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The paper addresses the tolerance approach to the sensitivity analysis of optimal solutions to the nonlinear
optimization problem of the form ⊕

y∈S

C(y)→min over S ∈ S ,

where S is a collection of nonempty subsets of a finite set X such that ∪S =X and ∩S = ∅, C is a cost
(or weight) function from X into R+ = [0,∞) or (0,∞), and ⊕ is a continuous, associative, commutative,
nondecreasing and unbounded binary operation of generalized addition on R+, called an A-operation. We
evaluate and present sharp estimates for upper and lower bounds of costs of elements from X, for which an
optimal solution to the above problem remains stable. These bounds present new results in the sensitivity
analysis as well as extend most known results in a unified way. We define an invariant of the optimization
problem—the tolerance function, which is independent of optimal solutions, and establish its basic properties,
among which we mention a characterization of the set of all optimal solutions, the uniqueness of optimal
solutions and extremal values of the tolerance function on an optimal solution.
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interval; tolerance function; uniqueness
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1. Introduction. The purpose of this paper is to introduce and study certain concepts of
stability of optimal solutions to the following nonlinear problem of discrete optimization:

fC(S)≡ f(C)(S)=
⊕

y∈S

C(y)→min, S ∈ S, (1.1)

where S is a collection of nonempty subsets (called trajectories) of a finite set X of cardinality
|X| ≥ 2 such that ∪S = X and ∩S = ∅ and C : X → R+ is a given cost (or weight) function of
elements from X with R+ = [0,∞) or (0,∞). The objective function fC : S →R+ in (1.1) is given
by means of an operation ⊕ on the set R+, called an A-operation, which generalizes simultaneously
the addition operation on R+ = [0,∞) and the operation of multiplication on R+ = (0,∞). More
specifically, we assume that the operation (u, v) 7→ u ⊕ v from R+ × R+ into R+ is associative,
commutative, nondecreasing in each variable, unbounded in the sense that u⊕v→∞ as u→∞ for
all v ∈R+, and continuous as a function of two real variables. Simple examples of A-operations are
the usual addition operation u⊕v= u+v, the operation of taking the maximum u⊕v=max{u, v}
and the usual operation of multiplication u⊕ v= u · v.
In this paper we adopt the tolerance approach to the sensitivity analysis of optimal solutions to

problem (1.1): given an optimal solution S∗ ∈ S to problem (1.1) and an element x ∈X, we are
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interested to what extent the cost C(x) can be changed (the other costs remaining unperturbed)
so that S∗ is still an optimal solution. In other words, this can be expressed as how tolerant is the
optimal solution S∗ with respect to a change of the single cost C(x). The tolerance approach has
been applied in the literature for a variety of combinatorial optimization problems: shortest path
and network flow problems [12, 24, 26], the traveling salesman problem [13, 17, 25, 27], the matrix
coefficients in linear programming problems [23], the bottleneck problems [1, 6, 7, 9, 10, 22, 25].
We refer to [6, 11, 28] for a comprehensive literature on the sensitivity (or post-solution) analysis.
Up to now almost all works in the sensitivity analysis, including the ones referred to above,

are concerned with two (most popular and natural) operations ⊕ in (1.1), namely, the addition
+ or max, and so, the corresponding objective function fC is either linear fC(S) =

∑
y∈SC(y)

or bottleneck fC(S) = maxy∈SC(y), respectively. One may intuitively feel the difference between
the two operations: all costs contribute to the linear objective function equally well, while only
the largest costs contribute to the bottleneck objective function. A more relevant explanation
(in accordance with the theory of A-operations developed in Section 2) is that, given v ≥ 0, the
function Φ(u) = u+ v is strictly increasing (and so, the operation + is termed to be strict), while
the function Ψ(u) =max{u, v} is only nondecreasing on [0,∞) (and so, the operation max is not
strict). In calculating the upper and lower bounds for costs of elements from X, for which an
optimal solution to problem (1.1) remains stable, one encounters the (generally, tacit) necessity
to take the inverse(s) of the operation under consideration (in our case + or max, cf. references
above), which results in inverting functions Φ and Ψ as above. Since Φ is strictly increasing (and
continuous), its inverse, the subtraction, behaves well and causes no problem. However, the usual
inverse of the nondecreasing function Ψ does not exist, and so, one has to deal with its right and/or
left inverse [15], which is why optimization problems with bottleneck objective functions are more
complicated. Technically speaking, problems (1.1) with nonstrict A-operations ⊕ tend to exhibit
certain pathological, hysteretic-like properties involving retardness (cf. [14]).
Given a generic A-operation ⊕ on R+, we introduce two inverses of ⊕, called the upper subtrac-

tion ⊖ and the lower subtraction ⊖. It turns out that the two subtractions replace the ordinary
subtraction (in the case of +), and they coincide on the common part of their domains iff (= if and
only if) the A-operation ⊕ is strict. By means of the upper (lower) subtraction we determine the
upper (lower, respectively) stability interval of costs for an optimal solution to problem (1.1). In
the case of strict A-operations ⊕ the induced upper and lower subtractions are translation invari-
ant with respect to ⊕, which permits us to introduce upper tolerances for elements in an optimal
solution to (1.1) and lower tolerances for elements outside the optimal solution and establish pre-
cise formulas for their evaluation. They are exact counterparts for all strict A-operations of the
corresponding formulae from [17] established in the simplest case of +. The tolerance function for
problem (1.1) is defined on X via any optimal solution S∗ to (1.1) as follows: its value at x∈ S∗ is
equal to the upper tolerance of x and its value at y ∈X \S∗ is equal to the lower tolerance of y. We
prove that the tolerance function is independent of a particular optimal solution to (1.1), and so,
it is an invariant of the problem (1.1) itself. Also, we show that the tolerance function is useful in
characterizing the whole set of optimal solutions and, in particular, their uniqueness: the optimal
solution to (1.1) is unique iff the tolerance function never vanishes.
It is to be noted that the case of nonstrict A-operations⊕ is more intricate and is yet to be studied

in detail. Following the tradition, we elaborate only on the case of nonstrict A-operation of addition
⊕=max. Also, we do not touch upon the computational complexity of the sensitivity analysis in
our approach, which is a separate problem in itself (concerning the latter see [1, 8, 16, 18, 21, 22]).
The paper is organized as follows. In Section 2 we develop a theory of A-operations and their

two subtractions, upper and lower, to be applied throughout the paper. In Section 3 we formulate
a general optimization problem for objective functions generated by A-operations. In Section 4 we
determine upper stability intervals and in Section 5—lower stability intervals of costs, for which an
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optimal solution preserves its optimality. In Section 6 for strict A-operations we define an invariant
of the optimization problem—the tolerance function, and establish its basic properties.

2. A-operations on R+ and their inverses. Throughout the paper R+ denotes the set
[0,∞) of all nonnegative real numbers or the set (0,∞) of all positive real numbers.
The aim of this section is to introduce an operation of generalized addition or generalized mul-

tiplication on R+, called an A-operation, and to gather its properties for future reference.

2.1. Definition. A continuous function A : [0,∞)× [0,∞)→ [0,∞) is said to be an A-oper-

ation on R+ if A maps R+ ×R+ into R+ and, given u, v,w ∈ [0,∞), the following four conditions
(axioms) are satisfied:
(A.1) A(u,A(v,w)) =A(A(u, v),w) (associativity of A);
(A.2) A(u, v) =A(v,u) (commutativity of A);
(A.3) u< v implies A(u,w)≤A(v,w) (monotonicity of A);
(A.4) A(u, v)→∞ as u→∞ for all v ∈R+ (unboundedness of A).

If, instead of (A.3), the function A satisfies
(A.3s) given u, v ∈ [0,∞) and w ∈R+, u< v implies A(u,w)<A(v,w),

then the A-operation A is said to be strict on R+.
We denote byA(R+) the set of all A-operations on R+ and by As(R

+)—the set of those operations
A∈A(R+), which are strict on R+.

2.2. In extending an A∈A(R+) to any finite number of terms it is convenient to set u⊕ v ≡
u⊕A v =A(u, v) for all u, v ∈ [0,∞) and, given u1, . . . , un ∈ [0,∞) with an n ∈N, we put

u⊕∅= u, ⊕1
i=1ui = u1, ⊕2

i=1ui = u1 ⊕u2, (2.1)

and, inductively,
⊕n
i=1 ui =A

(
⊕n−1
i=1 ui, un

)
=
(
⊕n−1
i=1 ui

)
⊕un if n≥ 3. (2.2)

We will write A(u, v) or u⊕ v indifferently as well as A=⊕∈A(R+). Now, conditions (A.1)–(A.4)
can be rewritten more commonly as

u⊕ (v⊕w) = (u⊕ v)⊕w, u⊕ v= v⊕u, u < v =⇒ u⊕w≤ v⊕w,

and u⊕ v→∞ as u→∞ for all v ∈R+, respectively.

2.3. Generalized addition and multiplication. Of particular importance on R+ = [0,∞)
are A-operations ⊕, generalizing the usual addition, which, along with axioms (A.1)–(A.3), satisfy
the condition
(A.5) 0⊕ v= v for all v ∈ [0,∞).

Note that the zero 0 plays the role of the neutral element with respect to ⊕, axiom (A.4) is
redundant in this case (in fact, (A.3), (A.2) and (A.5) imply u⊕v ≥ u⊕0 = u) and u⊕v ≥max{u, v}
for all u, v ∈ [0,∞). A-operations on R+, satisfying (A.5), are called F -operations in [20] (see also
[2], [3], [19, Section 3]).
The case R+ = (0,∞) is more appropriate for A-operations ⊕, generalizing the usual multiplica-

tion, i.e., satisfying (A.1)–(A.4) and
(A.6) 0⊕ v= 0 for all v ∈ (0,∞).

Also, we assume the existence of the neutral element (the unit with respect to ⊕) eee∈R+ such that
eee⊕ v= v for all v ∈ [0,∞).

2.4. Convention. In what follows A-operationsA=⊕ on R+ = [0,∞) or (0,∞) will be treated
in a unified way, however, on [0,∞) they are assumed to satisfy axioms (A.1)–(A.3) and (A.5) and
are called A-operations of addition and on (0,∞)—axioms (A.1)–(A.4) and (A.6) and are called
A-operations of multiplication.
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2.5. Examples of A-operations. Let u, v ∈ [0,∞) and p∈ (0,∞). The following are examples
of A-operations of addition on R+ = [0,∞) (cf. [3], [19, Chapter 3]):
(a1) A1(u, v) = u+ v (the usual addition operation);
(a2) A2(u, v) = (up+ vp)1/p;
(a3) A3(u, v) =max{u, v}= 1

2
(u+ v+ |u− v|);

(a4) A4(u, v) =
1
p
log(epu+ epv − 1);

(a5) A5(u, v) = u+ v+ puv;
(a6) A6(u, v) =G(max{u, v}, u+v), where G(a, b) is defined for 0≤ a≤ b by: G(a, b) = b if b < 1,

G(a, b) = 1 if a< 1 and b≥ 1, and G(a, b) = a if a≥ 1.
Examples of A-operations of multiplication on R+ = (0,∞) are as follows:
(a7) A7(u, v) = uv (the usual operation of multiplication) with the unit eee= 1;
(a8) A8(u, v) = puv, the neutral element being eee= 1/p;
(a9) A9(u, v) =

1
p
log

(
1+ (epu− 1)(epv− 1)

)
with the unit eee= (log2)/p;

(a10) A10(u, v) =
1
p

(
exp[log(1+ pu) · log(1+ pv)]− 1

)
, the unit being eee= (e− 1)/p.

That all these ten operations are indeed A-operations on R+ (satisfying convention 2.4) will be
more clear from Section 2.7.
Operations A1, A2, A4 and A5 are strict on [0,∞), operations A7, A8, A9 and A10 are strict on

(0,∞), while operations A3 =max and A6 are not strict on [0,∞).

For several elements u1, . . . , un ∈ [0,∞) operations A1 through A10 extend in the way exposed in
(2.2) and Sections 2.7 and 3.7 (cf. expression for ⊕̂

n

i=1ui); see also Examples 3.4.

2.6. Two properties. Two simple properties of A-operations on R+ are straightforward: if
⊕∈A(R+) and u,u1, v, v1 ∈ [0,∞), then

u≤ u1 and v≤ v1 imply u⊕ v ≤ u1 ⊕ v1,

and if, in addition, ⊕ is strict on R+, then, given w ∈R+,

u⊕w≤ v⊕w implies u≤ v (cancellation law), (2.3)

which, in particular, gives: if u⊕w= v⊕w, then u= v.

2.7. Generating A-operations. Following [3] or [19, Section 3], here we introduce an equiv-
alence relation on the set A(R+).
Let ϕ : [0,∞)→ [0,∞) be a continuous strictly increasing function vanishing at zero (only) and

such that ϕ(u) → ∞ as u→ ∞ (such functions are said to be ϕ-functions, cf. [3], [19]). Given
A∈A(R+) and u, v ∈R+, we set

(Eϕ(A))(u, v) = ϕ−1
(
A(ϕ(u),ϕ(v))

)
,

where ϕ−1 : [0,∞)→ [0,∞) is the inverse function of ϕ. Clearly, Eϕ(A)∈A(R+), and so, Eϕ maps
A(R+) into itself.
If idX denotes the identity map of a set X (i.e., idX(x) = x for all x∈X) and ϕ0 = id[0,∞), then

Eϕ0
= idA(R+). Also, given two ϕ-functions ϕ and ψ, we find Eϕ◦ψ = Eϕ ◦Eψ, where ◦ designates

the usual composition of maps. It follows that the relation ∼ on A(R+) defined for A,B ∈A(R+)
by

B ∼A iff there exists a ϕ-function ϕ such that B =Eϕ(A),

is an equivalence relation on A(R+). The equivalence class [A] of an A-operation A under ∼ is given
by [A] = {Eϕ(A) :ϕ is a ϕ-function}. It is to be noted that if A∈As(R

+), then [A]⊂As(R
+).
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Now we turn back to Examples 2.5. We have:

A2 =Eϕ(A1) and A7 =Eϕ(A7) with ϕ(u) = up,

A4 =Eψ(A1) and A9 =Eψ(A7) with ψ(u) = epu− 1,

A5 =Eχ(A1) and A10 =Eχ(A7) with χ(u) = log(1+ pu),

and A8 = Eξ(A7) with ξ(u) = pu, where p > 0 and u ∈ [0,∞). Thus, A1 ∼ A2 ∼ A4 ∼ A5 and
A7 ∼A8 ∼A9 ∼A10, while A1, A3, A6 and A7 are not mutually equivalent under ∼. Note also that
the equivalence class of A3 =max is [A3] = {A3}.
If eee ∈ R+ is the neutral element with respect to the A-operation ⊕ and ⊕̂ = Eϕ(⊕) for a ϕ-

function ϕ, then êee= ϕ−1(eee) is the neutral element with respect to the A-operation ⊕̂: in fact, given
u≥ 0, we find

êee⊕̂u= ϕ−1
(
ϕ(êee)⊕ϕ(u)

)
= ϕ−1

(
eee⊕ϕ(u)

)
=ϕ−1(ϕ(u)) = u.

2.8. Upper and lower subtractions. Here we treat two inverses of an A-operation ⊕, also
called generalized subtractions (or divisions). Having an equation of the form u⊕v =w (or inequal-
ity u⊕ v ≤w) with u, v,w ∈R+, we are going to write u=w⊖ v (or u≤w⊖ v), so that we would
get (w ⊖ v) ⊕ v = w (or (w ⊖ v) ⊕ v ≤ w, respectively). We will achieve this by introducing two
“operations” of upper and lower subtractions on R+, ⊖ and ⊖, as follows.
Suppose the A-operation A=⊕∈A(R+) is given.
We define the domain D(⊖) of the upper subtraction ⊖ for ⊕ by

D(⊖) =
{
(w,v) ∈R+ ×R+ : ∃u0 ∈R+ such that u0 ⊕ v≤w

}
,

and, given (w,v) ∈D(⊖), the value w⊖v ∈R+ is defined by

w⊖ v=max{u ∈R+ : u⊕ v≤w}=max{u ∈R+ : u⊕ v=w}. (2.4)

The lower subtraction ⊖ for ⊕ is defined for all (w,v) ∈R+ ×R+ by

w⊖ v=min{u∈R+ : u⊕ v ≥w} ∈R+. (2.5)

Definitions (2.4) and (2.5) are similar to taking the right or left inverse of a not necessarily
strictly increasing function on [0,∞) (cf. [15]), depending on a parameter.
Our primary aim now is to verify that these definitions are correct.

2.9. Lemma. The subtractions ⊖ and ⊖ are well defined.

Proof. 1. Let us show that definition (2.4) is correct. First, we note that the domain D(⊖) is
nonempty. In fact, given u, v ∈ R+, setting u0 = u and w = u ⊕ v, we find u0 ⊕ v = w, and so,
(u⊕ v, v) = (w,v) ∈D(⊖).
Now, let (w,v) ∈ D(⊖), and so, there exists u0 ∈ R+ such that u0 ⊕ v ≤ w. Defining the set

U = {u∈R+ : u⊕v ≤w}, we find U 6=∅ (since u0 ∈U), U is bounded from below (because U ⊂R+)
and bounded from above (by axiom (A.4)) and U is closed in R (by the continuity of the function
[u 7→ u⊕ v] :R+ →R+), and so, U is compact in R. We set u= supU =maxU ∈R and assert that
u ∈ R+ and u⊕ v = w. In fact, given u ∈ U , we have u ≤ u and, since u0 ∈ U , inequality u0 ≤ u
implies u ∈ R+. Since u=maxU , we have u⊕ v ≤ w. If we assume that u⊕ v < w, then we note
that, by (A.4), there exists û∈R+ such that w < û⊕v and, moreover, by (A.3), u< û; now, by the
intermediate value theorem, there exists ũ∈R+ with u< ũ < û such that ũ⊕ v=w, and so, ũ∈U
and maxU = u< ũ, which is a contradiction. It follows that u⊕ v=w and, hence, w⊖ v= u.
2. Let us show that the quantity (2.5) is well defined. Given (w,v) ∈R+ ×R+, we define the set

U = {u ∈ R+ : u⊕ v ≥ w}. Then U 6=∅ (by virtue of (A.4)) and U is bounded from below (since
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U ⊂R+), and so, u= inf U ∈ [0,∞) = {0}∪R+. If R+ = [0,∞), then we note that, by the continuity
of the function u 7→ u⊕ v, the set U is closed in [0,∞), and so, u=minU and u∈ [0,∞) =R+. In
the case when R+ = (0,∞), we have

u⊕ v ≥w for all u> u, (2.6)

and, by virtue of (A.6), u⊕v→ 0⊕v= 0 as u→ 0, and so, there exists u1 > 0, depending on w> 0,
such that u1 ⊕ v <w. It follows from (2.6) that u≥ u1, i.e., u> 0. Passing to the limit as u→ u in
(2.6), by the continuity of u 7→ u⊕ v, we get u⊕ v≥w, and so, u∈U and u=minU ∈ (0,∞) =R+.
Thus, w⊖ v= u. �

2.10. Remark. We have shown in step 2 in the above proof that if R+ = (0,∞), then (A.6)
implies inf U =minU for all w > 0. It is to be noted that the converse implication holds as well.
In fact, given ε > 0, we set uε = inf U =minU , where U = {u ∈ (0,∞) : u⊕ v ≥ ε}. We assert that
u⊕ v < ε for all 0<u< uε (and so, 0⊕ v= limu→0 u⊕ v = 0 implying (A.6)): indeed, if we assume
that u⊕ v≥ ε, then u∈U , and so, u≥minU = uε, which contradicts the inequality u< uε.

Note that the value w⊖ v, as opposed to w⊖v, may not be defined for all w,v ∈R+. A comparison
of the two subtractions ⊖ and ⊖ for a ⊕∈A(R+) is given in the following

2.11. Lemma. (a) If (w,v) ∈D(⊖), then w⊖v ≤w⊖ v.
(b) If ⊕ is an A-operation of addition on R+ = [0,∞), then (w,v) ∈D(⊖) iff 0≤ v ≤ w, and

inequalities v≥w≥ 0 imply w⊖v =0.
(c) If ⊕ is an A-operation of multiplication on R+ = (0,∞), then (w,v) ∈D(⊖) for all w,v > 0.

Proof. (a) is a straightforward consequence of (2.4) and (2.5).

(b) Given (w,v) ∈D(⊖), there exists u0 ≥ 0 such that u0⊕ v≤w, and so, by virtue of (A.5) and
(A.3), v = 0⊕ v ≤ u0 ⊕ v ≤w. On the other hand, if v ≤w, then, by (A.5), 0⊕ v = v ≤w, and so,
(w,v) ∈D(⊖).
Suppose v≥w. By (A.3) and (A.5), u⊕ v ≥ u⊕w≥ 0⊕w=w for all u≥ 0, and so, U = {u≥ 0 :

u⊕ v ≥w}= [0,∞) and w⊖ v=minU =0.

(c) Given w,v > 0, by virtue of (A.6), u⊕ v→ 0 as u→ 0, and so, there exists u0 > 0 such that
u0 ⊕ v <w implying (w,v) ∈D(⊖). �

2.12. Examples of upper and lower subtractions. Most examples in this paper will be
demonstrated for the three basic (representatives of equivalence classes of) A-operations A2, A3

and A7 from Section 2.5, i.e., u⊕ v = (up + vp)1/p with p > 0, u⊕ v =max{u, v} and u⊕ v = uv,
where u, v ≥ 0, also abbreviated as p-sum, max and product operations, respectively.
Let ⊕∈A(R+) and ⊖ and ⊖ be the upper and lower subtractions for ⊕.
(a) Suppose u⊕ v= (up+ vp)1/p on R+ = [0,∞) with p > 0. We have:

(w,v) ∈D(⊖) iff 0≤ v≤w, and w⊖ v= (wp− vp)1/p;

given w,v ≥ 0, w⊖ v=

{
(wp− vp)1/p if v <w,

0 if v≥w.

Note that w⊖v =w⊖ v for all 0≤ v ≤w.

(b) Let u⊕ v =max{u, v} on R+ = [0,∞). Then

(w,v) ∈D(⊖) iff 0≤ v≤w, and w⊖ v=w;

given w,v ≥ 0, w⊖v =

{
w if v <w,
0 if v≥w.
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In fact, if v ≤ w, then U = {u≥ 0 : max{u, v} ≤ w} = [0,w], and so, by (2.4), w⊖ v =maxU = w.
By virtue of Lemma 2.11(b), v ≥ w implies w⊖ v = 0, and if v < w, then u ∈ U iff max{u, v} ≥w
iff u≥w, and so, U = [w,∞) and w⊖ v=minU =w.
Note that w⊖ v=w=w⊖v for all 0≤ v <w and 0⊖0= 0= 0⊖0, while if w> 0, then we have

w⊖w= 0<w=w⊖w.
(c) Suppose u⊕ v = uv on R+ = (0,∞). It follows from Lemma 2.11(c) that D(⊖) = (0,∞)×

(0,∞) and w⊖v =w⊖ v=w/v is the usual operation of division for all w,v > 0.

Now we establish basic (in)equalities related to the upper and lower subtractions ⊖ and ⊖ for
an A-operation ⊕.

2.13. Lemma. Given ⊕∈A(R+), we have:

(w⊖v)⊕ v = w for all (w,v) ∈D(⊖); (2.7)

w ≤ (w⊖ v)⊕ v for all w,v ∈R+; (2.8)

(w⊕ v)⊖v ≤ w ≤ (w⊕ v)⊖v for all w,v ∈R+. (2.9)

Also, the following criterion holds:

⊕ is strict on R+ iff w⊖v =w⊖ v for all (w,v) ∈D(⊖). (2.10)

Proof. 1. Equality (2.7) is the characterizing property of the quantity w⊖ v, which follows imme-
diately from (2.4).
2. Inequality (2.8) is the characterizing property of w⊖ v, which is a consequence of (2.5) (cf.

also Remark 2.14(a)).
3. The left-hand side inequality in (2.9) follows from (2.5):

(w⊕ v)⊖v=min{u∈R+ : u⊕ v ≥w⊕ v} ≤w.

Setting u0 =w, we find u0⊕v=w⊕v, and so, (w⊕v, v)∈D(⊖), and the right-hand side inequality
in (2.9) follows from (2.4):

(w⊕ v)⊖v=max{u∈R+ : u⊕ v =w⊕ v} ≥w.

4. Let us prove (2.10). Let ⊕ be strict. Given (w,v) ∈D(⊖), by virtue of Lemma 2.11(a), we
have to show only that w⊖ v ≥ w⊖ v. In fact, we assert that u≥ w⊖ v for all u ∈ U = {u ∈ R+ :
u⊕ v ≥w}, for, otherwise, if u<w⊖ v, then (A.3s) and (2.7) imply u⊕ v < (w⊖v)⊕ v =w, which
is a contradiction. Thus, w⊖ v=minU ≥w⊖ v.
Suppose the equality on the right in (2.10) holds, and let u> v≥ 0 and w ∈R+. It follows from

(A.3) that u⊕w ≥ v⊕w. If we assume that u⊕w = v⊕w, then, by (2.4) and the left-hand side
inequality in (2.9), we get

u≤ (v⊕w)⊖w= (v⊕w)⊖w≤ v,

which contradicts to u> v. Thus, u⊕w > v⊕w, and (A.3s) follows. �

2.14. Remarks. (a) Strict inequality may hold in (2.8) even for strict A-operations: if ⊕ is
as in Lemma 2.11(b) and v >w≥ 0, then

w < v= 0⊕ v= (w⊖ v)⊕ v.

Also, one cannot replace the inequality ≥ w in (2.5) by the equality = w: in fact, if ⊕ =max,
then taking into account Example 2.12(b), we have, for v >w≥ 0,

w⊖ v=min{u≥ 0 : max{u, v} ≥w}= 0,
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whereas {u≥ 0 : max{u, v}=w}=∅.
(b) If ⊕ is strict on R+, then, by (2.10), equalities hold in (2.9). However, if ⊕ is not strict, then

inequalities in (2.9) may be strict. By virtue of Example 2.12(b), for ⊕=max we have: if v=w> 0,
then

(w⊕ v)⊖v= (w⊕w)⊖w=max{w,w}⊖w=w⊖w=0<w,

and if v >w≥ 0, then

(w⊕ v)⊖v =max{w,v}⊖ v= v⊖v= v >w.

In this respect we note that, by Example 2.12(b), w⊖v =w for all 0≤ v≤w, and so, equality (2.7)
is of the form

(w⊖v)⊕ v =w⊕ v=max{w,v}=w.

The following lemma shows that the functions w 7→w⊖v and w 7→w⊖ v are nondecreasing (in
the first variable).

2.15. Lemma. Let ⊕∈A(R+), w1,w2, v ∈R+ and w1 ≤w2. We have:
(a) if (w1, v)∈D(⊖), then (w2, v) ∈D(⊖) and w1⊖ v≤w2⊖v;
(b) w1⊖v ≤w2⊖ v.

Proof. (a) Condition (w1, v) ∈D(⊖) implies the existence of u0 ∈R+ such that u0⊕v≤w1, which
gives u0 ⊕ v≤w2, and so, (w2, v)∈D(⊖). Setting u1 =w1⊖v, by virtue of (2.7), we find

u1 ⊕ v= (w1⊖v)⊕ v=w1 ≤w2,

and so, (2.4) yields u1 ≤w2⊖v.

(b) If u2 =w2⊖v, then it follows from (2.8) that

w1 ≤w2 ≤ (w2⊖v)⊕ v= u2 ⊕ v,

whence (2.5) implies w1⊖v ≤ u2. �

Several more inequalities will be needed in the sequel. If u, v and w are real numbers, then for
the usual operations of addition + and subtraction − we have: u≤ v implies w− v ≤ w− u, and
w− (v− u) = (w+ u)− v. In the next two lemmas we study to what extent these two properties
carry over to general A-operations ⊕∈A(R+) and their upper and lower subtractions ⊖ and ⊖.

2.16. Lemma. Suppose u, v,w ∈R+ and u≤ v. Then we have:
(a) if (w,v) ∈D(⊖), then (w,u) ∈D(⊖) and w⊖ v≤w⊖u;
(b) w⊖ v≤w⊖u.

Proof. (a) By virtue of (A.3) and (2.7), we get

(w⊖v)⊕u≤ (w⊖v)⊕ v=w,

and so, (w,u) ∈D(⊖), and the definition (2.4) of w⊖u (i.e., the maximality of w⊖u) implies the
desired inequality in (a).
(b) It follows form (A.3) and (2.8) that

(w⊖u)⊕ v≥ (w⊖u)⊕u≥w,

and the minimality of w⊖v from (2.5) gives the inequality in (b). �
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2.17. Lemma. Let ⊕∈A(R+) and u, v,w ∈R+. We have:
(a) if (v,u)∈D(⊖) and (w,v⊖u) ∈D(⊖), then (w⊕u, v) ∈D(⊖) and

(w⊕u)⊖v≤w⊖(v⊖u)≤ (w⊕u)⊖v;

(b) if (v,u)∈D(⊖), then (w⊕u)⊖v ≤w⊖(v⊖u);
(c) if (w,v⊖u)∈D(⊖), then (w⊕u, v) ∈D(⊖) and w⊖(v⊖u)≤ (w⊕u)⊖v;
(d) (w⊕u)⊖[(v⊖u)⊕u]≤w⊖(v⊖u).

Proof. (a) Setting w1 =w⊖(v⊖u), by virtue of (2.7), we find

w= [w⊖(v⊖u)]⊕ (v⊖u) =w1 ⊕ (v⊖u),

and so, once again (2.7) implies

w⊕u=w1 ⊕ (v⊖u)⊕u=w1 ⊕ v.

Consequently, (w⊕u, v) ∈D(⊖). Applying (2.9), we get

(w⊕u)⊖v = (w1 ⊕ v)⊖v ≤w1 ≤ (w1 ⊕ v)⊖v= (w⊕u)⊖v.

(b) Set w2 =w⊖(v⊖u). It follows from (2.8) that

w≤ [w⊖(v⊖u)]⊕ (v⊖u) =w2 ⊕ (v⊖u),

and so, by (A.3) and (2.7),
w⊕u≤w2 ⊕ (v⊖u)⊕u=w2 ⊕ v.

The desired inequality (w⊕u)⊖v≤w2 follows from definition (2.5).

(c) It follows from (2.7) that if w3 =w⊖(v⊖u), then

w= [w⊖(v⊖u)]⊕ (v⊖u) =w3 ⊕ (v⊖u),

and so, (2.8) implies
w⊕u=w3 ⊕ (v⊖u)⊕u≥w3 ⊕ v.

Thus, (w⊕u, v) ∈D(⊖) and, by (2.4), w3 ≤ (w⊕u)⊖v.

(d) Setting w4 =w⊖(v⊖u) and applying (2.8), we have

w≤ [w⊖(v⊖u)]⊕ (v⊖u) =w4 ⊕ (v⊖u),

and so, by (A.3), w⊕ u≤w4 ⊕ (v⊖u)⊕ u. Now, the desired inequality in (d) follows from defini-
tion (2.5). �

In the final lemma of this section we address the translation invariance of subtractions ⊖ and
⊖ with respect to the A-operation ⊕ that generates them.

2.18. Lemma. Suppose ⊕ is an A-operation on R+.

(a) If u∈R+ and (w,v) ∈D(⊖), then (u⊕w,u⊕ v) ∈D(⊖) and

w⊖ v≤ (u⊕w)⊖(u⊕ v). (2.11)

In addition, if ⊕ is strict, then we have the equality (u⊕w)⊖(u⊕ v) =w⊖ v.
(b) If u, v,w ∈R+, then (u⊕w)⊖(u⊕ v)≤w⊖ v. If, in addition, ⊕ is strict, then we have the

equality (u⊕w)⊖(u⊕ v) =w⊖ v.
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Proof. (a) Since (w,v) ∈D(⊖), there exists u0 ∈R+ such that u0⊕v≤w, and so, by (A.1)–(A.3),

u0⊕ (u⊕ v) = u⊕ (u0⊕ v)≤ u⊕w, which implies that the pair (u⊕w,u⊕ v) is in the domain of ⊖.

Taking into account (2.7) and (A.2), we get

(w⊖v)⊕ (u⊕ v) = [(w⊖ v)⊕ v]⊕u=w⊕u= u⊕w,

and so, inequality (2.11) is a consequence of definition (2.4).

Now, suppose ⊕ is strict. Setting u1 = (u⊕w)⊖(u⊕ v), by (2.7), we have

u1 ⊕u⊕ v= [(u⊕w)⊖(u⊕ v)]⊕ (u⊕ v) = u⊕w.

By virtue of (2.3), we cancel by u and get u1 ⊕ v = w. Since, again by (2.7), (w⊖v)⊕ v = w, we

find u1 ⊕ v=w= (w⊖ v)⊕ v, and so, cancelling by v, we arrive at u1 =w⊖ v, which is the desired

equality.

(b) Set u2 = (u⊕w)⊖(u⊕ v). It follows from (A.1)–(A.3) and (2.8) that

(w⊖v)⊕ (u⊕ v) = [(w⊖ v)⊕ v]⊕u≥w⊕u= u⊕w,

and so, definition (2.5) implies u2 = (u⊕w)⊖(u⊕ v)≤w⊖ v.

Let ⊕ be strict. By virtue of (2.8), we get

u2 ⊕u⊕ v= [(u⊕w)⊖(u⊕ v)]⊕ (u⊕ v)≥ u⊕w,

and so, cancelling by u, we find u2⊕ v≥w, which, by virtue of definition (2.5), implies w⊖ v≤ u2,

and the desired equality readily follows. �

2.19. Remark. The inequalities in Lemma 2.18 may be strict if ⊕ is not necessarily strict.

To see this, we set ⊕=max and take into account Example 2.12(b): given 0≤ v <w < u, we have

w⊖v =w <u= u⊖u=max{u,w}⊖max{u, v}= (u⊕w)⊖(u⊕ v)

and

(u⊕w)⊖(u⊕ v) =max{u,w}⊖max{u, v}= u⊖u= 0<w=w⊖ v.
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3. Optimization problems. In this section we introduce notation, definitions and assump-
tions to be used throughout the paper.

3.1. Optimization space. Let X be a finite set of cardinality |X| ≥ 2 (e.g., X = {1,2, . . . , n}
with n≥ 2), called the ground set, 2X be the family of all subsets of X (i.e., the power set of X)
and 2̇X = 2X \{∅}. For instance, a ground set may be thought of as the collection of all edges of a
graph (or arcs in the directed case). Given a nonempty set Y , we denote, as usual, by Y X the set
of all functions (maps) g :X→ Y from X into Y .
A set of trajectories on X (or a canonical collection on X, cf. [5]) is a collection S ⊂ 2̇X of subsets

of X such that

∪S =X and ∩S =∅, (3.1)

where ∪S is the union of S (= the set of all x∈X such that x ∈ S for some S ∈ S) and ∩S is the
intersection of S (= the set of all x∈X such that x∈ S for all S ∈ S). It follows immediately from
(3.1) that there are at least two trajectories in S, and so, 2≤ |S|< 2|X|.
A pair (X,S) is called an optimization space if X is a ground set and S is a set of trajectories

on X.

3.2. Operational procedures. If (R+)X denotes the set of all functions of the form C :
X → R+, we let C(X) be a subset of (R+)X , called the set of all (admissible) cost functions, also
representing distance, weight, time, etc. Given C ∈ C(X), to each element x ∈ X a nonnegative
number C(x) is assigned uniquely, which is called the cost of x.
Since we are going to optimize (i.e., look for minima or maxima of) nonnegative functions on the

set of trajectories S, we denote by Ob(S) = (R+)S the family of all such functions, called objective

functions.
A map of the form f : C(X)→Ob(S) is said to be an operational procedure on the optimization

space (X,S). In other words, to each cost function C :X→R+ the operational procedure f assignes
in a unique way the objective function of the form fC ≡ f(C) : S → R+. If the cost function C is
fixed (somehow), notation fC(S) will be employed in place of f(C)(S), where S ∈ S.
Of particular importance for the developments to follow are operational procedures generated

by A-operations on R+, which are most often encountered in practice.
Let (X,S) be an optimization space, C :X → R+—a cost function and ⊕—an A-operation on

R+. Suppose the set function FC : 2X →R+ is given by

FC(S) =
⊕

y∈S

C(y) for all S ∈ 2̇X , and FC(∅) =∅, (3.2)

where (cf. (2.2))
⊕

y∈S

C(y) =
n⊕

i=1

C(b(i)) (3.3)

for a bijection b : {1, . . . , n}→ S with n= |S| (since ⊕ satisfies axioms (A.1) and (A.2), the right-
hand side in (3.3) is independent of a bijection b chosen). By virtue of (A.1) and (A.2), FC is a
finitely additive measure on 2X with respect to the A-operation ⊕, that is,

if S1, S2 ∈ 2X and S1 ∩S2 =∅, then FC(S1 ∪S2) =FC(S1)⊕FC(S2),

the term FC(∅) = ∅ being omitted (cf. (2.1)). The measure FC will be called the operational

measure corresponding to C and ⊕.
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The operational procedure f : C(X)→Ob(S) on the optimization space (X,S), generated by the

A-operation ⊕, is given by

fC(S) = FC(S) =
⊕

y∈S

C(y) for all S ∈ S and C ∈ C(X), (3.4)

i.e., fC =FC |S is the restriction of measure FC to the set of trajectories S on X.

3.3. Remark. If ⊕ is an A-operation of addition, then the measure FC can be expressed as
FC(S) =⊕x∈XC(x)δx(S), where δx : 2

X →{0,1} is the Dirac measure (or point mass) concentrated
at x∈X, i.e., given S ⊂X, one has δx(S) = 1 if x∈ S, and δx(S) = 0 if x /∈ S.

3.4. Examples of operational measures. Here we follow the pattern of Section 2.12. Let
C ∈ C(X) and S ∈ 2̇X .
(a) If u⊕v= (up+vp)1/p on R+ = [0,∞) with p > 0, then the p-sum operational measure is given

by

FC(S) =

(∑

y∈S

C(y)p
)1/p

.

(b) If u⊕ v=max{u, v} on R+ = [0,∞), then the max (or bottleneck) operational measure is of
the form

FC(S) =max
y∈S

C(y) =max
{
C(y) : y ∈ S

}
.

(c) If u⊕ v= uv on R+ = (0,∞), then the product operational measure is given by

FC(S) =
∏

y∈S

C(y) if C(y)> 0 for all y ∈X.

3.5. Optimization problems. The triple (X,S, f), where (X,S) is an optimization space
and f is an operational procedure on (X,S), determines a (Discrete) Optimization Problem (OP,
for short), which is formulated as follows: given a cost function C :X→R+, minimize or maximize

the objective function fC on S, that is, look for solutions to the following extremal problem:

fC(S)→min (or max), S ∈ S. (3.5)

The set of trajectories S in (3.5) plays the role of the set of all feasible (or admissible) solutions to
the OP.
Throughout the paper we concentrate only on the minimization problem (3.5) with the objec-

tive function of the form (3.4), i.e., problem (1.1), where ⊕ is an A-operation on R+. Since the
formulation of the problem (1.1) depends on X, S, ⊕ and C, we will also refer to the problem (1.1)
as OP(X,S,⊕,C).
Examples of concrete OPs including combinatorial OPs are the well known traveling sales-

man problem, shortest path problem, assignment problem, Steiner problem, machine sequenc-
ing problem, min-cut problem, and many other problems on graphs, matroids, etc. (we refer to
[5, 6, 9, 10, 16, 17, 23, 24, 25, 26]).

3.6. Optimal solutions. Given an OP(X,S,⊕,C), we denote by

S∗ ≡S∗
C = {S∗ ∈ S : fC(S

∗)≤ fC(S) for all S ∈ S} (3.6)

the set of all optimal solutions to the OP (1.1). The collection S∗ and its elements depend on the
cost function C; however, if C is fixed (in a context), then it will be convenient (and brief) not
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to show the dependence S∗ = S∗(C) explicitly. Note that, since the set of trajectories S is finite,
optimal solutions S∗ ∈ S∗ always exist, i.e., we have S∗ 6=∅.
The minimal value of fC on S, called the optimal value of the OP(X,S,⊕,C), is determined

uniquely and is independent of an optimal solution S∗ ∈ S∗, and it will be denoted by

fC(S
∗) =min

S∈S
fC(S) =min

S
fC = fC(S

∗) for all S∗ ∈ S∗. (3.7)

3.7. Equivalent OPs. Given an OP(X,S,⊕,C) of the form (1.1) and a ϕ-function ϕ :
[0,∞)→ [0,∞) (cf. Section 2.7), we let ⊕̂=Eϕ(⊕) (i.e., u⊕̂v=ϕ−1

(
ϕ(u)⊕ϕ(v)

)
for all u, v≥ 0) and

Ĉ = ϕ−1 ◦C (i.e., Ĉ(y) =ϕ−1(C(y)) for all y ∈X). We are going to show that the OP(X,S,⊕,C) is
equivalent to the OP(X,S, ⊕̂, Ĉ) in the sense that their sets of optimal solutions, denoted here by
S∗(⊕) and S∗(⊕̂), respectively, coincide. In fact, first we note that if u1, . . . , un ≥ 0, then ⊕̂

n

i=1ui =
ϕ−1

(
⊕n
i=1ϕ(ui)

)
, n ∈N. It follows that, given S ∈ S, for the corresponding objective functions f⊕

C

and f ⊕̂

Ĉ
we have

f⊕
C (S) =

⊕

y∈S

C(y) =
⊕

y∈S

ϕ
(
ϕ−1(C(y))

)
=
⊕

y∈S

ϕ
(
Ĉ(y)

)
=

= ϕ

(
ϕ−1

(⊕

y∈S

ϕ
(
Ĉ(y)

)))
= ϕ

( ⊕̂

y∈S

Ĉ(y)

)
= ϕ

(
f ⊕̂

Ĉ
(S)

)
.

Since ϕ is strictly increasing, it follows from (3.6) that S∗(⊕) = S∗(⊕̂).

4. Upper stability intervals.

4.1. In the Sensitivity Analysis one is interested in numerical characteristics of elements x
from the ground set X, which express the degree of invariance of an optimal solution to the OP
(1.1) with respect to a change of the single cost C(x). The following two notions serve this purpose
and are adopted in the literature ([4]–[10], [17]–[18], [24]–[26]). By the upper tolerance uS∗(x) (lower
tolerance ℓS∗(x)) of x ∈X with respect to S∗ ∈ S∗ one means the maximum increase (maximum

decrease, respectively) of the cost C(x) only, so that the optimal solution S∗ to the original OP (1.1)
remains an optimal solution to the “perturbed” OP (1.1), in which the costs C(y) are unchanged
if y 6= x and the cost C(x) of x is increased (decreased, respectively) as compared to C(x). These
two notions will be studied in detail in the framework of general A-operations in this and the next
sections.

Let the OP(X,S,⊕,C) of the form (1.1) be given and S∗ be the set of all its optimal solutions
(cf. (3.6)).

4.2. Perturbed objective functions. Given x∈X, we perturb the cost function C ∈ C(X)
at its value C(x) by defining the perturbed cost function Cx,γ : X → R+ with γ ∈ R+ as follows:
Cx,γ(y) = C(y) if y ∈X and y 6= x, and Cx,γ(x) = γ. Since Cx,γ ∈ C(X), we let f(Cx,γ)≡ fCx,γ be
the objective function (3.4) corresponding to the cost function Cx,γ, called the perturbed objective

function (as compared to fC), and so, it is of the form

f(Cx,γ)(S) =
⊕

y∈S

Cx,γ(y) for all S ∈ S. (4.1)

In order to (properly) define upper and lower tolerances of x ∈X with respect to an optimal
solution S∗ ∈ S∗ to problem (1.1), we ought to determine (further) restrictions on γ ∈ R+, under
which

S∗ ∈ S∗ implies f(Cx,γ)(S
∗) =min

S∈S
f(Cx,γ)(S). (4.2)
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For this, let us express the perturbed objective function (4.1) in terms of the original cost function
C, the initial objective function fC and the operational measure FC .
In order to do it, it will be helpful to introduce two ad hoc subcollections of the set of trajectories

S by

S−x = {S ∈ S : x /∈ S} and Sx = {S ∈ S : x∈ S}, x∈X; (4.3)

in other words, given x∈X and S ∈ S, we have: x /∈ S iff S ∈ S−x, and x∈ S iff S ∈ Sx. By virtue
of (3.1), both collections S−x and Sx are nonempty, S−x ∪Sx = S and S−x ∩Sx =∅ for all x∈X.
Now, given S ∈ S, we have either S ∈ S−x or S ∈ Sx. If S ∈ S−x (or x /∈ S), then Cx,γ(y) =C(y)

for all y ∈ S, and so, (4.1) and (3.4) imply

f(Cx,γ)(S) =
⊕

y∈S

C(y) = FC(S) = fC(S).

If S ∈ Sx (or x ∈ S), then Cx,γ(y) =C(y) if y ∈ S and y 6= x, and Cx,γ(x) = γ, and so, (4.1), (3.2),
(A.1) and (A.2) yield

f(Cx,γ)(S) = γ⊕

( ⊕

y∈S\{x}

C(y)

)
= γ⊕FC(S \ {x}),

where the term FC(S \ {x}) is omitted if S = {x} (cf. (2.1)).
Thus, given x∈X and S ∈ S, the perturbed objective function f(Cx,γ) is expressed as

f(Cx,γ)(S) =

{
fC(S) if S ∈ S−x (i.e., x /∈ S),

γ⊕FC(S \ {x}) if S ∈ Sx (i.e., x∈ S).
(4.4)

In particular, if γ =C(x), then Cx,γ(y) =C(y) for all y ∈X, and so, (4.4) implies

fC(S) =C(x)⊕FC(S \ {x}) if S ∈ Sx. (4.5)

Formula (4.4) is valid for all A-operations ⊕ on R+ and, particularly, as it will be seen later,
it works well for all strict operations. However, for certain nonstrict A-operations, such as max, a
different (more subtle) form of formula (4.4) is needed.

4.3. The perturbed objective function in the case ⊕=max. Suppose that ⊕=max on
R+ = [0,∞). Let us transform the lower part of formula (4.4) taking into account certain specific
features of the A-operation max.
Only the case S ∈ Sx with S 6= {x} is to be considered. By virtue of (4.5) and Example 3.4(b),

we have

fC(S) =max{C(x), FC(S \ {x})} with FC(S \ {x}) = max
y∈S\{x}

C(y), (4.6)

and the second line of (4.4) can be rewritten as

f(Cx,γ)(S) =max{γ,FC(S \ {x})}. (4.7)

Assuming that γ ≥C(x) and considering the two possibilities in (4.6), which are of the form

fC(S) =C(x) or fC(S) =FC(S \ {x}), (4.8)

we find from (4.7) that

f(Cx,γ)(S) =max{γ, fC(S)}= γ⊕ fC(S). (4.9)
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In fact, if fC(S) =C(x), then

FC(S \ {x}) = max
y∈S\{x}

C(y)≤max
y∈S

C(y) = fC(S) =C(x)≤ γ,

and so, by (4.7), f(Cx,γ)(S) = γ. Now, if fC(S) = FC(S \ {x}), then once again (4.7) implies
f(Cx,γ)(S) =max{γ, fC(S)}.
Assume that 0≤ γ ≤ C(x) and consider the possibilities (4.8). If fC(S) = C(x), then, by (4.7),

we have
f(Cx,γ)(S) =max{fC(S)+ γ−C(x), FC(S \ {x})}, (4.10)

and if fC(S) = FC(S \ {x}), then

γ ≤C(x)≤max
y∈S

C(y) = fC(S) = FC(S \ {x}), (4.11)

and so, (4.7) implies f(Cx,γ)(S) =FC(S \ {x}) = fC(S). It follows that equality (4.10) holds under
both possibilities (4.8).
Thus, given x∈X and S ∈ S, taking into account (4.4), (4.9) and (4.10), we have the following

alternative expression for the perturbed objective function in the case ⊕=max:

f(Cx,γ)(S) =





fC(S) if S ∈ S−x,

max{γ, fC(S)} if S ∈ Sx and γ ≥C(x),

max
{
fC(S)+γ−C(x), FC(S\{x})

}
if S ∈ Sx and 0≤γ≤C(x),

(4.12)

where fC(S) =FC(S) is as in Example 3.4(b) and FC(S \ {x}) is given in (4.6).

4.4. Unrestricted upper tolerances. In order to define the upper tolerance uS∗(x) of x∈X
with respect to an S∗ ∈ S∗ following the pattern exposed in Section 4.1, we have to increase the
cost C(x) to the value γ ≥C(x) in such a way that the implication (4.2) holds, i.e., S∗ is also an
optimal solution to the perturbed OP(X,S,⊕,Cx,γ), which is the problem (1.1) with C replaced
by Cx,γ (cf. also (4.1)). It is to be noted that for certain elements x ∈X implication (4.2) holds
automatically for all γ ≥ C(x); for instance, it is intuitively clear that x /∈ S∗ are such elements,
and so, the upper tolerance uS∗(x) for them may be thought of as infinite (unrestricted). This
assertion is made precise in the following

4.5. Lemma. If S∗ ∈ S∗ and x∈X \S∗, then for all γ ≥C(x) we have

f(Cx,γ)(S
∗)≤ f(Cx,γ)(S) for all S ∈ S. (4.13)

Proof. Let us fix γ ≥ C(x) arbitrarily. Since S∗ ∈ S∗, it follows from (3.6) that S∗ ∈ S and
fC(S

∗)≤ fC(S) for all S ∈ S. Assumption x /∈ S∗ is equivalent to S∗ ∈ S−x, and so, (4.4) implies

f(Cx,γ)(S
∗) = fC(S

∗).

Now, given S ∈ S, we have either S ∈ S−x or S ∈ Sx. If S ∈ S−x, then taking into account (4.4), we
get (for all γ ∈R+)

f(Cx,γ)(S
∗) = fC(S

∗)≤ fC(S) = f(Cx,γ)(S).

If S ∈ Sx, then, by virtue of (4.5), the monotonicity of ⊕ (cf. axiom (A.3)) and (4.4), we find

f(Cx,γ)(S
∗) = fC(S

∗)≤ fC(S) =C(x)⊕FC(S \ {x})≤

≤ γ⊕FC(S \ {x}) = f(Cx,γ)(S),

which was to be proved. �

Lemma 4.5 is valid for all A-operations ⊕ and even those satisfying only axioms (A.1)–(A.3).
However, for lower tolerances, to be considered in Section 5, the situation is more subtle (cf.
Theorem 5.4).
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4.6. Upper stability intervals. Intuitively, for minimization problems (1.1) the cost C(x)
of an x ∈ S∗ cannot be increased indefinitely so that (4.2) holds. So, we are interested in finding
(restrictions on ⊕ and) the largest closed interval of costs [C(x),C+

S∗(x)] with C+
S∗(x)≥C(x), called

the upper stability interval, such that the implication (4.2) is valid for all γ ∈ [C(x),C+
S∗(x)].

Given S∗ ∈ S∗ and x∈ S∗, we set (cf. (4.3))

C+
S∗(x) =maxΓx,S∗(S−x), (4.14)

where, given a subcollection S1 ⊂S (usually, S1 = S−x, Sx or S),

Γx,S∗(S1) =
{
γ ∈R+ : f(Cx,γ)(S

∗)≤ f(Cx,γ)(S) for all S ∈ S1

}
. (4.15)

Note that, since S∗ ∈ S∗ and Cx,γ(y) = C(y) for all y ∈X if γ = C(x), it follows from (3.6) that
C(x)∈ Γx,S∗(S1) (cf. also (4.22) below).
In order to evaluate (and estimate) the quantity (4.14) (see Theorem 4.7), it will be convenient

to apply the notation of the form (3.7) for subcollections S−x and Sx from (4.3):

fC(S
∗
−x) = min

S∈S−x

fC(S) and fC(S
∗
x) = min

S∈Sx

fC(S), x∈X (4.16)

(to avoid ambiguities, we may explicitly set S∗
−x = (S−x)

∗ 6= (S∗)−x and S∗
x = (Sx)

∗ 6= (S∗)x).

In the next theorem ⊖ and ⊖ denote the upper and lower subtractions for ⊕.

4.7. Theorem. Given S∗ ∈ S∗ and x∈ S∗, we have:
(a) C+

S∗(x) = fC(S
∗
−x)⊖FC(S

∗ \ {x});
(b) C(x)≤C+

1 (x)≤C+
S∗(x)≤C+

2 (x) and C
+
1 (x)∈ Γx,S∗(S−x), where

C+
1 (x) = fC(S

∗
−x)⊖ [fC(S

∗)⊖C(x)], (4.17)

C+
2 (x) = fC(S

∗
−x)⊖ [fC(S

∗)⊖C(x)]; (4.18)

(c) if, in addition, ⊕ is strict on R+ or ⊕=max on [0,∞), then

C+
S∗(x) =C+

1 (x) =C+
2 (x) = [C(x)⊕ fC(S

∗
−x)]⊖fC(S

∗) =maxΓx,S∗(S), (4.19)

the implication (4.2) holds for all γ ∈ [C(x),C+
S∗(x)] and, moreover, in the case ⊕=max we also

have C+
S∗(x) = fC(S

∗
−x).

Proof. (a) Since x∈ S∗ iff S∗ ∈ Sx, it follows from (4.4) that, given S ∈ S−x and γ ∈R+,

f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \ {x}) and f(Cx,γ)(S) = fC(S). (4.20)

Therefore, (4.15) with S1 = S−x and (4.16) yield

Γx,S∗(S−x) =
{
γ ∈R+ : γ⊕FC(S

∗ \ {x})≤ fC(S) for all S ∈ S−x

}
=

=
{
γ ∈R+ : γ⊕FC(S

∗ \ {x})≤ fC(S
∗
−x)

}
. (4.21)

Since S∗ ∈ S∗ and x∈ S∗, (4.5) and (3.6) imply

C(x)⊕FC(S
∗ \ {x}) = fC(S

∗)≤ fC(S) for all S ∈ S−x, (4.22)

and so,
C(x)⊕FC(S

∗ \ {x})≤ fC(S
∗
−x). (4.23)

Hence, C(x) ∈ Γx,S∗(S−x) and the pair (fC(S
∗
−x), FC(S

∗ \ {x})) belongs to the domain D(⊖) of
the upper subtraction ⊖ for ⊕. Definitions (4.14) and (2.4), (4.21) and (4.23) imply inequality
C+
S∗(x)≥C(x) and assertion (a).
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(b) Taking into account the equality in (4.22) and applying inequalities (2.9) from Lemma 2.13
(with w= FC(S

∗ \ {x}) and v=C(x)), we get

fC(S
∗)⊖C(x)≤FC(S

∗ \ {x})≤ fC(S
∗)⊖C(x), (4.24)

where, by (3.7), fC(S
∗) = fC(S

∗) is the optimal value of problem (1.1).
Now, we put w= fC(S

∗
−x).

First, we set u= fC(S
∗)⊖C(x) and v= FC(S

∗ \{x}). By (4.24), u≤ v, and it follows from (4.23)
that (w,v) ∈D(⊖), and so, applying Lemma 2.16(a), we get (w,u) ∈D(⊖) and w⊖ v≤w⊖u. This
inequality together with Theorem 4.7(a) and (4.18) gives C+

S∗(x)≤C+
2 (x).

Second, we set u=FC(S
∗ \{x}) and v = fC(S

∗)⊖C(x). Then (4.24) implies u≤ v, and equality
(2.7) from Lemma 2.13 and (A.2) give

C(x)⊕ v=C(x)⊕ [fC(S
∗)⊖C(x)] = fC(S

∗)≤ fC(S
∗
−x) =w, (4.25)

i.e., (w,v) ∈D(⊖). Applying Lemma 2.16(a), we find w⊖ v ≤ w⊖u, and so, by (4.17) and Theo-
rem 4.7(a), C+

1 (x)≤C+
S∗(x).

In order to show that C+
1 (x)∈ Γx,S∗(S−x), we apply the notation for u, v and w from the previous

paragraph. By virtue of (4.17), inequality u≤ v, Lemma 2.16(a) and (2.7) from Lemma 2.13, we
get

C+
1 (x)⊕FC(S

∗ \ {x}) = (w⊖v)⊕u≤ (w⊖u)⊕u=w= fC(S
∗
−x),

and it remains to take into account (4.21).
The inequality C(x)≤C+

1 (x) is a consequence of (4.25), (2.4) and (4.17).

(c) First, we establish two auxiliary inequalities (under general conditions on ⊕). By virtue of
Lemma 2.17(a) and (4.17), we find

[C(x)⊕ fC(S
∗
−x)]⊖fC(S

∗)≤ fC(S
∗
−x)⊖ [fC(S

∗)⊖C(x)] =C+
1 (x), (4.26)

and (4.18) and Lemma 2.17(c) yield

C+
2 (x) = fC(S

∗
−x)⊖ [fC(S

∗)⊖C(x)]≤ [C(x)⊕ fC(S
∗
−x)]⊖fC(S

∗). (4.27)

1. Suppose that the A-operation ⊕ is strict on R+. Then, by (2.10) from Lemma 2.13, ⊖=⊖ on
D(⊖), and so, the first three equalities in (4.19) follow from Theorem 4.7(b), (4.17), (4.18), (4.26)
and (4.27).
Now, given γ ∈ [C(x),C+

S∗(x)], let us show that (4.2) (or (4.13)) holds. If S ∈ S, then either
S ∈ S−x or S ∈ Sx. Let S ∈ S−x. Since C(x)≤ γ ≤ C+

S∗(x), we have γ ∈ Γx,S∗(S−x), which implies
the inequality in (4.13). In more details, by (4.20), (4.21), (4.16) and (4.4), we have

f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \ {x})≤C+
S∗(x)⊕FC(S

∗ \ {x})≤

≤ fC(S
∗
−x)≤ fC(S) = f(Cx,γ)(S).

If S ∈ Sx (and γ ∈R+), then it follows from (4.5) and (3.6) that

C(x)⊕FC(S
∗ \ {x}) = fC(S

∗)≤ fC(S) =C(x)⊕FC(S \ {x}),

and so, by the cancellation law (2.3), FC(S
∗ \ {x})≤ FC(S \ {x}). Taking into account the mono-

tonicity of ⊕ and (4.4), we obtain

f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \ {x})≤ γ⊕FC(S \ {x}) = f(Cx,γ)(S).
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This proves also that Γx,S∗(Sx) =R+, whence

Γx,S∗(S) = Γx,S∗(S−x)∩Γx,S∗(Sx) = Γx,S∗(S−x),

and so, C+
S∗(x) =maxΓx,S∗(S), which is the fourth equality in (4.19).

2. Now assume that ⊕=max on R+ = [0,∞). Since x ∈ S∗, by (4.6), we have C(x)≤ fC(S
∗) =

fC(S
∗), and so, taking into account Example 2.12(b), we get fC(S

∗)⊖C(x) = fC(S
∗), whereas

fC(S
∗)⊖C(x) = fC(S

∗) if C(x)< fC(S
∗), and fC(S

∗)⊖C(x) = 0 if C(x) = fC(S
∗). Since S∗ is an

optimal solution to (1.1), we get fC(S
∗)≤ fC(S

∗
−x), and so, (4.17) implies

C+
1 (x) = fC(S

∗
−x)⊖fC(S

∗) = fC(S
∗
−x).

By virtue of (4.18), we find: if C(x)< fC(S
∗), then

C+
2 (x) = fC(S

∗
−x)⊖fC(S

∗) = fC(S
∗
−x),

and if C(x) = fC(S
∗), then

C+
2 (x) = fC(S

∗
−x)⊖0= fC(S

∗
−x).

Thus, C+
1 (x) =C+

2 (x) = fC(S
∗
−x) and, by Theorem 4.7(b), C+

S∗(x) = fC(S
∗
−x), which establishes the

first two equalities in (4.19).
Since C(x)≤ fC(S

∗)≤ fC(S
∗
−x), we get (with ⊕=max)

[C(x)⊕ fC(S
∗
−x)]⊖fC(S

∗) =max{C(x), fC(S
∗
−x)}= fC(S

∗
−x),

and the third equality in (4.19) follows.
Now we prove (4.13) for all γ ∈ [C(x),C+

S∗(x)]. Since γ ≤C+
S∗(x), (4.13) for S ∈ S−x follows from

the inclusion γ ∈ Γx,S∗(S−x). In more details, given S ∈ S−x, (4.12) implies

f(Cx,γ)(S
∗) =max{γ, fC(S

∗)} ≤max{C+
S∗(x), fC(S

∗)}=

=C+
S∗(x) = fC(S

∗
−x)≤ fC(S) = f(Cx,γ)(S).

If S ∈ Sx (and γ ∈R+), then the monotonicity of max and (4.12) yield

f(Cx,γ)(S
∗) =max{γ, fC(S

∗)} ≤max{γ, fC(S)}= f(Cx,γ)(S).

As in step 1 of item (c), this proves also that C+
S∗(x) =maxΓx,S∗(S). �

4.8. Remark. By Theorem 4.7(a) and definition (4.14), the value C+
S∗(x) depends on the

optimal solution S∗ to problem (1.1). However, if ⊕ is strict or ⊕=max, then, by Theorem 4.7(c),
the value C+

S∗(x) =C+
1 (x) is independent of optimal solutions S∗ to (1.1) such that x ∈ S∗ in the

following sense: given S∗
1 , S

∗
2 ∈ S∗, if x∈ S∗

1 ∩S
∗
2 , then C

+
S∗

1
(x) =C+

S∗

2
(x) (in fact, these two quantities

are given by the same formula (4.19), which does not involve neither S∗
1 nor S∗

2).

4.9. Having the upper stability interval [C(x),C+
S∗(x)] (with C(x) ≤ C+

S∗(x)) for S∗ ∈ S∗

and x ∈ S∗, it may look quite natural to define the upper tolerance uS∗(x) of x ∈ S∗ as a “mea-
sure” (= some generalized length) of the upper stability interval. This can be done in many ways.
For instance, if ϕ : [0,∞) → [0,∞) is a ϕ-function, then we may have set µ([C(x),C+

S∗(x)]) =
ϕ(C+

S∗(x)) − ϕ(C(x)). However, this is irrelevant for our purposes, because the upper stability
interval has been generated via the A-operation ⊕ or, more precisely (cf. Theorem 4.7(a)), by the
upper subtraction ⊖ for ⊕. Having this in mind, as well as the translation invariance of ⊖ and ⊖
(cf. Lemma 2.18), we adopt the following definition.
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4.10. Definition. Assume that the A-operation ⊕ is strict on R+. Given S∗ ∈ S∗ and x∈ S∗,
the upper tolerance of x is defined by

uS∗(x) =C+
S∗(x)⊖C(x)∈R+. (4.28)

4.11. Theorem. If ⊕ is a strict A-operation on R+, S∗ ∈ S∗ and x ∈ S∗, then the value

uS∗(x) is well-defined,

uS∗(x) = fC(S
∗
−x)⊖fC(S

∗)≥ eee, (4.29)

and uS∗(x) = eee iff C+
S∗(x) =C(x) iff fC(S

∗
−x) = fC(S

∗), where eee ∈R+ is the neutral element with

respect to ⊕.

Proof. If ⊕ is a generalized addition (i.e., satisfies (A.1)–(A.3) and (A.5)), then inequality C(x)≤

C+
S∗(x) from Theorem 4.7(b), (c) and Lemma 2.11(b) imply (C(x),C+

S∗(x)) ∈D(⊖), and if ⊕ is a
generalized multiplication (i.e., (A.1)–(A.4) and (A.6) are satisfied), then the same inclusion is a

consequence of Lemma 2.11(c). It follows from (2.4) that the quantity (4.28) is well-defined.

Since eee⊕C(x) =C(x)≤C+
S∗(x), definition (2.4) implies

eee≤C+
S∗(x)⊖C(x) = uS∗(x).

If uS∗(x) = eee, then, by virtue of (2.7), we get

C+
S∗(x) = (C+

S∗(x)⊖C(x))⊕C(x) = uS∗(x)⊕C(x) = eee⊕C(x) =C(x).

(Note that all assertions above do not rely on the strictness of ⊕.) Now, if equality C+
S∗(x) =C(x)

holds, then we claim that uS∗(x) = eee, for, otherwise, if uS∗(x) > eee, then (2.7) and the strictness
(A.3s) of ⊕ imply

C+
S∗(x) = (C+

S∗(x)⊖C(x))⊕C(x) = uS∗(x)⊕C(x)>eee⊕C(x) =C(x),

which contradicts the assumption.

Finally, let us establish the equality in (4.29). Setting

u=C(x), v= fC(S
∗) and w= fC(S

∗
−x),

we find from (4.28) and (4.19) that

uS∗(x) =C+
S∗(x)⊖C(x) =

(
[u⊕w]⊖ v

)
⊖u.

By (2.7), w= (w⊖ v)⊕ v, and so, (2.10) and (2.9) yield

[u⊕w]⊖ v= [u⊕ (w⊖ v)⊕ v]⊖ v= u⊕ (w⊖ v)

and
(
[u⊕w]⊖ v

)
⊖u=

(
u⊕ (w⊖ v)

)
⊖u=w⊖ v,

and it remains to take into account that w⊖v = fC(S
∗
−x)⊖fC(S

∗). �
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4.12. Examples of upper stability intervals and upper tolerances. In accordance with
Examples 2.12(a) and (c), (4.19) and (4.29), given S∗ ∈ S∗ and x∈ S∗, we have:
(a) if u⊕ v = (up+ vp)1/p on R+ = [0,∞) with p > 0, then

C+
S∗(x) =

(
C(x)p+ fC(S

∗
−x)

p− fC(S
∗)p

)1/p
,

uS∗(x) =
(
fC(S

∗
−x)

p− fC(S
∗)p

)1/p
.

In particular, if p= 1, then for the OP fC(S) =
∑

y∈SC(y)→min with S ∈ S and an element x∈ S∗

from its optimal solution S∗ ∈ S∗ we find

uS∗(x) = fC(S
∗
−x)− fC(S

∗) = min
S∈S with x /∈S

fC(S)−min
S∈S

fC(S),

which gives a formula due to Libura [17] (cf. also [5], [7], [24]–[26]);

(b) if u⊕ v = uv on R+ and C(y)> 0 for all y ∈X, then

C+
S∗(x) =

C(x)·fC(S
∗
−x)

fC(S∗)
and uS∗(x) =

fC(S
∗
−x)

fC(S∗)
.

5. Lower stability intervals. Let the OP(X,S,⊕,C) of the form (1.1) be given and S∗ be
the set of its optimal solutions from (3.6).
In order to define the lower tolerance ℓS∗(x) of an x ∈X with respect to an S∗ ∈ S∗ (cf. Sec-

tion 4.1), we have to decrease the cost C(x) to the value γ ≤ C(x) so that S∗ is also an optimal
solution to the perturbed OP(X,S,⊕,Cx,γ), i.e., the implication (4.2) holds.

5.1. Lower stability intervals. One may (intuitively) feel that for minimization problems
(1.1) the cost of an element x ∈X \ S∗ cannot be decreased “unboundedly” in such a way that
the implication (4.2) is valid. It is our aim now to obtain (restrictions on the A-operation ⊕ and)
the largest closed interval of costs [C−

S∗(x),C(x)] with C−
S∗(x) ≤ C(x), termed the lower stability

interval, such that (4.2) holds for all γ ∈ [C−
S∗(x),C(x)].

Given S∗ ∈ S∗ and x∈X \S∗, we set (cf. (4.3) and (4.15))

C−
S∗(x) =minΓx,S∗(Sx). (5.1)

In order to estimate and/or evaluate C−
S∗(x) (see Theorem 5.2), we apply notation (4.16) and

note that there exists an Sx ∈ Sx (i.e., Sx ∈ S and x∈ Sx) such that

FC(Sx \ {x}) = min
S∈Sx

FC(S \ {x}) (5.2)

(actually, the value at the right in (5.2) and, hence, the quantity at the left in (5.2), are independent
of the set Sx). Moreover, we have

fC(Sx) = fC(S
∗
x). (5.3)

In fact, since Sx ∈ Sx, (4.16) implies fC(Sx)≥ fC(S
∗
x); on the other hand, given S ∈ Sx, since x∈ S

and FC(Sx \ {x})≤FC(S \ {x}), we find, by (4.5) and (A.3),

fC(Sx) =C(x)⊕FC(Sx \ {x})≤ (5.4)

≤C(x)⊕FC(S \ {x}) = fC(S),

and so, again by (4.16), fC(Sx)≤ fC(S
∗
x), which yields equality (5.3).

In the next theorem ⊖ and ⊖ denote (as usual) the upper and lower subtractions for ⊕, respec-
tively.
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5.2. Theorem. Given S∗ ∈ S∗ and x∈X \S∗, we have:
(a) C−

S∗(x) = fC(S
∗)⊖FC(Sx \ {x}) = minΓx,S∗(S) (cf. (5.2)), and the implication (4.2) holds

for all γ ∈ [C−
S∗(x),C(x)];

(b) C−
1 (x)≤C−

S∗(x)≤C−
2 (x)≤C(x) and C−

2 (x)∈ Γx,S∗(S), where

C−
1 (x) = fC(S

∗)⊖ [fC(S
∗
x)⊖C(x)], (5.5)

C−
2 (x) = fC(S

∗)⊖ [fC(S
∗
x)⊖C(x)]; (5.6)

(c) if the A-operation ⊕ is strict on R+, then

C−
S∗(x) =C−

1 (x) =C−
2 (x) = [C(x)⊕ fC(S

∗)]⊖fC(S
∗
x); (5.7)

(d) if ⊕=max on R+ = [0,∞), then C−
1 (x) = 0,

C−
S∗(x) =

{
fC(S

∗) if FC(Sx \ {x})< fC(S
∗),

0 if FC(Sx \ {x})≥ fC(S
∗),

(5.8)

and

C−
2 (x) =

{
fC(S

∗) if C(x) = fC(S
∗
x),

0 if C(x)< fC(S
∗
x).

(5.9)

Proof. (a) Since S∗ ∈ S−x, given S ∈ Sx and γ ∈R+, by (4.4), we find

f(Cx,γ)(S
∗) = fC(S

∗) = fC(S
∗) and f(Cx,γ)(S) = γ⊕FC(S \ {x}).

It follows from (4.15) with S1 = Sx and (5.2) that

Γx,S∗(Sx) =
{
γ ∈R+ : fC(S

∗)≤ γ⊕FC(S \ {x}) for all S ∈ Sx
}
=

=
{
γ ∈R+ : fC(S

∗)≤ γ⊕FC(Sx \ {x})
}
. (5.10)

Since S∗ ∈ S∗, fC(S
∗) ≤ fC(Sx), and so, (5.4) implies C(x) ∈ Γx,S∗(Sx). Now, (5.1), (5.10) and

definition (2.5) of the lower subtraction ⊖ for ⊕ yield inequality C−
S∗(x) ≤ C(x) and the first

equality in (a).
Given γ ∈ [C−

S∗(x),C(x)], let us show that (4.2) (or (4.13)) holds. For this, suppose S ∈ S. If
S ∈ S−x, then, taking into account that S∗ ∈ S−x ∩S∗ and (4.4), we have (even for all γ ∈R+)

f(Cx,γ)(S
∗) = fC(S

∗)≤ fC(S) = f(Cx,γ)(S).

This proves also that Γx,S∗(S−x) =R+, whence

Γx,S∗(S) = Γx,S∗(S−x)∩Γx,S∗(Sx) = Γx,S∗(Sx),

and so, the second equality in (a) is a consequence of definition (5.1).
If S ∈ Sx, then inequalities C−

S∗(x)≤ γ ≤C(x) imply γ ∈ Γx,S∗(Sx), which gives the inequality in
(4.13). More directly, by virtue of (5.10), (5.2) and (4.4),

f(Cx,γ)(S
∗) = fC(S

∗)≤C−
S∗(x)⊕FC(Sx \ {x})≤ γ⊕FC(Sx \ {x}) =

= γ⊕
(
min
S′∈Sx

FC(S
′ \ {x})

)
≤ γ⊕FC(S \ {x}) = f(Cx,γ)(S).

(b) Taking into account (5.3) and (5.4) and applying inequalities (2.9) from Lemma 2.13 (with
w=FC(Sx \ {x}) and v =C(x)), we find

fC(S
∗
x)⊖C(x)≤FC(Sx \ {x})≤ fC(S

∗
x)⊖C(x). (5.11)
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Now, let us put w= fC(S
∗).

First, we set u = fC(S
∗
x)⊖C(x) and v = FC(Sx \ {x}). By virtue of (5.11), u ≤ v, and so,

Lemma 2.16(b) implies w⊖ v ≤ w⊖u. This inequality, Theorem 5.2(a) and (5.6) give C−
S∗(x) ≤

C−
2 (x). Since C

−
S∗(x) is the minimal element of the set Γx,S∗(S), the last inequality yields C−

2 (x)∈
Γx,S∗(S). It is also worth-while to verify this inclusion directly: in fact, by virtue of (2.8), (A.3),
(5.6) and (5.10), we have

fC(S
∗) =w≤ (w⊖v)⊕ v≤ (w⊖u)⊕ v=C−

2 (x)⊕FC(Sx \ {x}).

To see that C−
2 (x)≤C(x), we note that, by (2.8),

fC(S
∗
x)≤C(x)⊕ [fC(S

∗
x)⊖C(x)],

and so, the desired inequality follows from (2.5) and (5.6).
Second, we set u= FC(Sx \ {x}) and v = fC(S

∗
x)⊖C(x). Then (5.11) implies u≤ v, and so, by

Lemma 2.16(b), w⊖v ≤w⊖u, and it follows from (5.5) and Theorem 5.2(a) that C−
1 (x)≤C−

S∗(x).

(c) By the strictness of ⊕ and (2.10), ⊖ = ⊖ on D(⊖), and so, (5.5), (5.6) and inequalities in
item (b) imply C−

1 (x) =C−
S∗(x) =C−

2 (x), which proves the first two equalities in (5.7).
In order to prove the third equality in (5.7), we set

C−
0 (x) = [C(x)⊕ fC(S

∗)]⊖fC(S
∗
x) (5.12)

and note that, by virtue of Lemma 2.17(b) and (5.5), we have (the following inequality, which is
independent of the strictness of ⊕)

C−
0 (x)≤ fC(S

∗)⊖ [fC(S
∗
x)⊖C(x)] =C−

1 (x). (5.13)

Had we shown that C−
0 (x) ∈ Γx,S∗(Sx), then, by (5.1), we would have C−

1 (x) = C−
S∗(x) ≤ C−

0 (x),
which implies the third equality in (5.7). Setting u=C(x), v = FC(Sx \ {x}) and w = fC(S

∗) and
noting that, by virtue of (5.3) and (5.4), fC(S

∗
x) = u⊕ v, we find

C−
0 (x)⊕FC(Sx \ {x}) =

[
(u⊕w)⊖(u⊕ v)

]
⊕ v. (5.14)

If u1 = (u⊕w)⊖(u⊕ v), then inequality (2.8) implies

u⊕w≤ [(u⊕w)⊖(u⊕ v)]⊕ (u⊕ v) = u1 ⊕u⊕ v,

and so, cancelling by u (by the strictness of ⊕ and (2.3)), we get w ≤ u1 ⊕ v. It follows from
definition (2.5) of ⊖ that w⊖ v≤ u1. Hence, (2.8), (A.3) and (5.14) yield

fC(S
∗) =w≤ (w⊖ v)⊕ v≤ u1 ⊕ v=C−

0 (x)⊕FC(Sx \ {x}),

which, by virtue of (5.10), gives C−
0 (x)∈ Γx,S∗(Sx).

(d) Suppose ⊕=max on R+ = [0,∞). Let us evaluate the values of C−
S∗(x), C−

1 (x) and C−
2 (x)

from Theorem 5.2(b) and the value of C−
0 (x) from (5.12). Note that, by virtue of item (b) and

(5.13), we have
C−

0 (x)≤C−
1 (x)≤C−

S∗(x)≤C−
2 (x)≤C(x). (5.15)

First, equality (5.8) is a straightforward consequence of the first equality in Theorem 5.2(a) and
Example 2.12(b).
Second, in order to evaluate C−

1 (x), we note that C(x)≤ fC(S
∗
x); in fact, if S ∈ Sx, then x ∈ S,

and so, C(x) ≤maxy∈S C(y) = fC(S), which, by (4.16), implies the desired inequality. It follows
from Example 2.12(b) that

fC(S
∗
x)⊖C(x) = fC(S

∗
x),
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and, since fC(S
∗)≤ fC(S

∗
x), (5.5) and Example 2.12(b) give

C−
1 (x) = fC(S

∗)⊖ [fC(S
∗
x)⊖C(x)] = fC(S

∗)⊖fC(S
∗
x) = 0.

Third, by the previous step and (5.15), we get C−
0 (x) = 0. Also, this can be seen directly as

follows: since C(x)≤ fC(S
∗
x) and fC(S

∗)≤ fC(S
∗
x), we find

C(x)⊕ fC(S
∗) =max{C(x), fC(S

∗)} ≤ fC(S
∗
x),

and so, (5.12) and Example 2.12(b) imply C−
0 (x) = 0.

Fourth, since C(x)≤ fC(S
∗
x), it follows from Example 2.12(b) that

fC(S
∗
x)⊖C(x) =

{
0 if C(x) = fC(S

∗
x),

fC(S
∗
x) if C(x)<fC(S

∗
x),

and so, (5.6) yields

C−
2 (x) =

{
fC(S

∗)⊖0 if C(x) = fC(S
∗
x),

fC(S
∗)⊖fC(S

∗
x) if C(x)<fC(S

∗
x),

whence (5.9) follows if we take into account that fC(S
∗)≤ fC(S

∗
x). �

5.3. Remark. By (the first equality in) Theorem 5.2(a), the value C−
S∗(x) with x ∈X \ S∗

does not depend on the optimal solution S∗ to problem (1.1) in the following sense: if S∗
1 , S

∗
2 ∈ S∗

and x∈ (X \S∗
1 )∩ (X \S∗

2 ), then C
−
S∗

1
(x) =C−

S∗

2
(x).

In our next result we treat the case of “unrestricted” lower tolerances: for certain elements x
from X (e.g., x ∈ S∗) the implication (4.2) always holds for all costs γ ≤C(x). In particular, this
clarifies definition (5.1). However, in contrast with Lemma 4.5, we will have to assume that the
A-operation ⊕ is strict or ⊕=max.

5.4. Theorem. Given S∗ ∈ S∗ and x ∈ S∗, if one of the following two conditions (a) or (b)
holds:

(a) the A-operation ⊕ is strict on R+, or

(b) ⊕=max on [0,∞) and either

(i) C(x)<fC(S
∗), or

(ii) C(x)=fC(S
∗) and S∗={S∗}, or

(iii) C(x)=fC(S
∗)≤FC(Sx\{x}), or

(iv) fC(S
∗)≤FC(Sx\{x}),

then f(Cx,γ)(S
∗)≤ f(Cx,γ)(S) for all S ∈ S and γ ∈R+ with γ ≤C(x).

Proof. (a) Let ⊕ be strict and γ ∈ R+, γ ≤ C(x), be arbitrarily fixed. By (3.6), S∗ ∈ S and
fC(S

∗)≤ fC(S) for all S ∈ S. Since x∈ S∗ iff S∗ ∈ Sx, (4.4) implies f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \{x}).
Given S ∈ S, we have either S ∈ S−x or S ∈ Sx. If S ∈ S−x, then the monotonicity (A.3) of ⊕, (4.5)
and (4.4) yield

f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \ {x})≤C(x)⊕FC(S
∗ \ {x}) =

= fC(S
∗)≤ fC(S) = f(Cx,γ)(S).

Now, let S ∈ Sx, i.e., x∈ S. Since, by (4.5) and (3.6),

C(x)⊕FC(S
∗ \ {x}) = fC(S

∗)≤ fC(S) =C(x)⊕FC(S \ {x}),
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the strictness of ⊕ and the cancellation law (2.3) imply FC(S
∗ \ {x}) ≤ FC(S \ {x}), and so, by

(A.3) and (4.4), we get (even for all γ ∈R+)

f(Cx,γ)(S
∗) = γ⊕FC(S

∗ \ {x})≤ γ⊕FC(S \ {x}) = f(Cx,γ)(S).

(b) Suppose ⊕=max on [0,∞), and let us fix 0≤ γ ≤C(x). Since S∗ ∈ S∗, fC(S
∗)≤ fC(S) for

all S ∈ S. Because x∈ S∗ iff S∗ ∈ Sx, (4.12) gives

f(Cx,γ)(S
∗) =max{fC(S

∗)+ γ−C(x), FC(S
∗ \ {x})}. (5.16)

Let S ∈ S. If S ∈ S−x, then, by (4.12), f(Cx,γ)(S) = fC(S). The inequality fC(S
∗)≤ fC(S) can be

rewritten as
fC(S

∗) =max{C(x), FC(S
∗ \ {x})} ≤ fC(S),

which implies FC(S
∗ \ {x})≤ fC(S). Inequality γ ≤C(x) implies (cf. (5.16))

fC(S
∗)+ γ−C(x)≤ fC(S)+ γ−C(x)≤ fC(S), (5.17)

and so, by (5.16),
f(Cx,γ)(S

∗)≤ fC(S) = f(Cx,γ)(S).

Now, suppose that S ∈ Sx.
(i) Let C(x)< fC(S

∗) = fC(S
∗). Taking into account (4.12), we have to show that

f(Cx,γ)(S
∗)≤ f(Cx,γ)(S) =max{fC(S)+ γ−C(x), FC(S \ {x})}. (5.18)

Since fC(S
∗)≤ fC(S) implies the left-hand side inequality in (5.17), we have

fC(S
∗)+ γ−C(x)≤ f(Cx,γ)(S). (5.19)

It follows from inequalities C(x)< fC(S
∗) and

fC(S
∗) =max{C(x), FC(S

∗ \ {x})} ≤ fC(S) =max{C(x), FC(S \ {x})}

that FC(S
∗ \{x})≤ FC(S \{x})≤ f(Cx,γ)(S), which together with (5.16) and (5.19) implies (5.18).

(ii) Let C(x) = fC(S
∗) and S∗ = {S∗}. By virtue of (5.16), we have

f(Cx,γ)(S
∗) =max{γ,FC(S

∗ \ {x})}. (5.20)

Two cases are possible for S ∈ Sx (cf. (4.8)): 1) C(x) = fC(S), or 2) fC(S) = FC(S \ {x}). If case
1) holds, then S ∈ S∗ = {S∗}, and so, S = S∗ and inequality (5.18) is clear. In case 2), by virtue of
(4.11), we have γ ≤ FC(S \ {x}), and so,

f(Cx,γ)(S) =max{γ,FC(S \ {x})}=FC(S \ {x}) = fC(S). (5.21)

Thus, it follows from (5.20), inequality γ ≤C(x) and (5.21) that

f(Cx,γ)(S
∗)≤max{C(x), FC(S

∗ \ {x})}= fC(S
∗)≤ fC(S) = f(Cx,γ)(S).

(iii) Assume that C(x) = fC(S
∗)≤FC(Sx \ {x}). Then, by (5.2), we find C(x)≤ FC(S \ {x}) for

S ∈ Sx, and so,
fC(S) =max{C(x), FC(S \ {x})}= FC(S \ {x}). (5.22)

The rest of this proof is as in case 2) of step (ii).
(iv) Let fC(S

∗)≤FC(Sx \ {x}). Since x∈ S
∗, C(x)≤ fC(S

∗)≤FC(S \ {x}), and so, (5.22) holds
and, by (4.7) and (4.11), f(Cx,γ)(S) = fC(S). Now, it follows from (5.16) and inequality γ ≤C(x)
that

f(Cx,γ)(S
∗)≤max{fC(S

∗), FC(S
∗ \ {x})}= fC(S

∗)≤ fC(S) = f(Cx,γ)(S),

which was to be proved. �

Now we are in a position to define the notion of the lower tolerance.
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5.5. Definition. Suppose ⊕ is a strict A-operation on R+. Given S∗ ∈ S∗ and x∈X \S∗, the
lower tolerance of x is defined by

ℓS∗(x) =C(x)⊖C−
S∗(x)∈R+, (5.23)

where ⊖ is the upper subtraction for ⊕.

5.6. Theorem. Let the A-operation ⊕ be strict on R+, S∗ ∈ S∗ and x ∈ X \ S∗. Then the

value ℓS∗(x) is well-defined,

eee≤ ℓS∗(x)≤ fC(S
∗
x)⊖fC(S

∗)≡ ℓS∗(x), (5.24)

and ℓS∗(x)=eee iff C−
S∗(x)=C(x), where eee is the neutral element with respect to ⊕.

Moreover, if ⊕ is a strict A-operation of addition on [0,∞), then

ℓS∗(x) =

{
fC(S

∗
x)⊖fC(S

∗) if FC(Sx \ {x})≤ fC(S
∗),

C(x) if FC(Sx \ {x})≥ fC(S
∗),

(5.25)

and if ⊕ is a strict A-operation of multiplication on (0,∞), then

ℓS∗(x) = fC(S
∗
x)⊖fC(S

∗) = ℓS∗(x). (5.26)

Proof. That ℓS∗(x) is well-defined can be established along the same lines as in the proof of
Theorem 4.11.
Theorem 5.2(b), (in)equalities eee⊕C−

S∗(x) =C−
S∗(x)≤C(x) and definition (2.4) imply

eee≤C(x)⊖C−
S∗(x) = ℓS∗(x).

It follows from the definition of ℓS∗(x) and (2.7) that

ℓS∗(x)⊕C−
S∗(x) = (C(x)⊖C−

S∗(x))⊕C−
S∗(x) =C(x). (5.27)

If ℓS∗(x) = eee, then (5.27) implies C−
S∗(x) =C(x); now, if C−

S∗(x) =C(x), then (5.27) yields equality
ℓS∗(x)⊕C(x) = eee⊕C(x), and so, taking into account the strictness of ⊕ and cancelling by C(x),
we get ℓS∗(x) = eee.
Let us prove the right-hand side inequality in (5.24). We set

u=C(x), v= fC(S
∗) and w= fC(S

∗
x). (5.28)

Then it follows from (5.23) and the third equality in (5.7) that

ℓS∗(x) =C(x)⊖C−
S∗(x) = u⊖ [(u⊕ v)⊖w].

By virtue of Lemmas (2.17)(c) and 2.18(a), we find

u⊖ [(u⊕ v)⊖w]≤ (u⊕w)⊖(u⊕ v) =w⊖ v,

and it remains to note that w⊖ v= fC(S
∗
x)⊖fC(S

∗) = ℓS∗(x).
Let us establish (5.25). By virtue of (5.7), Lemma 2.11(b) and (5.28), we have

C−
S∗(x) = (u⊕ v)⊖w= (u⊕ v)⊖w if u⊕ v ≥w, (5.29)
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and C−
S∗(x) = 0 otherwise. Taking into account (5.3), (5.4) and the strictness of ⊕, we find that

u⊕ v ≥w iff

C(x)⊕ fC(S
∗)≥ fC(S

∗
x) =C(x)⊕FC(Sx\{x}) iff fC(S

∗)≥ FC(Sx\{x}),

and so, applying Lemmas 2.17(a) and 2.18(a) as well as definition (5.23), in this case we get

ℓS∗(x) = u⊖ [(u⊕ v)⊖w] = (u⊕w)⊖(u⊕ v) =w⊖ v= fC(S
∗
x)⊖fC(S

∗). (5.30)

If u⊕v≤w, i.e., fC(S
∗)≤FC(Sx\{x}), then ℓS∗(x) =C(x)⊖0=C(x), which establishes equality

(5.25).
Finally, let us prove (5.26). If ⊕ is an A-operation of multiplication, then equalities in (5.29)

follow from (5.7) and Lemma 2.11(a), (c) and hold with no restrictions on u, v and w. This and
Lemmas 2.17(a) and 2.18(a) imply equalities (5.30). �

5.7. Examples of lower tolerances. Taking into account Examples 2.12(a), (c) and 3.4(a),
(c), (5.7), (5.23), (5.25) and (5.29), given S∗ ∈ S∗ and x∈X \S∗, we have:
(a) if u⊕ v = (up+ vp)1/p on R+ = [0,∞) with p > 0, then

C−
S∗(x) =

(
C(x)p+ fC(S

∗)p− fC(S
∗
x)
p
)1/p

if FC(Sx\{x})≤ fC(S
∗),

and C−
S∗(x) = 0 otherwise,

ℓS∗(x) =
(
fC(S

∗
x)
p− fC(S

∗)p
)1/p

if FC(Sx\{x})≤ fC(S
∗),

and ℓS∗(x) =C(x) otherwise, where (cf. (5.2))

FC(Sx\{x}) = min
S∈Sx

( ∑

y∈S\{x}

C(y)p
)1/p

and fC(S
∗) =

(∑

y∈S∗

C(y)p
)1/p

;

(b) if u⊕ v = u·v on R+ = (0,∞) and C(y)> 0 for all y ∈X, then

C−
S∗(x) =

C(x)·fC(S
∗)

fC(S∗
x)

and ℓS∗(x) =
fC(S

∗
x)

fC(S∗)
= ℓS∗(x).

5.8. Example. For a strict A-operation of addition ⊕ the right-hand side inequality in (5.24)
may be strict as can be seen from the following simple example (as well as from formula (5.25)).
We set X = {x1, x2, x3, x4} with C(x1) = C(x2) = C(x3) = 1 and C(x4) = 3, S = {S1, S2}

with S1 = {x1, x2} and S2 = {x3, x4}, and ⊕ = + (ordinary addition), and so, fC(S) = FC(S) =∑
y∈S C(y) for S ∈ S (see Table 1).

x x1 x2 x3 x4

C(x) 1 1 1 3

uS∗(x) 2 2
ℓS∗(x) 1 2

ℓS∗(x) 2 2

Table 1
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Since fC(S1) = C(x1) + C(x2) = 2 and fC(S2) = C(x3) + C(x4) = 4, we find S∗ = {S∗} with
S∗ = S1 and fC(S

∗) = fC(S
∗) = 2. Noting that S−x = {S2} and fC(S

∗
−x) = fC(S2) = 4 for x= x1, x2

and taking into account Examples 2.12(a) and 4.12(a) with p= 1, we have:

uS∗(x) = fC(S
∗
−x)− fC(S

∗) = 4− 2= 2 if x= x1, x2.

Now, since Sx3 = Sx4 = S2, Sx3 \ {x3}= {x4} and Sx4 \ {x4}= {x3}, and so,

FC(Sx3\{x3})=C(x4)=3>fC(S
∗) and FC(Sx4\{x4})=C(x3)=1<fC(S

∗),

it follows from (5.25) and Example 5.8(a) that

ℓS∗(x3) =C(x3) = 1 and ℓS∗(x4) = fC(S
∗
x4
)− fC(S

∗) = 4− 2= 2.

On the other hand, since Sx = {S2} for x= x3, x4, we find (cf. (5.24))

ℓS∗(x) = fC(S
∗
x)− fC(S

∗) = 4− 2= 2 if x= x3, x4.

5.9. Remark. The quantity ℓS∗(x) from (5.24), which may be called the extended lower tol-

erance of x, differs from ℓS∗(x) in the following way. Because C−
S∗(x) ∈ R+ and C−

S∗(x) ≤ C(x),
elements of the interval [C−

S∗(x),C(x)] are still costs (i.e., nonnegative). Moreover, by virtue of
(5.23) and (2.7), ℓS∗(x)⊕C−

S∗(x) =C(x), and so, C−
S∗(x) =C(x)⊖ℓS∗(x) is restored from ℓS∗(x) as

the lowest possible stability cost of x. From this point of view the quantity C̃−
S∗(x) =C(x)⊖ ℓS∗(x)

may not be defined as a cost. For instance, in Example 5.8 we have C−
S∗(x3) = 1− 1 = 0, whereas

C̃−
S∗(x3) = 1− 2=−1 /∈R+.

6. Tolerance functions. Throughout this section we assume that the OP(X,S,⊕,C) of the
form (1.1) is given, ⊕ is strict and S∗ = S∗

C is from (3.6).
We are going to define a function TC on X, which is an invariant of the OP under consideration

in the sense that it is independent of optimal solutions S∗ ∈ S∗.
If ⊕ is an A-operation of addition on R+ = [0,∞) and u≥ 0, then we set u−1 =−u, and if ⊕ is

an A-operation of multiplication on R+ = (0,∞) with the neutral element eee∈R+ and u> 0, then,
taking into account Lemma 2.11(c), we set u−1 = eee⊖u. It is to be noted that in the latter case we
have

u−1 ⊕u= eee, eee−1 = eee, (u−1)−1 = u, and u>eee iff u−1 <eee. (6.1)

The last three properties in (6.1) also hold in the former case with eee= 0.

6.1. Definition. Given S∗ ∈ S∗ and x∈X, we set

TC(x) =

{
uS∗(x) if x∈ S∗,

(ℓS∗(x))−1 if x∈X \S∗.
(6.2)

The function TC on X is said to be the tolerance function of the OP(X,S,⊕,C). Replacing ℓS∗(x)
by ℓS∗(x) in the second line of (6.2) we get the notion of the extended tolerance function, denoted
by TC(x). Both tolerance functions assume their values in R if ⊕ is an A-operation of addition and
in R+ = (0,∞) if ⊕ is an A-operation of multiplication. Note also that TC(x) can be represented as

TC(x) = uS∗(x)χS∗(x)+ (ℓS∗(x))−1χX\S∗(x), x∈X,

where, given Y ⊂X, χY is the characteristic function of the set Y (i.e., χY (x) = 1 if x ∈ Y and
χY (x) = 0 if x∈X \Y ).

The correctness of this definition is justified by the following



Chistyakov and Pardalos: Concepts of Stability in Discrete Optimization Involving Generalized Addition Operations
28

6.2. Theorem. The tolerance function TC on X is well-defined, independent of optimal solu-

tions S∗ ∈ S∗ and has the following properties:

TC |S∗(·)=uS∗(·)≥eee and TC |X\S∗(·)=(ℓS∗(·))−1≤eee for all S∗ ∈ S∗, (6.3)

where TC |Y (·) denotes the restriction of TC to the set Y ⊂X.

In order to prove Theorem 6.2, we need a lemma, which is of interest in its own.

6.3. Lemma. Given S∗
1 , S

∗
2 ∈ S∗ and x∈X, we have:

(a) if x∈ S∗
1 ∩S

∗
2 , then uS∗

1
(x) = uS∗

2
(x) (and ≥ eee);

(b) if x∈ (X \S∗
1 )∩ (X \S∗

2 ), then ℓS∗

1
(x) = ℓS∗

2
(x) (and ≥ eee);

(c) if x∈ S∗
1 \S

∗
2 , then uS∗

1
(x) = eee= ℓS∗

2
(x).

Proof. (a) By virtue of (4.29), we have

uS∗

1
(x) = fC(S

∗
−x)⊖fC(S

∗) = uS∗

2
(x).

(b) It follows from (5.23) and (5.7) that

ℓS∗

1
(x) =C(x)⊖C−

S∗

1
(x) =C(x)⊖

(
[C(x)⊕ fC(S

∗)]⊖fC(S
∗
x)
)
=

=C(x)⊖C−
S∗

2
(x) = ℓS∗

2
(x).

(c) Since x ∈ S∗
1 iff S∗

1 ∈ Sx, and x ∈ X \ S∗
2 iff S∗

2 ∈ S−x, (4.16) and (3.7) imply fC(S
∗
−x) ≤

fC(S
∗
2) = fC(S

∗). Now, it follows from Theorem 4.11 and Lemma 2.15(a) that

eee≤ uS∗

1
(x) = fC(S

∗
−x)⊖fC(S

∗)≤ fC(S
∗)⊖fC(S

∗) = eee,

and so, uS∗

1
(x) = eee. At the same time, by virtue of (4.16), we find fC(S

∗
x)≤ fC(S

∗
1) = fC(S

∗), and
so, Lemma 2.16(b), the strictness of ⊕ and (2.9) yield

[C(x)⊕ fC(S
∗)]⊖fC(S

∗
x)≥ [C(x)⊕ fC(S

∗)]⊖fC(S
∗) =C(x).

Now, it follows from Theorem 5.6, (5.23), (5.7) and Lemma 2.16(a) that

eee≤ ℓS∗

2
(x) =C(x)⊖

(
[C(x)⊕ fC(S

∗)]⊖fC(S
∗
x)
)
≤C(x)⊖C(x) = eee,

which implies the equality ℓS∗

2
(x) = eee. �

Now we are in a position to prove Theorem 6.2.

Proof of Theorem 6.2. Formally, the tolerance function, as it is defined in (6.2), depends on
S∗ ∈ S∗, and so, we temporarily write TC,S∗ in place of TC . Only the case |S∗| ≥ 2 is to be considered,
and so, assuming that S∗

1 , S
∗
2 ∈ S∗ are arbitrarily chosen, let us show that TC,S∗

1
(x) = TC,S∗

2
(x) for

all x∈X.
In fact, we have the following decomposition of the set X:

X = [S∗
1 ∩S

∗
2 ]∪ [(X \S∗

1 )∩ (X \S∗
2 )]∪ [(S∗

1 ∪S
∗
2 ) \ (S

∗
1 ∩S

∗
2)],

where, by deMorgan’s laws, (X\S∗
1)∩ (X\S∗

2) =X\(S∗
1 ∪S

∗
2 ), and the sets on the right in square

brackets are pairwise disjoint. Suppose x∈X. If x∈ S∗
1 ∩S

∗
2 , then (6.2) and Lemma 6.3(a) imply

TC,S∗

1
(x) = uS∗

1
(x) = uS∗

2
(x) = TC,S∗

2
(x).
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If x∈ (X \S∗
1 )∩ (X \S∗

2 ), then it follows from (6.2) and Lemma 6.3(b) that

TC,S∗

1
(x) = (ℓS∗

1
(x))−1 = (ℓS∗

2
(x))−1 = TC,S∗

2
(x).

Now, assume that x∈ (S∗
1∪S

∗
2)\(S

∗
1∩S

∗
2) = (S∗

1 \S
∗
2)∪(S∗

2 \S
∗
1 ) and, to be more specific, x∈ S∗

1 \S
∗
2 .

Then, by virtue of (6.2), Lemma 6.3(c) and (6.1), we find

TC,S∗

1
(x) = uS∗

1
(x) = eee= eee−1 = (ℓS∗

2
(x))−1 = TC,S∗

2
(x).

Now it is correct to set back TC(x) = TC,S∗(x) for all x ∈X and S∗ ∈ S∗, which together with
(6.2) implies TC |S∗(x) = TC(x) = uS∗(x) if x∈ S∗ and TC |X\S∗(x) = TC(x) = (ℓS∗(x))−1 if x∈X \S∗.
This completes the proof. �

6.4. Remark. An assertion similar to Theorem 6.2 holds for the extended tolerance function
TC with obvious modifications. In fact, it is to be noted only that in Lemma 6.3(b) we have, by
virtue of (5.24), ℓS∗

1
(x) = fC(S

∗
x)⊖fC(S

∗) = ℓS∗

2
(x), and under conditions of Lemma 6.3(c), we get

eee≤ ℓS∗

2
(x) = fC(S

∗
x)⊖fC(S

∗)≤ fC(S
∗)⊖fC(S

∗) = eee.

6.5. Example. Let us illustrate Theorem 6.2 by the following example of small cardinality
|X| and the simplest possible A-operation ⊕=+ (so that calculations are not cumbersome and all
the details can be clearly seen).
Let X = {x1, x2, x3, x4, x5, x6} with C(x1) = C(x2) = C(x3) = 2, C(x4) = 1, C(x5) = 3 and

C(x6) = 5, and S = {S1, S2, S3} with S1 = {x1, x2, x3}, S2 = {x2, x4, x5} and S3 = {x1, x4, x6}. Since
the objective function is of the form fC(S) =

∑
y∈SC(y), S ∈ S, we find fC(S1) = fC(S2) = 6 and

fC(S3) = 8, and so, S∗ = {S∗
1 , S

∗
2} with S∗

1 = S1 and S∗
2 = S2. The corresponding values of upper

and lower tolerances and the tolerance function are presented in the following Table 2:

x x1 x2 x3 x4 x5 x6

C(x) 2 2 2 1 3 5
S1 ∗ ∗ ∗
S2 ∗ ∗ ∗
S3 ∗ ∗ ∗

uS∗

1
(x) 0 2 0

ℓS∗

1
(x) 0 0 2

TC(x) 0 2 0 0 0 −2

uS∗

2
(x) 2 0 0

ℓS∗

2
(x) 0 0 2

Table 2

Given i ∈ {1,2,3} and j ∈ {1,2,3,4,5,6}, we put ∗ in row Si and column xj provided xj ∈ Si. Then
setting S∗ = S∗

1 we calculate the values uS∗

1
(x) for x ∈ S∗

1 and ℓS∗

1
(x) for x ∈X \S∗

1 in accordance
with Theorems 4.11 and 5.6 and Lemma 6.3(c). By virtue of (6.2), we form the tolerance function

TC(x) =
(
TC(x1), TC(x2), TC(x3), TC(x4), TC(x5), TC(x6)

)
= (0,2,0,0,0,−2).

Now, making use of Theorem 6.2 and taking into account row S2, in which elements of the optimal
solution S∗

2 and outside of it are marked, we extract from the vector TC(x) the corresponding values
of uS∗

2
(x) for x∈ S∗

2 and ℓS∗

2
(x) for x∈X \S∗

2 .
Thus, Theorem 6.2 says that only upper and lower tolerances with respect to any fixed optimal

solution to the OP under consideration are to be calculated, the other tolerances being determined
uniquely via the tolerance function.
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6.6. Convention. In what follows we assume that C(x)> 0 for all x∈X.

Definition 6.1 is also motivated by the fact that the set of optimal solutions S∗ to the discrete
optimization problem (1.1) can be characterized by means of the tolerance function(s) in the
following way.

6.7. Theorem. (a) {x∈X : TC(x) = eee}= (∪S∗) \ (∩S∗).
(b) {x∈X : TC(x)>eee}=∩S∗.

(c) {x∈X : TC(x)≥ eee}=∪S∗.

(d) {x∈X : TC(x)<eee}=X \ (∪S∗).
(e) {x∈X : TC(x)≤ eee}=X \ (∩S∗).

Proof. (a) (⊃) If x ∈ (∪S∗) \ (∩S∗), then there exist two optimal trajectories S∗
1 , S

∗
2 ∈ S∗ such

that x∈ S∗
1 \S

∗
2 , and so, by (6.2) and Lemma 6.3(c), we get

TC(x) = uS∗

1
(x) = (ℓS∗

2
(x))−1 = eee.

(a) (⊂) Suppose x ∈X and TC(x) = eee. Let us fix an S∗ ∈ S∗. If x ∈ S∗, then, by virtue of (6.2)
and (4.29), we have

eee= TC(x) = uS∗(x) = fC(S
∗
−x)⊖fC(S

∗),

which implies fC(S
∗
−x) = fC(S

∗) (cf. (2.7)). Taking into account (4.16), we may choose S1 ∈ S−x such
that fC(S1) = fC(S

∗), whence S1 ∈ S∗. Since x /∈ S1 and x∈ S∗, we get x∈ S∗ \S1 ⊂ (∪S∗) \ (∩S∗).
Now, assume that x /∈ S∗. By virtue of (6.2), (5.25) and (5.26), we claim that

eee= eee−1 = (TC(x))
−1 = ℓS∗(x) = fC(S

∗
x)⊖fC(S

∗). (6.4)

Only the last equality in (6.4) is to be justified in the case when ⊕ is an A-operation of addition
on [0,∞): on the contrary, if this is not so, then (5.25) and (6.2) imply

C(x) = ℓS∗(x) = (TC(x))
−1 = eee−1 = eee= 0,

which contradicts our convention 6.6. Making use of (6.4), we get fC(S
∗
x) = fC(S

∗), and so, by
virtue of (4.16), there exists S2 ∈ Sx such that fC(S2) = fC(S

∗) and, hence, S2 ∈ S∗. Since x ∈ S2

and x /∈ S∗, we find x∈ S2 \S
∗ ⊂ (∪S∗) \ (∩S∗).

(b) (⊂) Let x∈X and TC(x)>eee. We claim that x∈∩S∗. On the contrary, assume that x /∈∩S∗,
and so, x /∈ S∗ for some S∗ ∈ S∗. By Theorem 5.6, we have ℓS∗(x)≥ eee, and so, (6.2) gives TC(x) =
(ℓS∗(x))−1 ≤ eee, which is a contradiction.

(b) (⊃) Let x∈∩S∗. Choose an S∗ ∈ S∗. Since x∈ S∗, (6.2) and (4.29) imply TC(x) = uS∗(x)≥ eee.
Taking into account item (a), we infer that TC(x)>eee.

(c) is a consequence of (a) and (b): TC(x)≥ eee iff TC(x) = eee or TC(x)>eee, i.e., iff x∈ (∪S∗)\ (∩S∗)
or x∈∩S∗.

(d) follows immediately from (c):

{x∈X : TC(x)<eee}=X \ {x ∈X : TC(x)≥ eee}=X \ (∪S∗).

(e) is a straightforward consequence of (b). �

Tolerance functions can be effectively applied for the characterization of uniqueness and
nonuniqueness of optimal trajectories:
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6.8. Corollary. (a) The OP (1.1) admits a unique optimal solution (i.e., |S∗|= 1) if and only

if TC(·) 6= eee on X.

(b) |S∗| ≥ 2 iff TC(x) = eee for some x∈X.

Proof. (a) By virtue of Theorem 6.7(a), |S∗|=1 iff ∪S∗ =∩S∗ iff (∪S∗)\ (∩S∗) =∅ iff TC(x) 6= eee
for all x∈X.

(b) is simply the negation of item (a). �

At the end of this section we are going to establish certain relationships between the values of
TC on S∗ ∈ S∗ and on X \S∗.

6.9. Covering trajectories. Given Y ⊂X, it is convenient to introduce the collection Sc(Y )
(possibly, empty) of those trajectories S ∈ S, which cover the set Y :

Sc(Y ) = {S ∈ S : Y ⊂ S and S 6= Y }.

It is to be noted that Sc(Y ) =∅ iff Y \ S 6=∅ for all S ∈ S with S 6= Y , and if Sc(Y ) 6=∅, then
S /∈ Sc(Y ) iff Y \S 6=∅.
We say that the set of trajectories S consists of nonembedded sets provided that Sc(S) =∅ for all

S ∈ S. In other words (cf. [5, Theorem 1]), the last condition is equivalent to saying that S1 \S2 6=∅

for all S1, S2 ∈ S, S1 6= S2. For instance, in Examples 5.8 and 6.5 collections of trajectories S consist
of nonembedded sets.

6.10. Theorem. Assume that C(x)> 0 for all x ∈X if ⊕ is an A-operation of addition on

R+ = [0,∞) and C(x)≥ eee for all x∈X if ⊕ is an A-operation of multiplication on R+ = (0,∞). If
S∗ ∈ S∗ is the unique optimal solution to the OP (1.1), then we have the inequalities

min
y∈X\S∗

(TC(y))
−1 ≤ min

y∈X\S∗
(TC(y))

−1 ≤ min
x∈S∗

TC(x) (6.5)

and

min
x∈S∗

TC(x)≤ min
y∈X\[S∗∪(∪Sc(S∗))]

(TC(y))
−1. (6.6)

Proof. 1. We begin by proving the right-hand side inequality in (6.5) (the left-hand side inequality
in (6.5) is always valid by virtue of (6.2) and (5.24)). Given x∈ S∗, it follows from (6.2) and (4.29)
that

TC(x) = uS∗(x) = fC(S
∗
−x)⊖fC(S

∗),

and so, by virtue of (4.16), there exists S1 ∈ S−x such that

TC(x) = fC(S1)⊖fC(S
∗).

Also, it follows from Theorem 6.7(c) and Corollary 6.8(a) that TC(x) > eee, and so, by (2.7) and
(A.3s),

fC(S1) = TC(x)⊕ fC(S
∗)>eee⊕ fC(S

∗) = fC(S
∗), (6.7)

i.e., S1 /∈ S∗. We claim that S1 \S
∗ 6=∅. On the contrary, assume that S1 \S

∗ =∅, and so, S1 ⊂ S∗,
say, S1 = {x1, . . . , xn} and S∗ = {x1, . . . , xn, y1, . . . , ym}. Then

fC(S1) =
n⊕

i=1

C(xi) =

( n⊕

i=1

C(xi)

)
⊕

( m⊕

j=1

eee

)
≤

≤

( n⊕

i=1

C(xi)

)
⊕

( m⊕

j=1

C(yj)

)
= fC(S

∗) = fC(S
∗),



Chistyakov and Pardalos: Concepts of Stability in Discrete Optimization Involving Generalized Addition Operations
32

which contradicts to inequality (6.7). Now, pick y0 ∈ S1 \S
∗. Then y0 ∈ S1 and y0 /∈ S

∗ or, in other
words, S1 ∈ Sy0 and y0 ∈X \S∗. By virtue of (6.2), (5.24), (4.16) and Lemma 2.15(a), we get

min
y∈X\S∗

(TC(y))
−1 ≤ (TC(y0))

−1 = ℓS∗(y0) = fC(S
∗
y0
)⊖fC(S

∗)≤

≤ fC(S1)⊖fC(S
∗) = TC(x),

from which the right-hand side inequality in (6.5) follows if we take into account the arbitrariness
of x∈ S∗.
2. Now we establish inequality (6.6). Let y ∈X \ [S∗ ∪ (∪Sc(S

∗))]. Since y ∈X \ S∗, it follows
from (6.2) and (5.24) that

(TC(y))
−1 = ℓS∗(y) = fC(S

∗
y)⊖fC(S

∗),

and so, by (4.16), there exists S2 ∈ Sy (i.e., S2 ∈ S and y ∈ S2) such that

(TC(y))
−1 = fC(S2)⊖fC(S

∗).

By Theorem 6.7(e) and Corollary 6.8(a), TC(y) < eee, and so, (6.1), (2.7) and (A.3s) yield that
(TC(y))

−1>eee and

fC(S2) = (TC(y))
−1⊕ fC(S

∗)>eee⊕ fC(S
∗) = fC(S

∗)

i.e., S2 /∈ S∗ implying S2 6= S∗. We claim that S∗ \ S2 6= ∅. There are two possibilities: either
Sc(S

∗) =∅ or Sc(S
∗) 6=∅. If Sc(S

∗) =∅, then no S ∈ S, S 6= S∗, covers S∗, and so, S∗ \ S2 6=∅.
Assume that Sc(S

∗) 6=∅. Because y /∈ ∪Sc(S
∗), we have y /∈ S for all S ∈ Sc(S

∗) (i.e., for all S ∈ S
such that S∗ ⊂ S and S 6= S∗). Taking into account that y ∈ S2 and S2 6= S∗, we find S2 /∈ Sc(S

∗),
and so, S2 does not cover S∗ and S∗ \S2 6=∅. Now, choose an x0 ∈ S

∗ \S2. This gives x0 ∈ S
∗ and

S2 ∈ S−x0 , and so, applying (6.2), (4.29), (4.16) and Lemma 2.15(a), we find

min
x∈S∗

TC(x)≤ TC(x0) = uS∗(x0) = fC(S
∗
−x0

)⊖fC(S
∗)≤

≤ fC(S2)⊖fC(S
∗) = (TC(y))

−1,

and it remains to take into account the arbitrariness of y as above. �

6.11. Corollary. Under the assumptions of Theorem 6.10, if the set of trajectories S consists

of nonembedded sets, then

min
y∈X\S∗

(TC(y))
−1 ≤ min

y∈X\S∗
(TC(y))

−1 = min
x∈S∗

TC(x),

and in the case of the A-operation of multiplication ⊕ on R+ = (0,∞) the inequality ≤ above turns

out to be the equality.

Proof. Since Sc(S
∗) =∅, the (in)equalities follow from (6.5) and (6.6). �

A discussion of issues as in Theorem 6.10 is presented in [5, Sections 5–7] in the case ⊕=+ (cf.
also [8]). Also, Examples 1 and 2 from [5] show that inequalities (6.5) and (6.6) may be strict.
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[13] G. Jäger, The theory of tolerances with applications to the traveling salesman problem, Habilitationss-
chrift, Kiel, 2010.
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