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ON HELLY'S PRINCIPLE FOR METRIC SEMIGROUP VALUED BV
MAPPINGS OF TWO REAL VARIABLES

M. BALCERZAK, S.A. BELOV AND V.V. CHISTYAKOV

We introduce a concept of metric space valued mappings of two variables with finite
total variation and define a counterpart of the Hardy space. Then we establish the
following Helly type selection principle for mappings of two variables: Let X be a
metric space and a commutative additive semigroup whose metric is translation in-
variant. Then an infinite pointwise precompact family of X-valued mappings on the
closed rectangle of the plane, which is of uniformly bounded total variation, contains
a pointwise convergent sequence whose limit is a mapping with finite total variation.

1. INTRODUCTION

The interest in the Helly selection principle is natural since it provides an easy and
effective way of proving existence theorems in Analysis. The celebrated Helly theorem for
monotone functions (Helly [21], see also Natanson [28, Section 8.4]) states that an infinite
bounded family of nondecreasing real functions on the closed interval contains a pointwise
convergent sequence whose limit is a nondecreasing function. Since a real function on an
interval is of bounded (Jordan) variation if and only if it is the difference of two bounded
nondecreasing functions (Jordan's decomposition), Helly's theorem implies a selection
principle for functions of bounded variation: an infinite bounded family of real functions
on the closed interval, which is of uniformly bounded variation, contains a pointwise
convergent sequence whose limit is a function of bounded variation.

There are a number of generalisations of the above two selection principles. Let us
mention firstly results of Fuchino and Plewik [19] where Helly's theorem for monotone
functions is generalised to monotone mappings between linearly ordered sets. Other gen-
eralisations are obtained for functions and mappings of one real variable of bounded (gen-
eralised) variation. For real valued functions these are due to Musielak and Orlicz [27],
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and for mappings with values in a metric space corresponding results were established
by Chistyakov [9, 10, 11, 12, 13, 14], Chistyakov and Galkin [16, 17] and Belov and
Chistyakov [7]. One of these generalisations, relevant for our purposes, is presented be-
low as Lemma A. Note that for metric space valued mappings Jordan's decomposition
theorem is usually inapplicable, and so, in order to obtain a Helly selection principle, a
different technique is used as compared to the real valued case.

There are also counterparts of Helly's selection principle for real functions of two
(and more) variables (Adams and Clarkson [1, 2], Hildebrandt [22, III.6.5], Idczak and
Walczak [24], Leonov [26]). In Section 2 we recall Helly's theorem for monotone functions
of two variables as Lemma B.

Our main goal in this paper is twofold. First, we introduce a concept of metric
space valued mappings of two variables with finite total variation (known in the real
valued case as mappings from the Hardy space). Second, we establish the following Helly
type selection principle for mappings of two variables (Theorem 2): Let X be a metric
space and an Abelian additive semigroup whose metric is translation invariant. Then
an infinite pointwise precompact family of X-valued mappings on the closed rectangle of
the plane, which is of uniformly bounded total variation, contains a pointwise convergent
sequence whose limit is a mapping with finite total variation. This theorem is based on
Helly's theorem for real monotone functions of two variables (Lemma B), Helly's selection
principle for metric space valued mappings of one real variable (Lemma A) and a new
estimate for mappings of two variables (Theorem 1). Theorem 2 was announced in [14,
Theorem 4] and a preliminary version of this paper was published as a preprint in [5].

Our approach to the notion of total variation for metric space valued mappings of
several variables is different from the one given by Ambrosio in [3]. The main difference is
that we do not assume the target metric space X to be separable and such that bounded
closed subsets of X are compact (see [3, Section 1]). Instead, we suppose that an addition
operation with natural properties is defined on X. Moreover, in the classical case X — R
the Hardy space BV(I^; M) of functions of two variables with finite total variation, which
is a generalisation of the classical space of functions of one variable with finite Jordan
variation and of which in turn our space BV{I^\ X) is a generalisation, is a Banach algebra
as is shown in [15, Theorem 1]; however, we are not aware if this is the case for the space
BV(£l; X) with X — K from [3], since this involves a multiplication of a discontinuous
function by a measure, which is a multiplication of distributions. Since the approach in
[3, Remark 2.2] gives a generalisation of the notion of essential variation (for definitions
see [6] or [18, 4.5.10]) for real valued functions of one variable, one cannot expect the
compactness criterion from [3, Theorem 2.4] to imply the everywhere convergence of an
extracted subsequence (it ensures only the almost everywhere convergence): in fact, we
construct a simple example after Theorem 2 in Section 2.
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2. M A P P I N G S WITH FINITE VARIATION: RESULTS

In this section we review some definitions and known facts and present our main
results.

Let (X, d) be a metric space with metric d and / = [a, 0\ C R be a closed interval.
The total Jordan variation of a mapping <p : I —¥ X is the quantity:

where the supremum is taken over all partitions £ = {*i}£Lo °f >̂ *na* is m 6 N and
a = t0 < h < • • • < tm_i <tm=/3 (for example, [30, Chapter 4, Section 9]). If V£(<p) is
finite, the mapping <p is said to be of finite (Jordan) variation on [a,/?].

The following Helly type selection principle holds for metric space valued mappings
of one real variable:

LEMMA A ([9, Theorem 7.1], [10, Theorem 5.1], [7, Theorem 1].) Suppose that X
is a metric space and $ is an infinite family of mappings from [a, /?] C R into X such
that sup V£(tp) is finite and the set {<p{t) \ tp e $ } is precompact in X for each t € \ct,0\.

Then $ contains a sequence of mappings which converges in metric d pointwise on [a, 0\
to a mapping ip : [a, 0\ —• X such that V^(tp) < oo.

Now we turn to mappings of two variables.

For points x, y € R2 we write x = (x\, x^), y — (yi, 3/2) for their respective coordinate
representations, and x < y provided X\ ^ yx and x2 ^ 2/2- Given points a, b € R2 with
a < b (that is ax < b\ and a-i < 62), we define the basic rectangle (as the domain of most
mappings) by /* = {x € R2 | a < x 4, b) = [ai,&i] x [02,62]- We note that if a, b, x,
y G R2, a ^ b and x ^y, then I*f C /£ if and only if a ^ x and y ^ &. Such a I<[ is called
a subrectangle of /*.

To define a notion of finite variation for metric space valued mappings of two vari-
ables, we recall the following definition (see [14]):

A triple (X, d, +) is called a metric additive commutative semigroup if (X, d) is a
metric space, (X, +) is an additive commutative semigroup and d is translation invariant:
d(u, v) — d(u + w,v + w) for all u, v, w € X. Simple examples of metric additive commu-
tative semigroups are: the reals R with metric d(u, v) = \u — v\, u, v € R; any normed
linear space (X, || • ||) with metric d(u, v) = [jzt —1»|| for u,v € X and a nonempty convex
cone K in X (that is, K C X, K + K C K and XK C K, A ̂  0). A more interesting
example is the following: If (X, \\ • ||) is a real normed linear space, denote by VCC(X) the
family of all nonempty compact convex subsets of X equipped with the Hausdorff metric
D generated by || • || (for example, [25]):

D{P, Q) = maxjsup inf \\p - g||,sup inf ||p - g| |}, P, Q €
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Then the triple (PCC(X),D, +) is a metric additive commutative semigroup (see [29])
where the addition operation is denned by P + Q = {p + q \ p € P, q € Q} for P,
Q € Vcc(X). Recall also that if X is a Banach space, then (VCC(X), D, +) is a complete
metric additive commutative semigroup, that is, (Pcc(X),£)) is a complete metric space
(see [8, Theorem 11-14]).

Let Ib C M2 be the basic rectangle, (X, d, +) be a metric additive commutative
semigroup and / : / * — • X be a given mapping. The mixed difference of the mapping /
on a subrectangle I\ — [zi,2/i] x [̂ 2,2/2] C Ib is the value

md(/,/*) = md(/,/£;£) = d(f(xux2) + f(yuy2), f(xl,y2) + f(yux2)).

Let £ = {*i}£Lo be a partition of [ai,6x] (that is, m € N and a,\ = t0 < h < • • • < im_i
< tm — 61) and r) = {SJ}"=0 be a partition of [02,62] (that is, n G N and a2 = s0 < Si
< • • • < sn_i < sn — b2), so that the rectangles

(1) I i j = [ti-i,ti]x[sj-i,sj], i=l,...,m, j = l,...,n,

form a partition of /*. The mixed difference of / on Tjj is equal to

The Hardy-Vitali variation ([31, 20] in the case X = R) of / : /* -> X is given by

the supremum being taken over all pairs (£,77) where f = {ti}J^0 is a partition of [ai,6i]
and 77 = {Sj}"_0 is a partition of [02,62]- We define two mappings of one variable as
follows: if x2 € [02,62] is fixed, we set / ( • ,x2)(t) = f(t,x2), t € [ai,&i], and if x\ G [01,6!]
is fixed, we set f(xu -)(s) - / ( x b s ) , s € [a2,62].

We define the total variation of / : /*—> X by

(2) 7 V ( / , Ib
a) = < • ( / ( • , a2)) + V*" (/(olf •)) + V2(f, Ib

a)

(for the real-valued case X = tit see [22, III.6.3], [24, Section 2] and [26, Definition 1]),
and set BV{Ib; X) = {f : Ib

a-> X \ TV(f, Ib
a) < 00}. At the end of this section we shall

show that the set BV(Ib;X) coincides with the Hardy space (Proposition 1 below).

Recall that a real valued function v : Ib —> tit is called totally monotone (in [22,
III.4.3] it is called positively monotonely monotone) if v{ •, a2) is nondecreasing on [oi, 61],
i/(ai, •) is nondecreasing on [02,62] and

(3) v(x1,x2) + i/(?/i, 2/2) - v(xi, y2) - v{yi, x2) ^ 0

for all x = (£1,12)) V = (2/112/2) £ Z* such that x ^ y. Real totally monotone functions
of several variables are thoroughly studied (Antosik [4], Hildebrandt [22], Idczak [23],



[5] On Helly's principle 249

Leonov [26], Young and Young [32]). Prom this theory we only need a result concerning
discontinuity points of these functions (see Lemma C in Section 3) and the following
counterpart of Helly's theorem:

LEMMA B ([22, III.6.5], [24, Theorem 3.1], [26, Lemma 3].) An infinite uniformly
bounded family of totally monotone functions from Ib into R contains a sequence which
converges pointwise on Ib to a totally monotone function v : /* -> R.

As in the case of functions of one variable, Jordan's decomposition theorem is valid
for real functions of two variables with finite total variation ([22, 24, 26]), and so,
Lemma B readily implies a Helly selection principle for these functions.

Our first main theorem will be proved in Section 3:

THEOREM 1 . If (X, d, +) is a metric additive commutative semigroup, a ^ x
^y^binR2andfe BV(Ib

a;X), then

(a) d(f(y), f{x)) < TV(f, 1$) ^ TV(f, Pa) - TV(f, /*);

(b) the function u : J* -> R defned by v{x) = TV(fJ%), x S Ib
a, is totally

monotone.

For real valued functions / € BV(Ib; R) (of N real variables) the first inequality
in Theorem l(a) was obtained in [26, Corollaries 1 and 5]. The second inequality in
Theorem l(a) is new even for real valued functions, and its counterpart for mappings
of one variable is well known. Also, in the real valued case Theorem l(b) was proved
in [22, III.4.3] (for functions of two variables) and [26, Theorem 3] (for functions of N
variables).

The second main result is the following Helly type selection principle (its proof is
given in Section 3).

THEOREM 2 . Let (X, d, +) be a metric additive commutative semigroup and F
be an infinite family of mappings from Ib into X such that supTV(f,Ib) is finite and

the set {f(x) \ f € T} is precompact in X for each x £ I*. Then T contains a
sequence of mappings which converges pointwise on /* to a mapping f : / ' —»• X such
that TV{f, Ib

a) < oo.

Now let us show that the Helly selection principle for functions of essentially bounded
variation, which gives the almost eveywhere convergence (see [3, 6]), does not in general
imply the everywhere convergence of a selected subsequence. Let / = [0,1], X = R,
a,k — \/k for k £ N and A = { a * } ^ - Recall that the essential variation 1^(^,7) of a
function ip : I -> R is given by

^ess(ViI) = inf{Vi(^>,/) | ip : I -¥ R and ip = cp almost everywhere on / } .

For n € N define <p2n-i{x) = 0 for all x 6 / , tp2n(x) = 0 if x ^ ak for all k 6 N,
and ip2n(dk) — o,k for k € N. Clearly, the sequence {<pn}%Li is uniformly bounded,
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Vi(<pn,I) = 2ak and Vess(<^n,/) — 0, n € N. If we apply the Helly selection principle

for functions {ipn}^=1, treated as functions of essentially bounded variation, any almost

everywhere convergent subsequence of {ipn}%Li will do, for example, {<pn}%Li itself. But

it converges only on [0,1] \ A with A having Lebesgue measure zero. The classical

Helly selection principle for functions of finite Jordan variation is thus more subtle: it

ensures the existence of an everywhere convergent subsequence of {<pn}%Li, for instance,

{<P2n-i}£Li- A similar situation holds for functions of two variables: one just has to define

/„ : / x / -> R by fn(x1,x2) = <pn{xi) for xu i 2 6 / , n e N .

We shall end this section by showing that the definition of the set BV(Ib; X) coin-

cides with the definition of the Hardy space ([1, 2, 20]) of mappings of two variables with

finite total variation (for real valued functions this was proved in [26, Corollary 4]). To

do this, we mention some simple properties of metric additive commutative semigroups.

If (X, d, +) is a metric additive commutative semigroup, then, due to the translation

invariance of d on X and the triangle inequality for d, for all u, v,p, q € X we have:

(4) d(u,v) ^ d(p,q)+d{u + p,v + q),

(5) d(u + p, v + q) < d(u, v) + d(p, q).

Inequality (5) implies that the addition operation (u, v) >-> u + v is a continuous mapping

from X x X to X, and more generally, if un —¥ u, vn -> v, pn —> p and qn —> q in X as

n -» c«, then lim d(un + vn,pn + qn) = d(u+v,p + q).
Tl-KX)

A partition of/* is any finite collection {/n}^=i of subrectangles of/* (not necessarily
N

of the form (1)) having at most edges or vertices in common such that /„ = \J /„.
7 1 = 1

The Hardy- Vitali variation of / : / „ — > X (where X is a metric additive commutative
_ N

semigroup) is defined by the formula: V2(f, /*) = sup 53 nid(/, /„) where the supremum
n=l

is over all N € N and all partitions {/n}^=1 of the rectangle / ' . The Hardy space is the

set of all mappings / : Ib
a -> X for which the variations V;*1 ( / ( • , o2)), V£ (f(au •)) and

V2(f, I^) are finite. The coincidence of BV(Ib
a\ X) with the Hardy space is established in

the following
PROPOSITION 1 . For any mapping f € BV(Ib

a; X) the following equalities hold:

V% (/(•.«=»)) + K2(/(«!> •)) + V,(f,Ib
a) = supv(f;£,T,) = TV(f,/*)

where the supremum is taken over all partitions £ = {U}?L0 (m € N) of the interval

[d , &i] and all partitions rj — {SJ}" = 0 {n £ N) of [a2,62] and

t=l j=l
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P R O O F : We shall prove only the first equality since the second one will follow from

it. The inequality ^ is clear, so let us prove the inequality ^ . Let us fix e > 0. There

exists a partition {1^}^ of/* such that V2(f, Ib) - e / 3 ^ J2 m c K / , !„)• Similarly, there
n=l

exist a partition ££ = {tf}^50 of [ai,&i] and a partition r\t = {sj}"L.o of [02,62] such that
the quantities V^1 ( / ( • , a2)) - e/3 and Vb£ (/(01, •)) — e/3 can be estimated from above
appropriately (see the left hand side inequalities in (6) and (7) below). We extend the
edges of all rectangles in the partition {/^}^.1 to the boundary of /*. This gives rise to
a partition £0 of [oi, 61] and a partition % of [a2,62]- Set f = f£ U £0 ,

/n = Ve U Vo, suppose
that f = {ti}?L0, rj = {SJ}"=0 and let {Iij | 1 ^ i ^ m, 1 ^ j < n} be a partition of Ib

of the form (1) corresponding to £ and rj. Using the triangle inequality, we find from the
above inequalities that

(6) Vbl(f{-,a2)) - \ ^ 5~)d(/(i?,02),/(*?_!,
6 i=i i=i

ne n

(7) V^( / ( O l , • ) ) - ! <
3 i=i

(8) V2(f,I
b)-£-<^

n = l »=1 j=l

The last inequality in (8) is a consequence of inequalities (4) and (5) and the translation
invariance of d. To see this, it suffices to consider only two "basic" partitions of /* of the
form:

(i) Ib = ([auxi] x [02,62]) U ([xi,6i] x [02,62]), and

(ii) Ib = ([auk] x [02,2/2]) U ([ai.ftx] x [y2lb2]).

In case (i) we have:

d(f(aua2) + f{bu b2), f(au b2) + f(bi,a2))

^ d(/(aX)a2) + f(bub2) + f(xub2) + f(bua2), f(au62) + f(bua2)

+f(xua2) + /(61,62)) + d(f(xi, 62) + /(6i, a2), f{xu a2)

= d(/(ai, a2) + f(xi, 62), f(au 62) + f(xu a2))

+d(/(xi, a2) + /(61,62), f(xu 62) + /(61, a2)),

that is, md(/, /») ^ md(/, I£%) + md(/, Ib\'^). Case (ii) is similar.

To end the proof, it suffices to add the inequalities (6)-(8).
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3. P R O O F S OF MAIN THEOREMS

There are two main properties of V2\ additivity and lower semi-continuity. Additivity
means for any partition of / ' of the form (1) we have:

The (sequential) lower semi-continuity of V2(-,I%) means if /„ : /* -> X (n € N)
is a sequence of mappings which converges pointwise on 7* in metric d to a mapping
/ : / * - > • X, then

(10) V2(f,I
b

a) ^ liminf V2(fn,I
b

a).
n-*oo

The properties of the Jordan variation Vi( •, •) (for mappings of one real variable) corre-
sponding to (9) and (10) are very well known (for example, [9] and [10]). It follows from
(2) that (9) and (10) also hold for TV{ •, •) in place of V2( •, •).

P R O O F O F T H E O R E M 1. (a) To prove the first inequality, we apply inequalities (4),
(5), the translation invariance of d and definition (2):

d(f(y), f(x)) ^ d(f{xu x2) + /(*!, x2), f(xu y2) + f{yux2))

+d(f(yi, y2) + f(xi,x2) + f(xu x2), f{xi,x2) + f{xi,y2) + f(yi,x2))

^d(f(xux2),f(yi,x2))

+d(f(xu x2), f(xu y2)) + d(f(xux2) + f{yi,y2), f(xu y2) + f(yl,x2))

< vx
y; (/(•, x2)) + vg (/(xj, •)) + v2(f, i$)

= TV(f,Px).

To prove the second inequality, we first show that

(ii) vxy;(f(.,x2)) ^ K«(/(•,<*)) + v2(f,px]%).

In fact, applying inequality (4), for any xi ^ s < t ^ yi we have:

(12) d(f(t,x2), f(s, x2)) ^ d(f(t, a2), f(s,a2))

+ d(f{s,a2) + f(t,x2),f(s,x2) + f{t,a2)).

Now, if £ = {ii}£L0 is a partition of the interval [ii, j/i], setting s = tj_i and t = U in (12)
and summing over i = 1 , . . . , m we find that
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and the inequality (11) follows. In a similar manner we get the inequality:

(13) Vg(/(*„ •)) ^ Vg(/(Oll •)) + V2(f, /*>;£).

Now we use (11), (13), the additivity property (9) of V2( •, •) in the form

(14) V2(f, Fa) + V2(f, IV) + V2(f, /«•*) + V2(f, I*\%) = V2(f, ID,

the additivity property of Vi( •, •), and definition (2). These give

TV(f, Px) = V* (/(•,x2)) + V%(f(xlt •)) + V2(f, ID

^ V£ (/(•,a2)) + V2(f, /££) + V£(/(Ol, •)) + V2(f, I™)

+ [V2(/, Pa) - V2(f, II) - V2(f, IH%1) - V2(f, / £ £

= [V™ (/(•, a,)) + V2» (/(ax, •)) + V2(f, I«)]

~[V**1 (/(•,a2)) + V£(/(O l , •)) + V2(f,I

= TV(f,Pa)-TV(f,i:).

(b) Note that the function i/( •, a2) is nondecreasing on [oi, 6i], since

Similarly, v(a\, s) = V^ ( / ( o i , •)) is nondecreasing with respect to s e [a2,62].

It remains to show that inequality (3) holds. Let x,y € I\ be such that x ^ y. Using

definition (2) and taking into account (14) and the additivity property (9) of V2(f, •),

we have:

v{xux2) + u(yuy2) - v{xuy2) - v{yx,x2)

= TV(f,Ix
a) + TV(f,ID ~ TV(f,/»>*) - TV(f,Il^l)

+ V«(/(Ol> •)) + V2(f, I*a)}

v: (/(•, oa)) + V» (/(Ol> •)) + V2(f,Pa)]

- [V£ (/(•, 02)) + V£ (f(au •)) + V2(f, /*>;£

- [V£ (/(•, 02)) + V£(/(Ol> •)) + V2(f,ijfj«

f, Fa) + [v2{f, Fa) + v2(f, ID + v2(f, 1%%) + v2(f, %{%

- [vi(f, il) + v2(f, /*>*)] - [v2(f,ID + v2(f, J*J

= V2(/,7»)>0,

which completes the proof. U
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From the last calculation in the proof of Theorem 1 we see that V2(f, /*) is finite if and
only if there exists a function v : /* —» R satisfying (3) such that md(/, If) ^ md(f, If)
for all x, y e /* with x ^ y.

In order to prove Theorem 2, we need one more lemma.

LEMMA C. ([32], [22, Theorem III.5.4], [4].) If a function v : /* ->• K is totally
monotone, then the set of discontinuities of u lie on at most a countable set of lines
parallel to the coordinate axes.

P R O O F OF THEOREM 2. The idea of the proof is taken from [13].

For / € T and x G Ib
a we set vf(x) - TV(f, 1%). The family of real valued functions

{vf | / S T} is infinite, uniformly bounded, and each function Uf is totally monotone by
Theorem l(b). Applying Lemma B we infer that there exists a sequence {/n}£Li C T
and a totally monotone function v : /* —>• R such that

lim i/fn (x) = v{x) for all i g / J .
fl—K3O

The function u, being totally monotone, has, by Lemma C, its discontinuity points on a
denumerable number of lines parallel to the coordinate axes.

Denote by I{ the union of the set of all rational points of \a.\, b\\, the two-point set
{a,i,bi} and the set of those points t € [ai,&i] for which {t} x [02,62] is a discontinuity
line of v. Similarly, let 1% be the union of the set of all rational points of [02,62], the
two-point set {a2,b2} and the set of those points s 6 [02,62] for which [0^61] x {s} is a
line containing points of discontinuity of v. Due to the remarks above, the sets I\ and 1^
are at most countable, say, I[ = {^i}^! and 1% = {SJ}JLI. By virtue of definition (2) and
the hypotheses of Theorem 2, the family {/n(*i, • )}™=l of mappings from [a2,62] into X
satisfies the conditions of Lemma A, since, taking into account inequality (13), we have:

Va1(fn{tu •)) £ V£( / n (a 1 ( •)) +V2(fn,lt\i\) < snpTV(g,Ib
a) < 00,

and so, it contains a subsequence denoted by {fn(h, ' )}„- ! which converges in X point-
wise on [a2,62]. In a similar way, let {fn{h, ' )}^l i ^e a pointwise convergent subse-
quence of {fn{t2, • )}^Li> an<3 inductively, given k € N, k ^ 2, denote by {/*(<*> • )}™=1

a pointwise convergent subsequence of {f^~l(tk, •)}™=l- Then the diagonal sequence
{/"}n?=i C T converges in X pointwise on the set I[ x [02,62]- Similarly (starting from
the sequence {f£}%'=1 and applying inequality (11)) the above "diagonal arguments"
apply to extract a subsequence of {/£}£Li which converges in X pointwise on the set
[aubi] x 72*.

Thus, without loss of generality we may assume that the initial sequence {/n}^=i
converges in X pointwise on the set J = (Jj x [a2,62]) U ([ai,6i] x 72*).

It remains to show that the sequence {fn(x)}™=1 converges in X at each point
x = (xi,x2) G Ib\ J, that is, x is a point of continuity of the function v such that its
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coordinates a\ < xi < b\ and 02 < X2 < 62 are irrational. Let x € / ' \ J be such a point.
Given e > 0, there exists a point with rational coordinates y — (2/1,2/2) € I* such that
2/i < Zi, 2/2 < z2 and

Choose a number N0(e) € N with the property:

|I//B(X) - u(x)\ *C e/9, \u,M - u{y)\ ^ e/9, n > N0(e).

Applying Theorem l(a), for all n ^ N0(e) we have:

d(fn(x)Jn(y)) ^ TV{fn,I*) ^ ufn(x) - ufn(y)

< \vfAx) ~ v{x)\ + \v{x) - u(y)\ + \u(y) - vfn(y)\

<e/3 .

Since the sequence {fn(y)}<^=1 is convergent, there exists a number Ni(e) e N such
that d(fn{y),fm{y)) ^ e/3 for all n ^ 7Vi(e) and m ^ Afi(e). It follows that if n,
m ^ max{Ar

0(£),iVi(e)}, then

d(fn(x), fm(x)) ^ d(fn(x), fn(y)) + d(fn(y), fm(y)) + d(fm(y), fm(x)) < e.

Thus, the sequence {/n(i)}™_ is Cauchy in X, and since it is also precompact (by the
assumption), it is convergent in X.

Denning fix) = lim fn(x) in X for all x € /* and taking into account the lower-
n-Kx>

semicontinuity (10) of TV( •, /*) we find that

TV(f,Ib
a) ^ liminfTV(fn,Ib

a) < snpTV(g,Ib
a) < 00,

and so, / € BV(Ib;X), which was to be proved. D

REMARK. The assumptions in Theorem 2 are exact (see [7, Example 1]).
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