lim g,~, = g. 
- -  k - - * c ~  k - * c ~  

It remains to note that  from the definition of ~ we have g < V0 z (h), so that  
g = V01 (h); this completes the proof. [] 
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7. HELLY SELECTION PRINCIPLE 

The main result of this section is the following analog of the classical 
E. Hefty selection principle. 

T h e o r e m  7.1. Let X be a compact metric space and .~ C C([a,b];X)  
be an infinite family of continuous mappings of uniformly bounded vari- 
ation, i.e., s u P f e y V b ( f )  < co. Then there exists a sequence of map- 
pings {fn}~=l C ~" which converges pointwise on [a,b] to a BVomapping 
f : [ a , b ] - * X .  

Proof. By Theorem 3.1, any mapping f E b v can be written in the form 
f = gf o ~oi on [a,b], where ~of(t) = V~a(f), a < t < b, and g f :  [0,21] --* X 
is a Lipschitzian mapping with Lip(gi) < 1 and~if = Vab(f). Note tha t  
~of is nondecreasing, nonnegative, and ~ol(a ) = 0, and, since f is contin- 
uous, ~of is also continuous, so that  ~oi([a,b]) = [0,2f]. The family of 
nondecreasing functions { ~o I : f E ~ } is infinite and uniformly bounded 
(since oJ(~of, [a, b]) = ~f(b) = v b ( f ) ) ,  and, hence, it contains a sequence 
of functions ~on corresponding to the decomposition fn = gn o ~an which 
converges pointwise on [a, b] to the nondecreasing function ~ : [a, b] --* R 
(cf. [19], Ch. S, Sec. 4, Lemma 2). Let 2 = Vab(~o) = ~o(b). Then 0 < 2 < co, 
and, if 2,~ = vba(~n) = ~o,~(b), then 2n --* s as n --* co. If some 2n >_ 2, 
then we consider gn only on the closed interval [0,~], and if some 2n < e, 
then we extend g,~ to ]2n,2] by setting gn(•) = gn(2n) for all v e]/,./]. 
Then, by the Ascoli-Arzelh theorem, the sequence of Lipschitzian mappings 
gn : [0,2] -~ X with Lip(gn) _< 1 has a uniformly convergent subsequence 
{gnk}a~ Let g be the uniform limit of {gnu}- Then g : [0,2] ~ X is 
Lipschitzian with Lip(g) <_ 1, so that,  by virtue of Lemma 3.2, f = g o ~o is 
a BV-mapping on [a,b]. Now, i f t  e [a,b], we have 

d(fn~ (t), f ( t ) )  = d((gn~ o ~ank)(t), (g o ~o)(t)) 

<_ d(gn, (~n, (t)), gn, (~(t))) + d(gn, (~(t)), g(~o(t))) < 

< I~ank (t) - ~o(t)l + d(gnk (~a(t)), g(~o(t))) 

with the right-hand side tending to zero as k --* oo. Thus, fn~ converges 
pointwise on In, b] to f .  This completes the proof. [] 

Remark. As can be seen from the proof of Theorem 7.1, the assumption 
of continuity of the family 9 v seems to be indispensable for the validity of this 
theorem. However, we do not know the exact counterexample. Note tha t  if 
X = R the continuity of ~ is redundant (see [19], Ch. 8, Sec. 4, the Helly 
theorem) since the Jordan decomposition takes place in this case. On the 
other hand, the continuity of the family ~" does not, in general, imply tha t  
the resulting BV-mapping f is continuous, as the following simple example 
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shows: the sequence fn : [0, 2] --* ]R defined by fn(t) = t n if t �9 [0, 1] and 
by fn (t) = (2 - t) ~ if t �9 [ 1, 2 ] converges pointwise as n --* co to f = 0 on 
[0,2] \ {1} and f (1)  = 1. 

8. NORMED SPACE-VALUED BV-MAPP[NGS 

In this section we assume tha t  X is a normed vector space over the field 
K = (R or C) with the norm II" II, and, as usual, • ~= E C R. Actually, X ~ 
becomes a vector space (over K) wi th  respect to the pointwise operations 

( f + g ) ( t ) = f ( t ) + g ( t ) ,  ( c f ) ( t )=c f ( t ) ,  f ,  g e X  s ,  cE]K, t e E .  

P r o p o s i t i o n  8.1. The functional V ( . , E )  : X s ---, [0,r has the fol- 
lowing properties: 

(a) V ( f  + g,E) g V ( f , E )  + V(g,E) ,  f , ' g  �9 X E (subadditivity); 
(b) V(cf,  E) = IclV(f, e ) ,  f �9 X E, c �9 K (homogeneity); 

(hence, V ( . , E) is convex: if  f ,  g �9 X E and a �9 [0, 1], then 

V ( a f  + (1 - c~)g, E)  _< a V ( f ,  E)  + (1 - a)V(g, E) ); 

(c) i f  Ilfll~ = IIf(a)ll + V ( f , E )  for f �9 X E and fixed a �9 E, then 
II.ll~ : X E  ---~ [0, oo] is a pseudonorm on X E (i.e., it satisfies the 
axioms of norm and possibly takes infinite values); 

(d) V(.  ,E) is sequentially continuous on X s with respect to II" II{,, 
i.e., if {fn}~=l C Z ~, f �9 X ~, and l imn- ,~  I l f ,~-  fll~ -- 0, 
then lim~-_,~ V(fn,  E) = V( f ,  E), and if, moreover, {fn}~=l C 
!2(E; X),  then supneN V ( f , ,  E) < oo and f �9 V(E; X). 

Proof. I tems C a) and (b) are obvious. (c) By virtue of (a) and (b), it suffices 
to verify t ha t  

if f �9 Z s and Ilfll~" = 0, then  f( t)  = 0 for all t �9 E.  

This follows immediately from IIf(t)ll < IIfll{- for all f �9 X E and t �9 E,  
since, due to (P1), we have [ I f ( t ) I I -  [[f(a)l I < [If(t) - f (a) l  I < V(f ,  E) by 
the  triangle inequality. 

(d) Let  IIf  - fll  --* 0,  n - - ,  oo. Then  IIf (t) - f ( t ) l l  < IIf  - IIl  --* 0 
as n --* c~ for all t �9 E,  so tha t  V ( f , E )  < liminfn--.~V(fn,  E) by (P7). 
On the other  hand, 

V(f~, E) < V ( A  - f ,  E) + V( f ,  E) <_ I1• - f l l5  + W(f, E), 

whence 

limsup V(fn,  E) <_ l i r a  I l l .  - f l l~  § V ( f , E )  = V( f ,E ) .  

n E N ,  
(8.1) 

Hence, V( f ,  E)  = l imn- .~  V(fn ,  E) .  
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Now suppose that  fn E )2(E;X), n E N. From (8.1) with f = fk we have 
a s  ?z, k - +  C ~ :  

W ( A , E )  - v ( A ,  E)I _< IIA - / k l l 5  _< i iA - f i i ~  + I t / - / , 1 1 ~  -~ 0, 

so that  {V( fn ,  E)}n~=l is a Cauchy sequence in JR, and, hence, it is bounded 
and convergent. The inclusion f E 1)(E; X) is then obvious. [] 

P r o p o s i t i o n  8.2. The restriction of ]I" ii~/ to V(E; X )  is a norm on 
V(E; X )  and V( . ,  E) is a continuous functional on ])(E; X) .  If, in addition, 
X is a Banach space, then 12(E; X )  is also a Banach space with respect 
to li" li;~. 

It suffices to prove that  I;(E; X) is complete. This is a consequence of 
the following general observation. 

P r o p o s i t i o n  8.3. Let II" [l* be a pseudonorm on X E and let/3(E; X )  be 
the set of all f e X E such that HfH* < cr Suppose that the following two 
conditions hold: 

oo X E (a) if  a sequence {f,~}n=i C converges pointwise on E to f E X E 
as n --* c~, then lifH* -< liminfn__.or IIfneJ* ; 

(b) every [l" H*-Cauchy sequence in B(E; X )  has a pointwise convergent 
subsequence. 

Then H'Ii* is a norm on B(E; X ) ,  and B(E; X )  is a Banach space with el" H*. 

Proof. Let {fn},~~176 I be a Cauchy sequence in B(E; X) .  By (b), there exist a 
subsequence (fnk }k~162 and a mapping f E X ~ such that  fnk --* f pointwise 
on E as k --* c~. Hence, for all n e N, the sequence f,~ - fn~ converges 
pointwise to fn - f as k --* oo, so that  (a) yields 

Hfn - fH* < l iminf iifn - ~ l i *  = lim l i f n -  s Vn e N. 
- -  k--*oo k---*oo 

Thus, using the fact that  {fn}n~162 is a Canchy sequence, we have 

limsup ]Ifn - fil* < lim lim IIfn - fnk I]* -- 0, 
~rt,---~ OO ~---* OO k - * o o  

so that  Hf- - fiI* --* 0 as n --* oo. It follows that  f E B(E; X )  since 
IJfno - fit* < 1 for some no E N, and therefore 

Ii/ll* -< lif  - AolI* + Ill.oil* -< 1 + liAoll* < ~ .  []  

Remark. Note tha t  condition (b) is satisfied provided that  X is complete 
and I[f(t)]] --* 0 as ]lflI* ~ 0 for all t e E, i.e., V t e  E Ve > 0 36 = 
6(t,e) > 0 V f  e X E, Hf]l* -< 6 ==~ Iaf(t)H < e. Indeed, if {fn}~=l c Z E is 
a Canchy sequence, then, given t E E and e > 0, there exists N = N(6) E N 
such that i lA - f~ l l*  < ~ for an n, m > N ,  so that IIA(t) - / ~ ( t ) l i  < ~. 

t It follows that  for all t E E the sequence {fn( )}n--1 is Cauchy in X,  and 
hence, it is convergent. 
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With this remark and Proposition 8.3, we obtain the completeness of 
]diE; X) .  Note that  this proposition can be applied for the proof of the 
completeness of a large number of normed function spaces (for instance, in 
the theory of Lebesgue integrable functions condition (a) follows from the 
Fatou temma). 

Let I C ~ be a connected interval (open, closed or half-closed, bounded 
or unbounded).  Recall the mean value theorem (cf. [4], Ch. I, Sec. 2.3). 

T h e o r e m  8.4. Let f : I --* X be a continuous mapping for which the 
(norm) right derivative f~( t )  e X exists for all t E I \ Q, where Q c I is 
at most  countable. Then, for all a, b E I, a < b, and to E I \ Q, we have 

(a) Hf(b) - f (a) l  I < (b - a ) s u p {  IIf~.(t)ll : t e]a ,b[ \Q }; 
(b) IlYib) - f (a )  - f :~( to ) (b-  a) ll --- ( b -  a)~uPt~l a,b [\Q II f:~ (t) -- f:~ (t0)ll- 

A similar theorem holds in the case of the left derivative if_ (t). 

C o r o l l a r y  8.5. Under the assumptions of Theorem 8.4, 

(a) if, for all a, b E I, a < b, the right derivative f~  is bounded on 
] a, b [\Q (by a constant depending on a and b), then f e Vloc(l; X); 

(b) i f  f ~  is bounded on I \ Q and I is bounded, then f E Y(/;  X) .  

Proof. Apply Theorem 8.4(a) and Lemma 3.2 with qo(t) = t, t e I \ Q. [] 

L e m m a  8.6. / f  f e ~)([a, b f; X ) ,  then, for all h e] O, b - a ], we have 

b- -h  b 

a a + h  

Proof. Let h e [ 0, b - a ]. Since we have a < t < t + h < b for t e [ a, b - h ], 
(Pl) ,  (P3), and (P2), imply that  

IIf(t + h) - f(t)ll _< W + h ( f )  = Vta+h(f) -- Eta(f) <- v b ( f )  �9 

It follows that  the function [ a , b - h ]  ~ t ~-* IIf(t + h) - f ( t ) l l  ~ ~ ts 
bounded and continuous almost everywhere (due to Theorem 4.1(b)), so 
that  it is Riemann integrable on [a, b - h] due to the Lebesgue criterion. 
Now it suffices to integrate the first inequality above: 

b- -h  b b - h  

a a + h  a 

b 

G f Vta(f) dt <__ hVba(f). [] 

b- -h  
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T h e o r e m  8.7. 
(a) I / the  mapping f e C([a,b];X) has a right derivative f~ : [a,b[:---~ X 

(defined arbitrarily at t = b) such that Ilf~-(t)ll is Riemann integrable as a 
function of t E [a,b], then f E ];([a,b];X) and 

b 

wb(f) ~ f Ilf~-(t)ll 
I% 

dr. 

(A similar assertion holds in the case of the left derivative fL :] a, b] --* X. )  
( b ) / f f  e Cl([a,  b]; X) (i.e., f :  [a, b] --* X is continuously differentiable 

on [a,b]) ,  then f e Y([a,b];X) and 

b 

V)(f) = / I I f ' ( t ) l l  dr. 
t l  

(Note that in (b) we do not assume the normed vector space X to be com- 
plete.) 

Proof. 
t m (a) Let T = {i}~=0 E Ta b be a partition of [a,b]. 

rem S.4(a) to f on [ t i - l , t i ] ,  we have 
Applying Theo- 

[]f(t~) - f ( t~- l ) ] l  _< (tl - ~i-1) sup { Ilf~(t)ll  : t e] t i - -1 ,  ~i[ }, 

which, after the summing over i = 1, . . .  ,m,  implies 

m 

V( f ,  T) <_ ~ sup { Hf~_(t)ll : t e It,-1, ti] }" (t~ - t ~ - l ) .  
i = l  

Now we pass to the limit as •(T) --* 0 in the latter inequality: the left- 
hand side tends to vab(f) by Theorem 2.2, and the right-hand side, which 
is the upper Daxboux sum of t ~-~ IIf~_(t)Jl corresponding to T, tends to 

f :  IIf~- (t)II dt by the classical Darboux theorem. (Note that  (a) remains valid 
if we replace [ a, b [ in (a) by [ a, b [\Q, where Q is a finite subset of [a, b [.) 

(b) The derivative f l  : [a,b] --* X of f is continuous, and, hence, its 
norm t ~-* [[f'(t)[[ is also continuous and Riemann integrable, so by virtue 
of (a), we have 

b 

vba(f) <_ / I I / ' ( t )] l  dr. 
o,  
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Let us prove the converse inequality. It will follow at once from Lemma 8.6 
if we show that  

b--h b 

lim f f ( t + h ) - f ( t )  dt= f llf'(t)lldt. 
h--*+O h 

a a 

We fix h e] 0, b - a [. Applying Theorem 8.4(b) for every t in [ a, b - h ] to 
the mapping [0, h] ~ s ~-~ f( t  + s) E X,  we have 

Ilf(t + h) - f(O - f'(t)hll <_ h sup IIf'(t + s) - / ' ( t ) l l .  
~e] 0,h [ 

Thus, 

b - h  t~ 

I/I 
b--h b 

--I/( 
a b--h 

b--h b 

<- /]1  f( t  + h)_~- f(t) _ f,(t)ltdt+ / Hf~(t)lldt < 
a b--h 

b - h  

/ sup JJf'(t + s) - f ' ( t)JJdt + h sup IIf'(t)JJ. < 
J se] 0,h [ te[b--h,bl 

The latter two terms tend to zero as h ~ +0 due to the uniform continuity 
and boundedness of the derivative f~ on [a, b]. [] 

Remark. The almost everywhere differentiability and weak differentia- 
bility of vector-valued (namely, reflexive Banach space-valued) absolutely 
continuous mappings and mappings of bounded variation were treated by 
Komura [12], Barbu [2], Ch. 1, Sec. 2, and Baxbu and Precupanu [3], Ch. 1, 
Sec. 3. 

9. BV-SELECTIONS OF BV-SET-VALUED MAPPINGS 

Before stating and proving the main result of this section (Theorem 9.1), 
we recall some definitions (see Castaing and Valadier [5], Ch. 2, Sec. 1, and 
Aubin and Cellina [1], Ch. 1, Secs: 1, 5). 

Let A, B C X be two nonempty subsets of the metric space (X, d). The 
excess of A over B is defined by 

e(A,B) = sup  dis t (x ,B)  = sup inf d(x,y) e [0,co],  
x E A  s E A  y E B  
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and the Hausdorff distance between A and B is defined by 

dH(A, B) --- max{ e(A, B), e(B, A) }. 

Since e(A, B) = 0 if and only if A is contained in the closure of B, and since 
e(A, B) <_ e(A, C) q- e(C, B) for nonempty C C X, it follows that  dH is 
a pseudometric on the set of all nonempty closed subsets of X, i.e., dH 
satisfies the usual axioms of a metric and possibly takes infinite values. The 
mapping dH is a metric on the set of all nonempty closed bounded subsets 
of X,  and, hence, on the set of all nonempty compact subsets of X and, if 
X is bounded, also on the set of all nonempty closed subsets of X. 

Let E and X be two metric spaces, 2 x be the set of all subsets of X, 
and let 2x = 2 x \ {0}. A set-valued mapping from E into X is a mapping 
F : E --* 2 X, so that  we have F(t)  C X for every t E E.  The graph of F is 
the set Gr(F)  = { (t, x) e E x X : x E F(t) } and the range of F is the set 
R(F) = UteE F( t ) ,  so that  R(F) C X.  

The set-valued mapping F : E -* ~x is said to be 

(a) upper semicontinuous (u.s.c.) at to E E if, for any neighborhood 
Af(F(to)) of the set F(t0), there exists a neighborhood A/'(to) of to 
such that  for every t e Af(t0) we have F(t) C Af(F(t0)); 

(b) lower semicontinuous (l.s.c.) at to E E if, for any xo E F(to) and 
any neighborhood Af(Xo) of xo, there ex5sts a neighborhood Af(to) 
of to such that  for every t E Af(to) we have F(t)  n Af(xo) ~ 
(this is equivalent to: for any sequence tn converging to to in E and 
any xo E F(to) there exists a sequence x,~ E F(tn)  which converges 
to xo in X); 

(c) continuous at to E E if it is both u.s.c, and l.s,c, at to; 
(d) Hausdorff continuous at to E E if for any e > 0, there exists ~ -- 

~(e) > 0 such that  i f t  E E and dE(t, to) _< ~, then dH(F(t), F(t0)) _< 
e; 

(e) u.s.c, on E (resp., 1.s.c., continuous or Hausdorff continuous on E) 
if it is so at every to E E; 

(f) Lipschitz continuous on E if dH(F(t), F(s)) <_ LdE(t, s) for some 
L :> 0 and for all t, s E E. The minimal L of this kind is called the 
Lipschitz constant of F and is denoted by Lip(F); 

(g) compact-valued if F(t) is a compact subset of X for every t e E; 
(h) compact if its graph Gr(F) is compact in E x X (hence, F is 

compact-valued, but not vice versa); 
(i) of bounded variation on E = [ a, b ] C R if 

vab(F) = sup { VH(F, T ) :  T e 'Ta b } < oo, 
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where  
m 

VH(F,T)  = ~ d g ( F ( t / ) , F ( t / _ : ) ) ,  T = {t/}~n=0 e T b.  
/=1 

T h e  mapping  f : E --* X is said to be a (regu/ar) selection of the  set- 
valued mapping  F : E ~ 2 x  if f ( t )  e F(t)  for all t e E.  

It  is known tha t  a compact-valued set-valued mapping  F : E --+ 2x  is 
cont inuous on E if and only if it is Hausdorff  continuous on E (cf. [1], Ch. 1, 
Sec. 5, Corol lary  1). 

In wha t  follows, we assume tha t  E = [ a, b ] C R. 

T h e o r e m  9.1.  
(a) Let X be a Banach space with the norm [[. [[, and let F : [a,b] --* 2x  

be a compact continuous set-valued mapping of bounded variation on [ a, b ]. 
Then, for any to E [a,b] and any xo E F(to), there exists a continuous 
mapping f : [ a, b ] --~ X of bounded variation on [ a, b ] such that 

/(Co) = f(t)  e F(t) for all t e [ a , b ] ,  and V2(f) < V2(F). 
(9.1) 

(b) If, in addition, the range R(F)  of F is contained in a convex compact 
subset of X ,  and, in particular, if  dim X < co, then the assumption of 
continuity o f f  can be omitted, so that f e 17([ a, b]; X )  and f satisfies (9.1). 

T h e  following lemma,  used in the proof  of Theo rem 9.1, is itself interest-  
ing. 

L e m m a  9.2 .  Let X be a Banach space with norm II " II, and let F : 
[a, b] --~ 2x  be a compact Lipschitz continuous set-valued mapping on [ a, b ]. 
Then, for any to E [a,b] and any xo E F(to), there exists a Lipschitzian 
mapping f : [ a, b] --* X such that 

f ( to)  = xo, f ( t )  e F(t)  for all t E [a,b], and L ip ( f )  _< L ip (F) . (9 .2 )  

Proof. Consider  a sequence {Tn},~~176 C T b of part i t ions of [a, b] such t ha t  
to E T,~ for all n E N and A(Tn) -+ 0 as n ~ c~. In o ther  words, for n E N, 
we have 

n = n _ _ b }  ' T n = { { t i } i = o C [ a , b ] : a  t ~ < t ~ < ' " < t n _ : < t n  

Co = t~(n) for some k(n) E {0,1 ,  . . .  , n } ,  and lim max  (t~ - t ~ _ : )  = 0. 
n---*OO l ~ i ~ n  

n F( t~)  inductively as follows. Let  a < Co < b, We are going to  define x/ E 
and let n E N. 

(a) Set xk(~) = x0. 



2 8 6  V . V .  C H I S T Y A K O V  

(b) If i E { 1 , . . . , k ( n ) }  and if x~ E F( t~)  is already chosen, fix 
xi~_l e F( t~_l )  such tha t  IIx~ - x ~ _ l l  I = dist(x~, F(t~._l) ). 

(c) If i E {k (n )  + 1, . . .  , n }  and if x~_ 1 e F( t~_l )  is already chosen,  
X n fix x~ e F( t~ )  such tha t  II i -1  - x~]l = dis t (x '~- l ,F( t~)) .  

If to = a, so tha t  k(n)  = O, then  we use only (a) and (c) to define xin, and 
if to = b, so t ha t  k(n)  = n, then  we define x~ as in (a) and (b). 

We no te  a t  once tha t  by vir tue of (b) and (c), we have 

x ~ - ( 9 . 3 )  I1=~- ~-111 -< dH(F(t~),F(t~-l)) <- L i p ( F ) .  (t~ t~_l). 

Now we define a sequence of mappings fn  : [a, b] -* X ,  n E N, as follows: 

f,~(t) x '~ t - t '~ = X n tn n .. ~_~ + "-~ ( z ? -  ~_~), t e [ ~_~,t~ ], i =  i, . n. t~ - -  n 
t i -1  (9.4) 

Obviously, fn( to)  = Xo for all n E N. 
First ,  we note  t ha t  {fn}~~176 I is uniformly Lipschitzian on [a ,b]  wi th  

n n . (9.4) and (9.3), we Lip( fn)  _< L ip(F) .  Indeed, t, s E [ t i _ l , t  i ], then,  due to 
have 

I I . f ,~ ( t )  - . f , ( ~ ) l l  < - -  
It  - ~1 X ~ I1=? - ~-~11 < L i p ( F ) - I t  - ~1, 

and,  hence, the assert ion follows, so t ha t  {fn},~~ 1 is equicontinuous on [ a, b]. 
Second, for every  t E [a, b] the sequence {fn(t)},~~176 1 is precompact  in X .  

Indeed,  given t E [a, b], for every n E N there  exists i (n)  E { 1, . . .  , n } such 
n < t < '~ and therefore,  since A(T,~) -*  0 as n --* c~, we find t ha t  tic,0_ 1 - ti(n), 
n n t h a t  ti(~)_ 1 and t~(n) tend  to  t as n -*  oo. Thus,  (9.3) implies 

[ t - t~( ,0_ i ~ - x ~  [ 
n- -  ,-'hW--- (xi(n) z(n)-i)  - < L i p ( F ) .  It - ti(n)_i[ --* 0, n --} ,~ .  [{ t~(,.,) - t~(n)_: t 

Since F is compac t  and xi'~,~)_l E F ( t ~ n ) _ l ) ,  there  exists a subsequence of 
( t~)_ 1, x,~n)_l) E d r ( F )  (still denoted  by the  same symbol)  which con- 

verges in [a,b] x X to  the  point  (v ,x)  e d r ( F ) .  However, ti'~n)_ t --~ t as 
n --~ c~, and therefore,  v = t, so tha t  (t, x)  E d r ( F )  or x E F( t ) .  It follows 
t h a t  f,~(t) --* x in X as n --* oo, where  x e F ( t ) ,  and therefore,  { fn( t )}~= 1 
is p recompac t  in X .  

By  the  Ascoli-Arzel~ theorem,  {f,*}~--1 is p recompac t  in C([a ,b ] ;X ) ,  
and,  hence, there  exists a subsequence of {f,~}~=i which uniformly converges 
on [a, b] to  the  mapping  f : [a, b] -*  X .  Clearly, f is Lipschitzian and  f 
satisfies the  proper t ies  in (9.2). [ ]  
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Proof of Theorem 9.1. 

(a) By virtue of Theorem 3.1 or Lemma 3.3, we have the decomposi- 
tion F = G o ~o on [a,b], where [a,b] 9 t ~-* ~o(t) = Vta(F) e R+o is a 
bounded nondecreasing continuous function and G : [0, e] = ~o([a, b]) --* 2x 
is a Lipschitz continuous set-valued mapping such that  ~ = Vb(F) < oo 
and Lip(G) ~ 1. Since F is compact, G is compact as well. Indeed, if 
{(T,n,y~)}n=l~176 C Gr(G), then rn = ~O(tn) for some t,~ e [a,b] and y~ E 
G(~o(t,)) = F(t~),  so that  S --- {(tn,y,~)}~=l C Gr(F).  Hence, there ex- 
ists a subsequence of S (denoted by the same symbol) such that  tn --* t 
and y~ --* y as n ---* cr where y e F(t) .  We set r = ~o(t). Since 
~o is continuous, (Tn, y,~) converges to (r, y) E Gr(G). Now, noting that  
Xo E F(to) = G(To) with To = ~o(t0), by Lemma 9.2 we find a Lipschitzian 
mapping g : [0,s ~ X such that  g(vo) = xo, g(r) 6 G(r)  for all v e [0,~] 
and Lip(g) < Lip(G) _< 1. 

We set f = go~o. Then f : [a,b] --* X is continuous, f 6 Y([a ,b] ;X)  
by Lemma 3.2, f(to) = xo, and f ( t )  = g(~o(t)) E G(qo(t)) = F(t) for all t. 
Finally, by virtue of (P4) and the inequality in Remark (b) on p. 268, we 
infer that  

V•(f) = vba(g o ~o) = V0'(g ) < ~. Lip(g) <_ g = v b ( f ) .  

(b) Suppose now that  R(F)  C K,  where K is a convex compact subset 
of X. We start, as in the proof of Lemma 9.2, up to formula (9.4). Note 
that  the mappings f~ : In, b] --* X defined there are continuous and that  
by virtue of (P3), Theorem 8.7(b), and the first inequality in (9.3), we have 

n t~' 

= Vt?..1 ( fn)  = II.f'(t)ll dt  = 
i-----i t 

tP 

=~.-1/_ t Hzn-Xn-lHdt'=~l'xn-xn-lH<-t'~ t'n,-1 i=1 

< f i  dH(F( t~) ,F( t~_ l ) )= VI~(F, Tn) < Vb(F) < oo, n 6 N. 
i=1 

Since F is compact, R(F)  is compact in X, and, by our assumption, the 
convex hull co R(F)  of R(F)  is contained in K.  Since the image of every fn 
is contained in coR(F) ,  and, hence, in K,  we can apply Helly's selection 
principle (Theorem 7.1): there exists a subsequence of { fn }n~162 1 (still denoted 
by the same symbol) which converges pointwise on [ a, b ] to a BV-mapping 
f : [a,b] --* X .  The first two properties in (9.1) are then clear, and it 
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suffices to note that  by virtue of (PT), we have 

vb( f )  ~ liminfyab(fn) ~ Yb(F). 
n---~OO 

Finally, if dim X < c~, then the convex hull co R(F) of the compact 
set R(F) is compact and convex (cf. [1], Ch. 0, Sec. 5, Proposition 5), so 
tha t  we can set K = co R(F). 

This completes the proof. [] 

Remarks. Continuous selections of convex-valued set-valued mappings 
under very general conditions are known to exist due to Michael [14]-[16] 
(see also Castaing and Valadier [5], Ch. 3, Sec. 2, and Aubin and Cel- 
lina [1], Ch. 1, Secs. 6-14). In Sec. 9 we treated t~he nonconvex case: The- 
orem 9.1 generalizes the results of Hermes [10], Kikuchi, and Tonita [11] to 
the infinite-dimensional case without convexity. Lemma 9.2 is known; see 
Mordukhovich [17], Supplement, Theorem 1.8, where he also proves, in a 
different way, the existence of a continuous selection under the conditions 
of Theorem 9.1(a). However, we prove, in addition, that  there are contin- 
uous selections of bounded variation. Part (b) of Theorem 9.1 without the 
continuity assumption of F is new. It should be noted that  continuous se- 
lections of compact set-valued mappings cannot exist if (a) F : [a, b] --* 2 e2 
is continuous only (Hermes [10] and Aubin and Cellina [1], Ch. 1, Sec. 6), 
or (b) F : E --* 2x is Lipschitz continuous, dim E > 1, and dim X < c~ 
(Hermes [10] and Nadler [18]). 
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