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Overlap of two Brownian trajectories: Exact results for scaling functions
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We consider two random walkers starting at the same time t = 0 from different points in space separated by a
given distance R. We compute the average volume of the space visited by both walkers up to time t as a function
of R and t and dimensionality of space d . For d < 4, this volume, after proper renormalization, is shown to be
expressed through a scaling function of a single variable R/

√
t . We provide general integral formulas for scaling

functions for arbitrary dimensionality d < 4. In contrast, we show that no scaling function exists for higher
dimensionalities d � 4.
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I. INTRODUCTION

Statistical properties of the random walk trajectories have
been intensively studied for decades. The average volume
W1(t) visited by a single t-step Brownian random walk on
a d-dimensional lattice was calculated in the 1960s [1,2].
This calculation has became a part of extended courses of
random walk theory (see, e.g., Refs. [3–5]) and found many
applications in reaction-diffusion processes [6] and polymer
sciences [7,8]. A generalization of this classical result to
the case of several random walks is of fundamental interest.
In the 1990s Larralde and coworkers provided a part of
this generalization [9–11]. Namely, they calculated the mean
number of sites visited by at least one of N walkers starting
from the common origin. Recently a complementary question
was addressed: what is the average number of sites WN (t)
visited by all N walkers [12]? This quantity as a function
of the space dimensionality d and the number of walkers N

was calculated and its asymptotic behavior for large t was
studied. These results were rederived using the notion of fractal
intersections [13] and further generalized [14], in the latter
work the whole distribution of the number of sites visited by
N walkers was calculated exactly for d = 1.

In this paper we propose a different generalization of
Ref. [12]. We consider random walks that, instead of starting
altogether from the origin x = 0, have distinct starting points
xi (i = 1 . . . N ). The values of xi (or, more precisely, xi − xj )
will influence the behavior of WN (t), which now is denoted as
WN (t,xi). For large enough t , however, random walks “forget”
their initial positions, and the position-dependent function
WN (t,xi) should converge to WN (t) studied in Ref. [12]. More
generally, one can write

WN (t,xi) = WN (t)�d (ξi, . . . ,ξN−1), (1)

where �d (ξi, . . . ,ξN−1) is a function of scaling variables ξi ∼
(xi − N−1 ∑N

j=1 xj )/
√

t (the exact prefactor will be chosen
below) [15], and d is the dimensionality of space. This scaling
function should converge to unity as ξi → 0 (i = 1 . . . N − 1),
and to zero if at least one of xi is much larger than 1 (indeed, if
the starting positions are separated by a distance much larger
than t2, the probability of any overlap is exponentially small).
In this paper we show that the scaling function �d (ξ ) can be

calculated exactly in the case of two random walkers starting
at a distance R from each other (see Fig. 1).

II. GENERAL THEORY

We consider two random walks of given lengths t1, t2, their
starting points x1, x2 being separated by the distance R =
|x1 − x2|. We are interested in calculating the average volume
w2 of the domain visited by both random walkers as a function
of t1, t2, and R. Following [12] we express this volume in terms
of the probability that a given site x is visited by each of the
walkers:

w2(x1,x2,t1,t2) =
∫

p(x,t1|x1)p(x,t2|x2) ddx. (2)

Here p(x,t |x0) is the probability that a random walk starting
at x0 has visited a point x by time t , and the integral should be
replaced with the sum for walkers in discrete space (lattice).

Now, the probability p(x,t |x0) can be expressed in terms
of the random walk propagator g(x,t |x0) as

p(x,t |x0) =
∫ t

0
g(x,τ |x0)q(t − τ |x) dτ, (3)

where q(t |x) is the persistence probability at point x, i.e., the
probability that a walker starting from the point x does not
return to it up to time t . There is a simple relation between the
persistence probability and the probability f (t |x) of the first
return at the point x:

∂q(t |x)

∂t
= −f (t |x), q(0|x) = 1, (4)

from which

q(t |x) = 1 −
∫ t

0
f (t ′|x) dt ′. (5)

Substituting Eq. (3) into Eq. (2) yields

w2(x1,x2,t1,t2) =
∫ t1

0
dτ1

∫ t2

0
dτ2

∫
q(t1 − τ1|x)q(t2 − τ2|x)

× g(x,τ1|x1)g(x,τ2|x2) ddx. (6)

In the most interesting case of time-reversible translationally
invariant random walks, q(t |x) = q(t) is site-independent, and
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FIG. 1. (Color online) A realization of two random walks, start-
ing at the origin (a) and at two points separated by distance R (b).
The sites visited by both walks are denoted by dark squares.

g(x,t |x0) = g(x0,t |x), so that Eq. (6) can be further simplified
into

w2(x1,x2,t1,t2) =
∫ t1

0
dτ1

∫ t2

0
dτ2q(t1 − τ1)

× q(t2 − τ2)g(x2,τ1 + τ2|x1). (7)

For Brownian random walks in the whole space Rd , the
propagator is Gaussian (for discrete space, it is asymptotically
Gaussian at large t):

g(x1,t |x2) = (4πDt)−d/2 exp

(
− |x1 − x2|2

4Dt

)
, (8)

where the diffusion coefficient D = a2/(2dδ) is related to a
microscopic length a of the order of underlying lattice spacing,
and δ is the duration of a time step. In addition, the persistence
is a well-studied function, and its asymptotic behavior depends
crucially on the dimensionality of space (in particular, on
whether the walk is recurrent or transient) [3,16]:

q(t) ∼
⎧⎨
⎩

t−d/2 (d < 2),
(ln t)−1 (d = 2),
const + O(t−(d−2)/2) (d > 2),

(9)

where the proportionality constants depend in general on both
d and the structure of the underlying lattice. In what follows,
we substitute Eqs. (8) and (9) into Eq. (7) for the particular
case t = t1 = t2 in order to calculate the scaling function:

�d (ξ ) ≡ w2(0,R,t,t)

w2(0,0,t,t)
, ξ ≡ R√

4dDt
= R/a√

2t/δ
. (10)

It is convenient to consider separately the two cases (1) d < 2
and (2) d � 2.

III. DIMENSIONALITY LESS THAN 2

Substituting Eqs. (7)–(9) into Eq. (10) yields the scaling
function in the following dimensionless form:

�d (ξ ) � I<(ξ,d)

I<(0,d)
,

(11)

I<(ξ,d) =
∫ 1

0

∫ 1

0

dz1

(1 − z1)d/2

dz2

(1 − z2)d/2

exp
( − dξ 2

z1+z2

)
(z1 + z2)d/2

,

here and below the notation a(ξ ) � b(ξ ) means that a is equal
to b in the limit when both t and R go to infinity in a way that

keeps ξ fixed. These asymptotic results can be systematically
improved by adding subleading terms in Eq. (9) that will
lead to t-dependent (or, equivalently, R-dependent) correction
terms. However, as we show below, the leading asymptotics
are already in excellent agreement with the results of computer
simulations, so we omit the consideration of this correction
terms here in order to keep this paper as transparent and
readable as possible.

The integral in Eq. (11) can be further simplified by
changing variables as u = (z1 + z2), v = (z1 − z2)/2:

I<(ξ,d) = 2
∫ 1

0
du

(1 − u/2)1−d

ud/2
exp(−dξ 2/u)

×
∫ u/(2−u)

0

dv

(1 − v2)d/2
+

√
π�(1 − d/2)

�(3/2 − d/2)

×
∫ 2

1
duu−d/2(1 − u/2)1−d exp(−dξ 2/u). (12)

In particular, for d = 1 one gets

I<(ξ,1) = 2
∫ 1

0

du√
u

exp(−ξ 2/u)arcsin[u/(2 − u)]

+ 2π [
√

2 exp(−ξ 2/2) − exp(−ξ 2)]

+ 2π
√

πξ [erf(ξ/
√

2) − erf(ξ )], (13)

where

erf(x) = 2√
π

∫ x

0
exp(−y2) dy

is the error function.
Expanding the above expression into a series in the vicinity

of ξ = 0 leads to

�1(ξ ) � 1 − ξ 2 1

2(
√

2 − 1)
+ O(ξ 4). (14)

In turn, for large ξ , the error function converges to one
exponentially fast, thus the whole expression in Eq. (13)
vanishes exponentially fast.

IV. DIMENSIONALITY LARGER OR EQUAL TO 2

For d � 2 the scaling function gets an even simpler form.
Indeed, substituting Eqs. (7)–(9) into Eq. (10) shows that in
the first approximation the input from the persistence cancels
out and the scaling function reads simply

�d (ξ ) � I>(ξ,d)

I>(0,d)
, I>(ξ,d)=

∫ 1

0

∫ 1

0
dz1 dz2

exp
( − dξ 2

z1+z2

)
(z1 + z2)d/2

.

(15)

However, for d � 4 the integral I>(0,d) diverges, which means
(see Ref. [12]) that the overlap in this case is controlled by the
behavior at small t , and scaling function does not exist. For
d = 2,3 the integrals in Eq. (15) can be computed exactly by
substitution u = z1 + z2, v = (z1 − z2)/2:

I>(ξ,2) = 2[exp(−2x2) − exp(−x2)]

+ 2(1+2x2)Ei(−2x2)−2(x2 + 1)Ei(−x2), (16)
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where

Ei(x) = −
∫ ∞

−x

exp(−y)/y dy

is the exponential integral function, and

I>(ξ,3) = 4 exp(−3ξ 2) − 2
√

2 exp(−3ξ 2/2) − 2
√

3πξ

+
√

3π

(
4ξ + 2

3ξ

)
erf(

√
3ξ )

−
√

3π

(
2ξ + 2

3ξ

)
erf(

√
3/2ξ ). (17)

For small ξ , the scaling functions behave as

�2(ξ ) � 1 + 2 ln ξ

ln 2
ξ 2 + 2 ln 2 + γ − 2

ln 2
ξ 2 − 3ξ 4/2 + O(ξ 6),

(18)

where γ ≈ 0.577216 is Euler’s gamma constant, and

�3(ξ ) � 1 − ξ

√
3π

2
√

2(
√

2 − 1)
+ ξ 2 3 + √

2

2
+ O(ξ 4). (19)

Note that contrary to Eq. (14), the scaling function in d = 2, 3
has a singularity in the vicinity of R = 0: indeed, R here
has a meaning of |R| =

√∑
R2

i , so the first corrections,
proportional to R2 ln R and R, respectively, are nonanalytical
for R = 0. For ξ 
 1, both I>(ξ,2) and I>(ξ,3) vanish
exponentially fast as expected.

Figure 2 shows the scaling functions �d (ξ ) for d = 1, 2, 3
and their asymptotic behaviors. To check the results presented
above, we simulated random walks on a (hyper)cubic lattice in
d = 1, 2, 3, 4 for initial distances equal to R = 5, 10, 20, 50.
The results are presented in Fig. 3 (note the logarithmic scale of
the horizontal axis). The theoretical results given by Eqs. (13),
(16), and (17) are shown by thick black lines. Note the absence
of any scaling collapse of the curves for d = 4.

V. DISCUSSION

In summary, we have shown that the average volume visited
by both independent random walkers starting initially at some
given distance R from each others behaves in a strikingly
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FIG. 2. (Color online) Scaling functions �d (ξ ) for d = 1, 2, 3
(lines) and their asymptotic behaviors in Eqs. (14), (18), and (19) for
0 < ξ < 1 (symbols).
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FIG. 3. (Color online) Numerical results for the renormalized
overlap functions �d (ξ ) = w2(0,R,t,t)/w2(0,0,t,t) for d = 1 (a),
d = 2 (b), d = 3 (c), and d = 4 (d). Numerical results were obtained
by Monte Carlo simulations of d-dimensional random walks on
(hyper)cubic lattices with R = 5 (circles), 10 (diamonds), 20
(triangles), and 50 (stars). Each point is an average over 262 144
realizations of random walks up to t = 131 072 steps. The theoretical
predictions for the scaling curves in d = 1,2,3 are shown with solid
black lines.
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universal way as a function of the scaling variable ξ = R/
√

2t .
It is instructive to consider the results in terms of three different
phases of the overlap scaling discussed in Ref. [12]. In the
low-dimensionality phase where overlap for ξ = 0 scales as
w2(0,0,t,t) ∼ td/2, corrections due to a nonzero initial distance
are analytical functions of that distance

w2(0,R,t,t)

w2(0,0,t,t)
= 1 − a(d)R2/t + O(R4/t2), (20)

with some d-dependent correction constant a(d), e.g., a(1) =
1

4(
√

2−1)
according to Eq. (14). In the medium-dimensionality

phase 2 < d < 4, where w2(0,0,t,t) ∼ t (4−d)/2, the introduc-
tion of a nonzero initial distance gives rise to a correction
which is singular at R = 0:

w2(0,R,t,t)

w2(0,0,t,t)
= 1 − a(d)(R2/t)(4−d)/2 + O(R2/t),

(2 < d < 4),

w2(0,R,t,t)

w2(0,0,t,t)
= 1 + ln(R2/t)

ln 2
R2/t + O(R2/t), (d = 2).

(21)

Finally, in the large-dimensionality phase with d � 4 where
the overlap is mostly controlled by the small t behavior of the
walks, no scaling function exists at all.

It is also instructive to consider the difference w2(0,0,t,t) −
w2(0,R,t,t), i.e., the average “deficiency” of the overlap
function due to the walks starting at distance R from each
other. For d < 2 this difference converges to zero at large t as
R2t (d−2)/2, while for 2 < d < 4 it converges to a finite limit
which scales as R4−d .

Another interesting qualitative result illustrating the behav-
ior in the 2 < d < 4 region concerns the fraction of the sites
visited by the first walk which are also visited by the second

walk, i.e., the ratio:

fd (R,t) = w2(0,R,t,t)

w1(t)
= w2(0,R,t,t)

w2(0,0,t,t)

w2(0,0,t,t)

w1(t)
. (22)

The two ratios on the right-hand side of Eq. (22) are
both positive and converge to zero as t → 0 and t → ∞,
respectively. Therefore, for any given R there exists time
(of order R2) at which the relative overlap of two walks is
maximal: fd (R,t) = f max

d (R) ∼ R2−d .
The results on the average volume of several random walks

can be of practical use to estimate, e.g., the interactions and
entanglements of Gaussian polymer coils, or the oversampling
rate in intermittent search processes where the search for
the target is an alternating sequence of random walks and
longer jumps (see Ref. [17] for examples) or surface-mediated
diffusion [18–20].

In order to keep the presentation as transparent as possible,
we concentrated here on the simplest possible setup of
two walks of equal length. The generalization for walks of
different lengths is straightforward, and the asymptotic results
for t → ∞ hold as soon as the two walk lengths remain
comparable in this limit. Generalizations for N > 2 walkers
are more cumbersome but also straightforward. It may be
also interesting to study the overlaps in confined geometries
(e.g., in a d-dimensional sphere or torus): in this case the
overlap fraction fd (R,t) can exhibit a peculiar nonmonotonous
behavior as a function of t .
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