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Abstract—We propose a natural analog of the Wold decomposition in the case of a linear noninvert-
ible isometry V in a Banach space X . We obtain a criterion for the existence of such a decomposition.
In a reflective space, this criterion is reduced to the existence of the linear projection P : X → VX
with unit norm. Separately, we discuss the problem of the Wold decomposition for the isometry Vϕ

induced by an epimorphism ϕ of a compact set H in the space of continuous functions C(H). We
present a detailed study of the mapping z → zm of the circle |z| = 1 with an integer m ≥ 2.
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INTRODUCTION
It is well known [1]–[3] that a linear isometry V in Hilbert space X generates the so-called Wold

decomposition. We mean the decomposition of X into an infinite orthogonal direct sum of the form

X = M ⊗ K, K =
∞⊕

0

V nR,

where R is the orthogonal complement of the image VX, the subspaces M and K are invariant
with respect to V , the restriction of V to M is unitary, and the restriction of V to K does not have
eigenvectors. Moreover, the operator V is not unitary in any invariant subspace L ⊂ K. In fact, the
Wold decomposition allows one to reduce studying arbitrary isometries in Hilbert space to studying
unitary operators and completely nonunitary isometries with the specific structure of a one-sided
shift.

The present paper contains conditions (see Theorem 2.1) necessary and sufficient for the realization
of such a decomposition in Banach spaces. In this case, the usual Hilbert orthogonality is replaced by
the orthogonality in the sense of Birkhoff. The usual component of the corresponding criterion is the
existence of at least one linear orthogonal projection operator P : X → VX (with norm 1). We show
(Theorem 2.6) that, in a reflexive space, the existence of the orthoprojection on VX is necessary and
sufficient for the Wold decomposition to take place. But if the linear isometry V acts in an arbitrary
Banach space X, then the problem of the existence of such a decomposition depends not only to the
properties of the operator V , but also to the choice of an appropriate element P from the set PV of all
possible orthogonal projection operators on the subspace VX.

We especially consider the case of the situation in which the field of action is the space C(H) of
continuous scalar functions x(ξ) on the Hausdorff compact set H and the isometry V = Vϕ in C(H) is
induced by the continuous surjection ϕ : H → H , i.e., (V x)(ξ) = x(ϕξ) for ξ ∈ H , which is interesting
from the standpoint of the functionally analytic approach to problems of topological dynamics. In
particular, we show (see Sec. 3) that the mapping ϕ : z → zm of the circle S : |z| = 1 with an integer
m ≥ 2 (more precisely, the induced isometry V = Vϕ) generates the Wold decomposition in C(S) under
an appropriate choice of the projection operator P ∈ PV . At the same time, for the case m = 2, we
present an orthogonal projection operator P ′ ∈ PV such that the pair of operators (V, P ′) does not
generate the Wold decomposition of the space C(S).
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WOLD DECOMPOSITION IN BANACH SPACES 807

1. PRELIMINARY STATEMENTS

Let V be an isometric linear operator in real or complex Banach space X. In other words, let
‖V x‖ = ‖x‖ for x ∈ X. We stress that all the subsequent results are meaningful only if VX �= X, and
thus, the operator V is not a unitary operator. Following [4] and [5], we say that the subspace X1 ⊂ X
is orthogonal to the subspace X2 ⊂ X and write X1 ⊥ X2 if ‖x1‖ ≤ ‖x1 + x2‖ for any x1 ∈ X1 and
x2 ∈ X2. The linear projection operator P : X → X1 with norm 1 is said to be orthogonal. In the non-
Hilbert case, for a given subspace X1 ⊂ X, it is known that such a projection operator does not always
exist (this problem was discussed in the book [5]).

In what follows, we start from the fact that the linear orthogonal projection P : X → VX exists.
If R = (I − P )X, where I = id in X, then the subspaces V nR with n ≥ 1 are orthogonal to the
subspace R. Since the operator V is isometric, this also implies that V nR ⊥ V mR for all n > m. We
define a bounded linear operator T in X by the relation T = V −1P , where V −1 is the left inverse operator
isometrically taking VX to X. It is clear that ‖T‖ = 1, TV = I, and V T = P . We set P0 = I and

Pn = V nT n, n ≥ 1. (1)

We see that

‖Pn‖ = 1, Pn = V Pn−1T, and P 2
n = Pn.

The last relation is obtained from (1) by using the identity TV = I. Since TX = X, we have PnX =
V nX, and the operators Pn are the orthogonal projection operators on the subspaces V nX. We have the
following decompositions into the direct sum:

X = VX ⊗ R, V mX = V m+1X ⊗ V mR,

and, as a consequence, the decomposition

X = V nX ⊕ V n−1R ⊕ · · · ⊕ V R ⊕ R,

where

V nX ⊥ V mR for n > m ≥ 0 and V mR ⊥ V kR for n − 1 ≥ m > k ≥ 0.

The sequence {Pn} is a decreasing chain of commuting projection operators, i.e., PnPm = PmPn = Pn

for n ≥ m. The image of the projection operator Qn = Pn − Pn+1 coincides with the subspace V nR,
and we have the relation

I = Pn +
n−1∑

m=0

Qm. (2)

By the letters s and w we denote the strong and the weak convergence of elements or of bounded
linear operators in Banach spaces. We use the symbols Im and Ker to denote the image and the kernel
of linear operators. We also set

M =
∞⋂

1

Im V n, K =
( ∞⋂

1

Ker Pn

)c

,

where Im V n = Im Pn and ( · )c is the strong closure operation for sets in X. The inclusions

ImPn ⊂ Im Pm and Ker Pn ⊃ Ker Pm

are obvious for n > m. Now we fix some elementary properties of the subspaces M and K.

Lemma 1.1. The following assertions hold:

(a) K = {x ∈ X : s- limn→∞ Pnx = 0} and M ∩ K = {0};

(b) if s- limn→∞ Pnx = x0, then x0 ∈ M ;

(c) M ⊕ K = {x ∈ X : ∃ s- limn→∞ Pnx};
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(d) M is orthogonal to K.

Proof. Let K1 be the union over n ≥ 1 of the system of sets Ker Pn. The inclusion KerPn ⊃ Ker Pm for
n > m ensures the strong convergence Pnx → 0 as n → ∞ on the lineal K1. If the relations ‖Pn‖ = 1
are taken into account, then this inclusion ensures the strong convergence on its closure K = (K1)c.
Conversely, if pnx

s−→ 0 for some x ∈ X, then (I − Pn)x s−→ x. But

x − Pnx ∈ Ker Pm for m > n;

therefore, x ∈ K. Property (b) follows from the identity PmPn = Pn for n > m. Further, Pnx = x on M ,
and hence M ∩ K = {0} and the projection operators Pn strongly converge on M ⊕ K as n → ∞. On
the other hand, if Pnx

s−→ x0, then x0 ∈ M and x− x0 ∈ K, because Pn(x− x0) = Pnx − x0, and hence
Pn(x − x0)

s−→ 0. Finally, for elements x ∈ M and x1 ∈ K, the relation

s- lim
n→∞

Pn(x + x1) = x

holds. Since ‖Pn(x + x1)‖ ≤ ‖x + x1‖, this implies that ‖x‖ ≤ ‖x + x1‖ and hence M ⊥ K. The proof
of the lemma is complete.

Remark 1.2. It follows from the proof of the lemma that assertions (a)–(c) remain valid if, instead of the
strong convergence of the elements Pnx, we consider their weak convergence.

The subspace M ⊕ K is closed and, in general, does not coincide with X. But we assume that the
limit

w- lim
n→∞

Pn = P∞ (3)

exists, i.e., that the projection operators Pn converge weakly on X. Since PmP∞ = P∞ and ‖Pm‖ = 1
for all m ≥ 1, we see that P∞ is the orthogonal projection operator on the subspace M and Ker P∞ = K.
Now, in (2), we pass to the limit as n → ∞ and obtain the partition of unity converging in the weak
operator topology,

I = P∞ +
∞∑

m=0

Qm (4)

or (in terms of direct sums) the decomposition

X = M ⊕ K, K =
∞⊕

0

V nR (5)

of the space X. This decomposition with M = Im P∞, K = Ker P∞, and R = Ker P is orthogonal in
the sense that M ⊥ K and

∞⊕

m

V nR ⊥
m−1⊕

0

V nR

for any m ≥ 1. In this case, V K ⊂ K, V M = M , and the restriction V |M is a unitary operator. By
definition, M contains each subspace X1 satisfying the condition VX1 = X1. Thus, M is the maximal
invariant subspace in X on which the operator V is unitary or, which is the same, invertible. In particular,
all the eigenvectors of the operator V belong to M .

By analogy with the Hilbert case, relations (5) will be called the Wold decomposition. Of course, we
have K = {0} and M = X if the operator V : X → X is initially a unitary operator. By Lemma 1.1 (c),
the decomposition into the direct sum

X = M ⊕ K (6)

is equivalent to the strong convergence of the projection operators Pn in (3) and hence is equivalent
to (5). Now we can formulate the following statement.
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Remark 1.3. Relations (3)–(6) are equivalent, and the weak convergence of the projection operators Pn

in (3) implies their strong convergence. The same also holds for partial sums in the partition of unity (4).

In Hilbert space (see [1]–[3]), the convergence of the projection operators Pn holds for any arbitrary
isometry V , and, in this case, the restriction V |K with a special structure is called the one-sided
shift with generating subspace R. In an arbitrary Banach space X, the decomposition (5) for a given
isometry V depends on the (possibly nonunique) choice of the orthoprojection P on the image ImV and,
respectively, on the choice of the generating subspace R = Ker P . In what follows, we let PV denote
the set of all linear orthogonal projections on Im V . In general, this set may be empty, and then it does
not make sense to speak about the Wold decomposition. But if the set PV is not empty, then it is closed
in the weak operator topology, bounded with respect to the norm, and convex.

It is desirable to find conditions under which the pair of operators consisting of the isometry V and the
projection operator P ∈ PV generates the Wold decomposition of the space X. In this case, because
of the equivalence between relations (3) and (5), it is more convenient to speak about the conditions
of weak convergence for the sequence of projection operators Pn. We note that the adjoint projection
operators P ∗

n in X∗ form a decreasing commuting chain, because

P ∗
nP ∗

m = P ∗
mP ∗

n = p∗n for n ≥ m.

Moreover, we have ‖P ∗
n‖ = 1 for n ≥ 1.

The annihilator

B0 = {y ∈ X∗ : (x, y) = 0 ∀x ∈ B}
of an arbitrary set B ⊂ X is a weakly∗ closed subspace in the dual space X∗. In what follows, we use the
standard relations several times (see, e.g., [4, Chap. 6]) between the kernel and the image of a bounded
linear operator A : X → X and its adjoint A∗ : X∗ → X∗, namely,

(i) (Im A)0 = KerA∗;

(ii) (Ker A)0 = ImA∗ if the image Im A is closed.

In particular,

ImP ∗ = (Ker P )0 = R0 and Im V ∗ = (Ker V )0 = X∗.

We show that the restriction of the operator V ∗ to the subspace R0 ⊂ X∗ is isometric. For any
functional y ∈ R0 and ε > 0, we find an element x ∈ X such that |(x, y)| > (1 − ε)‖x‖ · ‖y‖. Since
(x, y) = (Px, y) and ‖x‖ ≥ ‖Px‖, we have

|(Px, y)| > (1 − ε)‖Px‖ · ‖y‖.
If Px = V x1, then ‖Px‖ = ‖x1‖, (V x1, y) = (x1, V

∗y), and

|(x1, V
∗y)| > (1 − ε)‖x1‖ · ‖y‖,

which implies the estimate ‖V ∗y‖ ≥ ‖y‖. But ‖V ∗‖ = ‖V ‖ = 1, and therefore, ‖V ∗y‖ = ‖y‖, as was to
be proved.

Thus, the operator V ∗ isometrically maps R0 onto X∗. We set U = T ∗, where T = V −1P is the
operator from formula (1); then we have

ImU = (Ker T )0 = (Ker P )0 = R0.

Next, TV = I, and if I∗ = id in X∗, then V ∗U = I∗, and hence the operator U isometrically maps X∗

onto R0. Passing to the adjoint operators in (1), we obtain

P ∗
n = Un(V ∗)n, n ≥ 1.

Since V ∗X∗ = X∗, we have Im P ∗
n = Im Un. Now we set

N =
∞⋂

1

Im Un.
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Since Im P ∗
n = (Ker Pn)0, we have N = K0. We see that the subspaces N ⊂ X∗ and K ⊂ X depend on

the operator V and on the projection operator P ∈ PV , while the subspace M ⊂ X depends only on V .
We note that the isometry V cannot generate the Wold decomposition in X if the linear orthogonal
projection does not exist on the subspace M(V ).

2. MAIN RESULTS

It turns out that the criterion for the Wold decomposition to exist for the isometry V and the
orthogonal projection operator P ∈ PV can be formulated in terms of the “critical” subspaces

M = M(V ) and N = N(V, P ).

We say that M separates N if (x, y1) �= (x, y2) for any distinct functionals y1, y2 ∈ N and an appropriate
element x ∈ M . A more convenient (equivalent) statement is: M separates N if M0 ∩ N = {0}. We
define the lineal Y in the dual space X∗ as the union over n ≥ 1 of the expanding system of sets KerP ∗

n
and consider its annihilator

Y 0 = {x ∈ X : (x, y) = 0 ∀y ∈ Y }.
Since (Im Pn)0 = Ker P ∗

n , we have

(Ker P ∗
n)0 = (Im Pn)c = Im Pn and Y 0 = M.

The well-known rule (Y 0)0 = (Y )a, where ( · )a is the operation of the weak∗ closure of sets in X∗, leads
to the formula

M0 =
( ∞⋃

1

Ker P ∗
n

)a

. (7)

Now we formulate the main result of this paper.

Theorem 2.1. Suppose that, for the linear isometry V , the linear orthogonal projection P
on Im V exists in a Banach space X. Then the pair of operators (V, P ) generates the Wold
decomposition (5) if and only if M(V ) separates N(V, P ).

This theorem follows from a more general statement. We consider the sequence {Tn} of bounded
linear operators in X such that ‖Tn‖ ≤ const and TnTm = TmTn = Tn for n > m. We set

M =
∞⋂

1

F (Tn), N =
∞⋂

1

F (T ∗
n).

From now on, F ( · ) is the set of fixed vectors of the corresponding operator.

Lemma 2.2. The following conditions are equivalent:

(a) the operators Tn weakly converge as n → ∞;

(b) the operators Tn strongly converge as n → ∞;

(c) M separates N .

Proof. Clearly, (b) ⇒ (a). For arbitrary distinct functionals y1, y2 ∈ N , we find an element x ∈ X such
that (x, y1) �= (x, y2). Then we have

(x, yi) = (x, T ∗
nyi) = (Tnx, yi) for n ≥ 1 and i = 1, 2.

If w- limn→∞ Tn = T∞, then (T∞x, y1) �= (T∞x, y2). Since

w- lim
n→∞

TmTnx = TmT∞x and TmTn = Tn for n > m,

we have TmT∞x = T∞x for all m ≥ 1; hence T∞x ∈ M and the implication (a) ⇒ (c) has been proved.
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WOLD DECOMPOSITION IN BANACH SPACES 811

Now let

D =
∞⋃

1

Im(I − Tn), G = {x ∈ X : ∃ s- lim
n→∞

Tnx}.

Since ‖Tn‖ ≤ const, we see that G is a closed subspace in X, and since

Tn(I − Tm) = 0 for n > m

we have s- limn→∞ Tnx = 0 on D and G ⊃ D. Next,

Im(I − Tn)0 = Ker(I∗ − T ∗
n) = F (T ∗

n) and D0 = N ;

therefore, G0 ⊂ N . On the other hand, G ⊃ M , and hence G0 ⊂ M 0. But, by the assumption
of item (c), we have M 0 ∩ N = {0} and hence G0 = {0} and G = X. Thus, we have proved the
implication (c) ⇒ (b), and the proof of the lemma is complete.

Remark 2.3. This lemma can be obtained from the general version of the operator ergodic theorem
established by Sato [6]. But the corresponding argument is not shorter than the above argument.

Now we return to Theorem 2.1. The Wold decomposition (5) is equivalent to relation (3) for
the projection operators Pn; therefore, it suffices to use Lemma 2.2 with Tn = Pn, M = M(V ), and
N = N(V, P ). The theorem is proved.

The problem of convergence (3) of the projection operators Pn is often reduced to the mere compari-
son between the dimensions of the subspaces M = M(V ) and N = N(V, P ).

Lemma 2.4. An arbitrary linear isometry V in X and an arbitrary orthogonal projection operator
P ∈ PV satisfy the following conditions:

(a) dim M ≤ dim N ;

(b) if M separates N , then dim M = dim N ;

(c) if dim M < ∞ and dim M = dim N , then M separates N .

Proof. Since K0 = N , we have codim K = dim N . But M ∩ K = {0}, hence codim K ≥ dim M and
statement (a) has been proved. Next, since M separates N , it follows from Theorem 2.1 that the
projection operators Pn weakly converge to P∞ as n → ∞, and hence P ∗

n → P ∗
∞ in the weak∗ operator

topology. Since

P ∗
mP ∗

∞ = P ∗
∞, ‖P ∗

m‖ = 1 for m ≥ 1,

we see that P ∗
∞ is an orthogonal projection operator on the subspace N . Thus, M = ImP∞ and

N = Im P ∗
∞, which implies that dimM = dimN . Finally, if dim M < ∞ and dim M = dim N , then,

taking the relation codim K = dim M into account, we have

X = M ⊕ K and M0 ∩ N = {0}.
Thus, M separates N , and the proof of the lemma is complete.

The subspace M = M(V ) contains all the eigenvectors of the isometric operator V , and, in
particular, M ⊃ F (V ), where F (V ) = Ker(I − V ). Similarly, the subspace N = N(V, P ) contains
all the eigenvectors of the isometric operator U , and, in particular, N ⊃ F (U). We use the identity
V ∗U = I∗ to show that N contains only those eigenvectors of the operator V ∗ that, first, correspond
to the eigenvalues λ such that |λ| = 1 and, second, belong to the annihilator R0. We show that the
problem of the Wold decomposition for the pair of operators (V, P ) is related to the possible inclusion
N ⊂ F (V ∗), where F (V ∗) = Ker(I∗ − V ∗).

Lemma 2.5. If M separates N , then the conditions N ⊂ F (V ∗) and M = F (V ) are equivalent.
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Proof. The identities Pn = V nT n and TV = I imply the formula

Pn(I − V ) = Pn − Pn−1 + (I − V )Pn−1.

Since N = K0 and Im(I − V )0 = F (V ∗), we have N0 = K and Im(I − V ) ⊂ F (V ∗)0. Now the
condition N ⊂ F (V ∗) ensures the embedding Im(I − V ) ⊂ K, and thus, it ensures the convergence
of the operators Pn(I − V ) s−→ 0 as n → ∞. Since M0 ∩ N = {0}, Theorem 2.1 guarantees (see
Remark 1.3) the relation Pn − Pn−1

s−→ 0 and hence the strong convergence (I − V )Pn−1 → 0. But
Pn−1x = x on M , and hence M = F (V ).

Conversely, if M = F (V ) and M separates N , then we have

(I − V )Pn−1
s−→ 0, Pn − Pn−1

s−→ 0 as n → ∞.

But, in this case, we also have Pn(I − V ) s−→ 0, which implies that Im(I − V ) ⊂ K. Passing to the
annihilators, we obtain the inclusion N ⊂ F (V ∗). The proof of the lemma is complete.

It turns out that, in a reflexive space X, the condition stating that “M separates N” is satisfied
automatically.

Theorem 2.6. Suppose that, for the linear isometry V , the linear orthogonal projection P on
Im V exists in a reflexive Banach space X. Then the pair of operators (V, P ) generates the Wold
decomposition of the space X.

Proof. By Theorem 2.1, it suffices to show that M(V ) separates N(V, P ). In the dual space X∗, the
weak∗ closure of a convex set coincides with its strong closure. Therefore, relation (7) becomes

M0 =
( ∞⋃

1

Ker P ∗
n

)c

.

The same argument as in the proof of item (a) in Lemma 1.1 allows us to prove that the sequence of
projection operators P ∗

n strongly converges to zero on the subspace M0. But we have P ∗
ny = y on N for

n ≥ 1, and hence M0 ∩ N = {0}. The proof of the theorem is complete.

According to Remark 1.3, the statement of the theorem is equivalent to the convergence (3) of the
projection operators Pn. In the reflexive space, the convergence of a decreasing sequence of uniformly
bounded commuting projection operators was proved even by Lorch [7]. This allows us to obtain a short
alternative proof of Theorem 2.6, although the above proof also does not look too complicated. On the
other hand, Lorch’s result can easily be obtained as a special case of Lemma 2.2 if we act in the same
way as in the proof of Theorem 2.6.

Moreover (see [5, Theorem 4.1.10]), each complemented subspace of a reflexive space is the image of
the projection operator with the minimal possible norm. Thus, in Theorem 2.6, it suffices to assume that
the projection Pε : X → VX such that ‖Pε‖ ≤ 1 + ε exists for any ε > 0. In this connection, we also
point out Pelczynski’s classical result [8]: if V is an isometry in X = lp, 1 ≤ p < ∞, then the orthogonal
projection operator P : X → VX exists. Meanwhile [5, Corollary 4.2.2], in smooth Banach spaces, one
of which is the space lp for p > 1, there is at most one orthoprojection on each subspace. So we have the
following statement.

Theorem 2.7. An arbitrary isometry in lp, 1 < p < ∞, generates a single Wold decomposition.

Wold decompositions of the form (5) plays an important role in constructing (see [1]–[3]) the non-
classical spectral theory of operators in Hilbert space based on the Szökefalvi-Nagy–Foiaş functional
model. Of course, a constructive Banach version of such a theory would be of great interest. From this
standpoint, it is worth pointing out the paper [9], where the Halmos results [2, Problem 116] describing
the commutant of the one-sided shift of multiplicity 1 in Hilbert space were generalized to the Banach
case.

MATHEMATICAL NOTES Vol. 82 No. 6 2007
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3. CASE X = C(H)

Linear isometries naturally appear in topological dynamics. If ϕ is a continuous noninvertible
mapping of a Hausdorff compact set H onto itself, then the operator V = Vϕ acting according to the
law

(V x)(ξ) = x(ϕξ) for ξ ∈ H (8)

is isometric in the space C(H), equipped with sup-norm, of real or complex continuous functions x(ξ)
on H . The behavior of the iterations V n in C(H) is closely related to the dynamical properties of
the semicascade {ϕn}, n ≥ 0, on H . It would be useful to find out under what conditions on the
epimorphism ϕ the operator V = Vϕ generates or does not generate the Wold decomposition of the
space C(H) depending on the choice of the projection operator P ∈ PV . In connection with this
undoubtedly interesting problem, at this point, we restrict ourselves to several general remarks about the
existence of linear orthogonal projections on the image Im V and to a detailed analysis of a meaningful
example.

We note that the operator V = Vϕ of the form (8) realizes an algebraic homomorphism of the Banach
algebra C(H) and is a Markov operator, i.e., V 1 = 1 and V x ≥ 0 for x ≥ 0. In our case, it is more
convenient to use the equivalent definition of the Markov operator, which says that the conditions
V 1 = 1 and ‖V ‖ = 1 are satisfied. For each n ≥ 1, the equivalent relation

ξ1 ∼ ξ2 if ϕnξ1 = ϕnξ2,

induces a decomposition of H into closed sets of the form ξ(n) = ϕ−nϕnξ, ξ ∈ H , and ξ ∈ ξ(n). The
image Im V n of the operator V n consists of all continuous functions constant on each of the sets ξ(n)

and is a closed subalgebra in C(H) containing constants and even, in the complex situation, complex
conjugate elements. Both the intersection of all Im V n and the subalgebra M(V ) have the same
properties. If the compact set H is metrizable, then, according to the results obtained in [10] and [11],
a sufficient (but not necessary!) condition for an orthogonal (Markov) projection operator on the
subspace ImV to exist in C(H) is the condition that the mapping ϕ is open. Indeed, in the paper [10],
it was proved that a linear operator T : C(H) → C(H) with the properties ‖T‖ = 1 and TV = 1 exists
for an open surjection ϕ : H → H , but then V T is a Markov projection operator on Im V . In the general
situation, the set PV of such projection operators can be empty, for example (see [11]), for the following
mapping ϕ of the interval [0, 3] into itself:

ϕξ =

⎧
⎪⎨

⎪⎩

ξ, ξ ∈ [0, 1];
1, ξ ∈ [1, 2];
2ξ − 3, ξ ∈ [2, 3].

For the example promised above, we consider the linear extension mapping of the unit circle S. In the
multiplicative notation, this mapping is given by the formula

ϕmz = zm, |z| = 1,

and in the additive notation, it is given by the relation

ϕmθ = mθ | mod2π.

Here z = eiθ and m is a positive integer different 1. As is known [12], the iterations ϕm demonstrate
a very complicated chaotic dynamics on S. We show that the isometry V = Vϕ corresponding to the
mapping ϕ = ϕm generates or does not generate the Wold decomposition of the space C(S) depending
on the choice of the Markov projection P ∈ PV .

The set AF of functions with absolutely converging Fourier series

x(z) =
∞∑

k=−∞
a(k)zk
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is strongly dense in C(S). One of the Markov projection operators on Im V can be taken in the form

(Px)(z) = m−1
m−1∑

j=0

x(zνj), (9)

where x ∈ C(S) and νj are the mth roots of 1. For the functions x(z) of class AF , we find that

(Px)(z) =
∞∑

k=−∞
a(km)zkm.

We inductively use the identity Pn = V Pn−1V
−1P for projection operators of the form (1) along with the

relations V : zk → zkm and V −1 : zkm → zm and obtain

(Pnx)(z) =
∞∑

k=−∞
a(kmn)zkmn

, x ∈ AF.

Since ‖x‖ ≤
∑∞

k=−∞ for x ∈ AF and ‖Pn‖ = 1 for n ≥ 1, we have

s- lim
n→∞

Pnx = const for all x ∈ C(S).

Thus (see Remark 1.3), we have proved that the isometry V and a projection operator P of the form (9)
generate the Wold decomposition in C(S).

To complete the picture, we find out how the critical subspaces M = M(V ) and N = N(V, P ) are
organized in this case. By Theorem 2.1, M separates N . Since

Pn1 = 1 for n ≥ 1 and s- lim
n→∞

Pnx = const on C(S),

we have M = {const}. Therefore, dimM = 1 and, by Lemma 2.4 (b), the subspace N is one-
dimensional. We note that

Pn = m−n

b(m,n)∑

k=0

Φ(2πkm−n),

where b(m,n) = mn − 1 and Φ(θ) is the shift operator in C(S) acting according to the rule

Φ(θ) : x(z) → x(zeiθ).

The corresponding operator Φ∗(θ) in the dual space C∗(S) has the form

Φ∗(θ)μ = μθ, where μθ(E) = μ(e−iθE)

for an arbitrary measure μ ∈ C∗(S) and a Borel set E ⊂ S. Thus,

P ∗
nμ = m−n

b(m,n)∑

k=0

Φ∗(2πkm−n)μ, μ ∈ C∗(S),

and hence P ∗
nγ = γ for the Lebesgue measure γ on S and any n ≥ 1. Therefore, the subspace N(V, P )

consists of measures that are multiples of γ.
Now we construct (only for the case m = 2) the Markov projection operator P ∈ PV with the

property that the pair of operators (V, P ) does not generate the Wold decomposition of the space C(S).
In this case, we start from the additive notation for the linear extension mapping ϕ2 : S → S. In
this situation, the set PV is, in fact, described by Lloyd [11, Example 2] and consists of projection
operators Ps acting on the elements x ∈ C(S) by the rule

(Psx)(θ) = s(θ)x(θ) + s(θ + π)x(θ + π).

Here s(θ) is an arbitrary continuous function on S satisfying the conditions

0 ≤ s(θ) ≤ 1 and s(θ) + s(θ + π) = 1 for θ ∈ S.
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In particular, the projection operator (9) for m = 2 is associated with the function s(θ) ≡ 1/2.
We set s(θ) = cos2 3θ/2, then the operator Ts = V −1Ps in C(S) is given by the formula

(Tsx)(θ) = s

(
θ

2

)
x

(
θ

2

)
+ s

(
θ

2
+ π

)
x

(
θ

2
+ π

)
,

and the adjoint operator Us = T ∗
s acts on the Dirac measures δ(θ) ∈ C∗(S) as follows:

Usδ(θ) = s

(
θ

2

)
δ

(
θ

2

)
+ s

(
θ

2
+ π

)
δ

(
θ

2
+ π

)
.

For example,

Usδ(0) = s(0)δ(0) + s(π)δ(π) = δ(0),

because s(0) = 1 and s(π) = 0. On the other hand,

Us

(
δ

(
2π
3

)
+ δ

(
4π
3

))
= s

(
π

3

)
δ

(
π

3

)
+ s

(
4π
3

)
δ

(
4π
3

)
+ s

(
2π
3

)
δ

(
2π
3

)
+ s

(
5π
3

)
δ

(
5π
3

)

= δ

(
2π
3

)
+ δ

(
4π
3

)
,

because s(2π/3) = s(4π/3) = 1 and s(π/3) = s(5π/3) = 0. The subspace N = N(V, Ps) contains
all the invariant vectors of the operator Us, and hence dim N ≥ 2. But M(V ) = {const}; therefore,
dim M = 1 and, by Lemma 2.4 (b), the subspace M does not separate N . Now Theorem 2.1 allows us
to conclude that the operator pair (V, Ps) does not generate the Wold decomposition of the space C(S).

CONCLUSION

The Wold decomposition gives useful information about the structure of the isometric linear oper-
ator V acting in an arbitrary Banach space X. From this standpoint, special attention must be paid
to the class of isometries Vϕ : C(H) → C(H) induced by continuous mappings ϕ of the Hausdorff
compact set H on itself. It would be interesting to understand under what topological conditions on the
compact set H and the epimorphism ϕ the operator Vϕ generates the Wold decomposition of the space
of continuous functions C(H) and to find out how the presence or absence of such a decomposition
is related to the dynamics of the semicascade {ϕn}, n ≥ 0, on H . These topics can be studied in
subsequent papers.
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