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In this paper, we develop a new tolerance-based Branch and Bound algorithm for solving NP-hard

problems. In particular, we consider the asymmetric traveling salesman problem (ATSP), an NP-hard

problem with large practical relevance. The main algorithmic contribution is our lower bounding

strategy that uses the expected costs of including arcs in the solution to the assignment problem

relaxation of the ATSP, the so-called lower tolerance values. The computation of the lower bound

requires the calculation of a large set of lower tolerances. We apply and adapt a finding from [23] that

makes it possible to compute all lower tolerance values efficiently. Computational results show that our

Branch and Bound algorithm exhibits very good performance in comparison with state-of-the-art

algorithms, in particular for difficult clustered ATSP instances.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A combinatorial optimization problem (COP) is a problem with
a ground set of elements, from which a certain combination has to
be selected. COPs are common in routing, location and network
applications. For some COPs, algorithms exist that are able to find
optimal solutions in polynomial time. For the class of NP-hard

problems, on the other hand, the quality of a solution can be
determined in polynomial time, but it may be necessary to search
through an exponential number of solutions [10].

A basic approach to solving NP-hard COPs to optimality is to
construct a new, polynomially solvable problem, called the
relaxation. Two ways to form a relaxation are (1) the formulation
of the LP relaxation of the problem, where the relaxation can be
improved by adding the so-called cuts [19]; (2) the releasing of
constraints defining structural properties of the general NP-hard
problem in order to obtain a polynomially solvable COP.

One of the solution approaches that uses relaxation solutions
to the original problem is Branch and Bound (BnB). BnB methods
start by solving a relaxation of the original problem. If the
relaxation solution is feasible to the original problem, this solu-
tion is optimal. Otherwise, there exists a structure in the relaxa-
tion solution that is infeasible to the original problem, which we
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call an infeasibility. In order to remove the infeasibility, the
solution space is divided into smaller problems, the subproblems,
which are likely to contain fewer infeasibilities. This process
continues until the original problem is solved, i.e., each subpro-
blem is either solved or fathomed.

The asymmetric traveling salesman problem (ATSP) is a well-
known NP-hard COP. It has numerous applications to different
problems in logistics and management (see e.g. [1]). A feasible
solution is a combination of connections, or arcs, that form a tour
through n locations. Each location must be visited exactly once. A
commonly used relaxation of the ATSP is the assignment problem

(AP). This is the problem of finding a minimum cost assignment of
n workers to n jobs, where every worker has to be assigned to
exactly one job. The AP can be represented in a graph, where the
vertices denote the workers and the distance of each connection ij

denotes the cost of assigning worker i to job j. In the graph, the
connections belonging to a feasible AP solution may form a single
tour, which is a feasible ATSP solution, but more likely, they will
form a set of disjoint subcycles. Thus, the ATSP property that a
single tour is obtained, is relaxed. Since the AP can be solved in
O(n3) time, it is a polynomially solvable relaxation of the ATSP.
Note that if an optimal AP solution is feasible for the correspond-
ing ATSP instance, i.e., with the same set of arcs and the same cost
matrix C, it is also an optimal ATSP solution.

BnB is a commonly used and effective class of solution methods
for solving the ATSP to optimality; see [9]. The BnB methods
CDT [5] and FTV [9] use the AP as a relaxation. The Concorde [3] and
FT b&c [9] algorithms are based on the linear programming (LP)
relaxation and belong to the BnB variant called branch-and-cut
(BnC). It is found in [9] that LP-based algorithms perform rather
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well on instances that are relatively difficult, whereas BnB methods
are fast for large instances. A recent effective algorithm that is not
of type BnB is suggested by Climer and Zhang [8], namely the
iterated cut-and-solve algorithm (abbreviated to CZ).

The BnB algorithms for the ATSP introduced in [11,22] use the
upper tolerance values of arcs in the corresponding AP instance to
determine which arcs should be excluded. The upper tolerance
value of an arc is, roughly speaking, the change in the value of the
optimal AP solution when an arc from the current solution is
forbidden. Branching on upper tolerances is similar to strong
branching from [2]. We call BnB algorithms based on upper
tolerances UBnB. The UBnB algorithm from [22] performs very
well in comparison with CDT.

In this paper, we enhance this approach by incorporating a new
type of information into the BnB search process, namely lower

tolerances. Lower tolerances correspond to the additional costs of a
solution with a connecting arc [12]. They can be used to compute
the costs of including arcs and therefore, to connect two subcycles.

Intuitively, connecting subcycles may appear to be unattractive.
There are up to n(n�2) arcs outside of an optimal AP solution,
compared to only n candidate arcs inside it. An evaluation of the
candidate inclusions of elements appears to take much longer than
the evaluation of the candidate exclusions. In particular, the com-
putation of each upper and lower tolerance value takes O(n2), and
there are up to n(n�2) arcs outside of an optimal AP solution,
computing all lower tolerances appears to be costing O(n4) time.

However, it may be effective to compute the costs of connect-
ing subcycles with lower tolerances. A recent finding in [23]
reduces the computational complexity of all lower tolerances to
O(n3) time, which is the same complexity as for the computation
of the upper tolerances of all arcs in an optimal AP solution.
Similar results are known for other polynomially solvable COPs,
such as the minimum spanning tree problem [15] and the short-
est path problem [20]. In Section 3, we improve the result from
[23] by narrowing it to subsets of interesting candidate arcs for
inclusion and their lower tolerances. It is likely that the inclusion
of an arc decreases the infeasibility of an AP solution with respect
to the ATSP more than the exclusion of an arc. A structural
ATSP property that is violated by many AP solutions is namely
connectivity. This property is more likely to be satisfied by
a connecting than by a subcycle-breaking step.

We use the advantages of lower tolerances to strengthen the
lower bounds in BnB. For a minimization problem such as the
ATSP, a lower bound of a subproblem is a lower estimate of the value
of a best solution to a subproblem. The higher the lower bound of
subproblems is, the larger the part of the search tree that can be
excluded from further search. Section 3 introduces a lower bound
that uses the estimates of connecting subcycles with lower
tolerances. Subsequently, we determine the complexity and the
accuracy of the lower bounds, both analytically and experimen-
tally. We prove that these lower bounds are at least as tight, but
often tighter than the upper tolerance-based lower bounds from
[22]. The BnB algorithms that apply lower tolerance-based lower
bounds are called lower tolerance-based BnB (LBnB) algorithms.

In our computational experiments, we compare different types
of lower bounds based on connecting and breaking subcycles in
an optimal AP solution, including the lower bound from [6]. The
options are compared on their solution times and their search
tree sizes. Next, we compare the solution times of LBnB with
UBnB and with the freely available codes CDT and Concorde.

The paper is organized as follows. In the next section, we
introduce the necessary terminology and notation. The new
lower tolerance-based lower bounds are derived in Section 3,
and a brief overview of all compared algorithms is presented in
Section 4. Computational experiments and conclusions follow in
Sections 5 and 6, respectively.
2. Terminology and notation

In this section, we formulate upper and lower tolerances for
graph theoretical minimization problems in general. We formu-
late the AP and ATSP as graph theoretic problems and derive
properties of the AP upper and lower tolerances.

Let G¼(V,E,C) be a complete simple weighted digraph with the
set of vertices V¼{1,y,n}, arc set E and nonnegative weights
C¼[C(e)] for each eAE. The solutions to the AP and ATSP can be
presented as sets of cycles. A cycle in a graph is a connected set of
arcs of the graph such that it is possible to move from vertex to
vertex along the arcs in the cycle, encountering all vertices exactly
once, and finishing at the initial vertex. If a cycle contains all
vertices of the graph, it is called a Hamiltonian cycle; otherwise,
we use the term subcycle or subtour.

In order to formally define tolerances, the ATSP and AP are
considered within the framework of the following combinatorial
minimization problem; see [11,13]. ðE,C,D,fCÞ is the problem of
finding

S�AargminffCðSÞjSADg,

where C : E-R is the given instance of the problem with a ground

set E satisfying jEj ¼mðmZ1Þ,DD2E is the set of feasible solutions,
and fC : 2E-R is the objective function of the problem. By
D� ¼ argminffCðSÞjSADg the set of optimal solutions is denoted.
It is assumed that D�a|, and that Sa| for some SAD. Let gAE,
and aZ0. By Ca,g : E-R we denote the instance defined as
Ca,gðeÞ ¼ CðeÞ for each eAE\fgg, and Ca,gðgÞ ¼ CðgÞþa. Take
any S�AD�. The upper tolerance, uS� ðeÞ, of e with respect to Sn is
defined as

uS� ðeÞ ¼maxfaZ0 : S�AargminffCa,e
ðSÞ : SADgg,

and the lower tolerance, lS� ðeÞ, with respect to Sn as

lS� ðeÞ ¼maxfaZ0 : S�AargminffC�a,e
ðSÞ : SADgg:

So uS� ðeÞ is the maximal increase of C(e) under which Sn stays
optimal, and lS� ðeÞ is the maximal decrease of C(e) under which Sn

stays optimal, provided that the data remain unchanged.
We will use the following notation. Let eAE. Then Dþ ðeÞ ¼

fSAD : eASg, and D�ðeÞ ¼ fSAD : e=2Sg. Clearly, D¼D�ðeÞ [Dþ ðeÞ
and D�ðeÞ \Dþ ðeÞ ¼ | for all eAE. Similarly, D�þ ðeÞ and D��ðeÞ are
the sets of optimal solutions containing e and not containing e,
respectively.

We define the AP (resp., ATSP) on a complete simple weighted
digraph G¼(V,E,C) with the set of vertices V¼{1,y,n}, arc set
E¼ E, weights C¼[c(e)] for each eAE; A is the set feasible AP
solutions (resp., D¼H is the set of all Hamilton cycles). It then
holds that:
1.
 Each feasible AP solution AAA;A¼
Sk

i ¼ 1 Ki contains kZ1
disjoint subcycles Ki;
2.
 Let K(A) ¼ {K1,y,Kk} be the set of subcycles in an AP solution
A. The vertex set V is covered by the disjoint vertex sets V(Ki)
of each subcycle Ki, i.e., V ¼

Sk
i ¼ 1 VðKiÞ and VðKiÞ \ VðKjÞ ¼ |

for ia j.
P

3.
 fCðAÞ ¼ eAAcðeÞ for each AAA.
P

4.
 fCðHÞ ¼ eAHcðeÞ for each HAH.

Instances of the AP and the ATSP are called corresponding if
they are defined on the same graph G ¼ (V, E, C). It then holds that
HDA and fCðA

�Þr fCðH
�Þ.

In [11,12], it is shown that for the AP the finite upper and
lower tolerance values are independent of the chosen optimal
solution An; therefore, we write u(e) and l(e) instead of uA� ðeÞ and
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lA� ðeÞ, respectively. The upper and lower tolerance values can be
computed as follows: for each eAA�, u(e)¼ fC(An

�(e))� fC(An), and
for each e =2 A�, l(e)¼ fC(An

þ(e)) � fC(An).
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2

7 8

6 4
Connecting

arcs

Fig. 1. Hamiltonian cycle (dark color), AP solution (light color) and connecting

arcs for an 8 city ATSP.
3. Lower tolerance-based lower bounds for the ATSP

In BnB, subproblems can be fathomed if their lower bound
values are higher than the value of the current upper bound,
usually the value of the current best solution. A tighter lower
bound is likely to lead to the fathoming of a larger number of
subproblems. In this section, we construct lower bounds for the
ATSP based on lower tolerances. Firstly, we identify the key lower
and upper tolerance values, called the bottleneck tolerances, and
show that these values can be used to form a lower bound. The
term bottleneck tolerances is used, as it refers to an arc with the
minimum upper or lower tolerance value in a selected set of arcs.
Next, we compare the time complexity and the accuracy of the
upper and lower bottleneck tolerance-based lower bounds. We
prove that, for the ATSP, the lower bounds based on bottleneck
lower tolerances are tighter than their upper tolerance-based
counterpart, and that the computational complexities of both
types of lower bounds are the same.

An optimal AP solution An is a collection of disjoint subcycles,
but every feasible solution H to the ATSP should be a single
(Hamiltonian) cycle. Our lower bounds compute the additional
costs of adding arcs between subcycles in order to obtain an ATSP
solution, i.e., connecting subcycles.

The idea of connecting subcycles in an AP optimal solution
with the purpose of improving the AP-based lower bound has
been used by Christofides in [6], where the Christofides lower
bound (CLB) gives an estimate by adding the reduced costs of the
arcs between subcycles. The reduced cost matrix is formed by
subtracting values from each row and column in such a way that
the arcs in each optimal AP solution have zero costs. An iterative
procedure solves a sequence of adjusted AP instances obtained
after each iteration. The adjusted AP instance is, roughly speaking,
created by contracting each disjoint subcycle into a new vertex
until the adjusted AP solution consists of a Hamiltonian cycle. The
computation of the CLB from an AP solution requires 0.143n3

computations on average (see [6], p. 272).
The CLB is based on inclusion of arcs that simultaneously

connect all subcycles. The number of the arcs is exactly equal to
the number of connected subcycles. Contrary to this, we present a
lower bound based on the so-called bottleneck lower tolerance
value of a single arc. This does not mean that we only consider the
inclusion of a single arc: a transformation of one feasible AP
solution into another one is done by changing at least two arcs.

Lower tolerance-based lower bounds are computed as follows.
Suppose that the optimal solution An to the AP relaxation consists
of kð41Þ subcycles, say, A� ¼

Sk
i ¼ 1 Ki. Then An is infeasible to the

ATSP and any Hamiltonian cycle must have exactly two arcs
incident (one directed inward and one directed outward), with at
least one node in a subcycle Ki. We call these incident arcs the
connecting arcs of a subcycle. Fig. 1 illustrates graphically for an
8-city ATSP that any subcycle of an infeasible AP solution has
exactly two connecting arcs.

To obtain a feasible ATSP solution from An, we have to connect
all subcycles Ki. Connecting a subcycle Ki is the inclusion of any
connecting arc ðp,qÞAE\A� into the optimal solution An that is
incident with one of the nodes in a subcycle Ki. The additional
cost of including an arc (p,q) is equal to its lower tolerance value
l(p,q) ¼ fC(An

þ(p,q))� fC(An).
Take an arbitrary subcycle Ki. There are two possible connec-

tions: one that enters Ki, and one that leaves Ki. The sets formed
by these arcs are denoted by IN(Ki) and OUT(Ki), respectively.
Formally, for each subcycle KiAKðA�Þ, define:
1.
 OUTðKiÞ ¼ fðp,qÞ : pAVðKiÞ,qAV\VðKiÞg, which denotes the set of
all connecting arcs directed out of subcycle Ki;
2.
 INðKiÞ ¼ fðp,qÞ : pAV\VðKiÞ,qAVðKiÞg, which denotes the set of
all connecting arcs directed into subcycle Ki.

Then, for each KiAKðA�Þ, the minimum cost of connecting
subcycle Ki with an outgoing arc ðp,qÞAOUTðKiÞ is denoted by and
defined as

loutðKiÞ ¼minflðp,qÞ : ðp,qÞAOUTðKiÞg,

and the minimum cost of connecting subcycle Ki with an incom-
ing arc ðp,qÞA INðKiÞ as

linðKiÞ ¼minflðp,qÞ : ðp,qÞA INðKiÞg:

Thus, lout(Ki) and lin(Ki) are the minimum additional costs incurred
when Ki is connected with an outgoing or incoming arc, respec-
tively. For each KiAKðA�Þ, we denote and define l(Ki) ¼ max
{lout(Ki), lin(Ki)}.

It is shown in [23] that one can compute the lower tolerance
values of all outgoing arcs from a single vertex pAV in O(n2) time,
i.e., the lower tolerances of ðp,qÞAE, with q in another subcycle
than the one containing p. Therefore, all lower tolerances of arcs
in OUT(Ki) can be computed in Oðn2 � jKijÞ time, for each
KiAKðA�Þ. Unfortunately, the same does not hold for incoming
arcs. In order to compute the lower tolerances of all arcs in IN(Ki),
we have to calculate the lower tolerance values of all rows of the
matrix C, requiring a time complexity of O(n3). The following
theorem shows that it suffices to compute lout(Ki).

Theorem 1. Let An be an optimal AP solution, and let KðA�Þ ¼
Sk

i ¼ 1 Ki be such that k41. Then l(Ki) ¼ lout(Ki) ¼ lin(Ki) for each

subcycle KiAKðA�Þ.

Proof.
1.
 We prove that loutðKiÞr linðKiÞ. Let eA INðKiÞ such that lin(Ki) ¼
l(e). If Aþ ðeÞ \ OUTðKiÞ ¼ |, there is at least one path going into
V(Ki), but no path is coming from V(Ki). The path into V(Ki)
cannot form a subcycle; the resulting solution would be
infeasible to the AP. Therefore, it must hold that (gAA�þ ðeÞ\

OUTðKiÞ. Since gAA�þ ðeÞ, it holds that loutðKiÞr lðgÞ ¼ fCðA
�
þ ðeÞÞ�

fCðA
�Þ ¼ lðeÞ ¼ linðKiÞ.
2.
 The proof of loutðKiÞZ linðKiÞ goes along similar lines. Let
gAOUTðKiÞ such that lout(Ki) ¼ l(g). If Aþ ðgÞ \ INðKiÞ ¼ |, there
is at least one path going out of V(Ki), but none is coming in.
Therefore, (eAA�þ ðgÞ \ OUTðKiÞ. Since eAA�þ ðgÞ, it holds that
linðKiÞr lðeÞ ¼ fCðA

�
þ ðgÞÞ�fCðA

�Þ ¼ lðgÞ ¼ loutðKiÞ. &

Theorem 2 shows that a lower bound for the corresponding
ATSP instance is guaranteed if, for any subcycle Ki, l(Ki) is added to
the AP value.
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Theorem 2. Let An and Hn be optimal solutions to the AP and ATSP

instances, respectively, with the same cost matrix C. Assume that An

consists of at least two subcycles. Then for each KiAKðA�Þ, the

following inequalities hold:

fCðA
�Þr fCðA

�Þþ lðKiÞr fCðH
�Þ:

Proof. The first inequality is obvious, since lðp,qÞZ0 for any
ðp,qÞAE.

To prove the second inequality, we need to prove that, in a given

subcycle Ki, we have to add at least one arc from IN(Ki) and at least

one from OUT(Ki), so 8HAH,jH \ OUTðKiÞj40 and jH \ INðKiÞj40.

We prove this by contradiction. Assume that (HAH such that

jH \ INðKiÞj ¼ 0. This means that there is no path in H from any

pAV\VðKiÞ to any qAVðKiÞ, thereby contradicting the assumption

that H is a Hamiltonian cycle. Along similar lines, it can be shown

that jH \ OUTðKiÞj40.

To complete the proof, we use that, for any eA INðKiÞ, it holds that

lðeÞZ lðKiÞ. Let H�AH�. For eA INðKiÞ \ H� (from the previous part, we

know that e exists), it holds that fCðH
�ÞZ fCðA

�Þþ lðeÞZ fCðA
�Þþ lðKiÞ.

The proof for OUT(Ki) goes along similar lines. &

The subcycle Ki is taken arbitrarily in Theorem 2, meaning that
the value l(Ki) of any subcycle KiAKðA�Þ can be added to fC(An) in
order to obtain a lower bound for the corresponding ATSP
solution value. The increase in the lower bound fC(An) þ l(Ki) is
the largest for the subcycle Ki for which l(Ki) is maximal. However,
all lower tolerance values in

Sk
i ¼ 1 OUTðKiÞ must be computed to

guarantee that we obtain an arc with a maximum value of l(Ki)
(see Theorem 1). Another promising choice is a subcycle with the
smallest cardinality jKi0 j, so Ki0 AargminfjKij : i¼ 1, . . . ,kg. Not
only is the number of lower tolerance computations needed
small, it is also likely that lðKi0 Þ is relatively large compared to
the value l(Ki) of any other subcycle Ki. The intuitive explanation
is that the expected minimum of a small set of random numbers
is greater than the expected minimum of a large set of random
numbers.

A bottleneck lower tolerance of a subcycle is the minimum
lower tolerance value of all arcs entering or leaving a subcycle.
We use the bottleneck tolerances la and le as defined below to
compute the lower tolerance-based lower bounds. We introduce
the following two lower tolerance-based lower bounds: the exact
bottleneck lower tolerance (EBLT) lower bound denoted by and
defined as LB(EBLT)¼ fC(An) þ le with le¼max {l(Ki) : i¼1,y,k};
and the approximate bottleneck lower tolerance (ABLT) lower
bound denoted by and defined as LBðABLTÞ :¼ fCðA

�Þþ la with
la ¼ lðKi0 Þ.

For the calculation of the lower tolerance-based lower bounds,
we have to compute l(Ki) for prespecified subcycles Ki. This
requires the computation of all lower tolerance values of the
connecting arcs of subcycle Ki, i.e., the lower tolerances of all arcs
in the sets OUT(Ki) and IN(Ki). Theorem 1 allows us to compute
l(Ki) for all KiAA�, by using the lower tolerance values of set
OUT(Ki). The time complexity of this operation is Oðn2 � jKijÞ;
see [23]. Therefore, the ABLT lower bound can be computed by
calculating all lower tolerance values in OUTðKi0 Þ, which costs
Oðn2 � jKi0 jÞ time, which is at most O(0.5n3). On average, we find
that the complexity of the ABLT lower bound is lower than the
O(0.143n3) average complexity of the CLB. For the calculation of
the EBLT lower bound, we have to compute all lower tolerance
values in

Sk
i ¼ 1 OUTðKiÞ. The overall time complexity of this lower

bound is, therefore, O(n3).
The exact bottleneck upper tolerance (EBUT) and approximate

bottleneck upper tolerance (ABUT) lower bounds have been
introduced in [11]. We summarize the procedure for computing
these two lower bounds. For each subcycle Ki, let u(Ki) denote
the minimum upper tolerance value in the subcycle. We use the
bottleneck tolerances ua and ue as defined below to compute the
lower tolerance-based lower bounds. The ABUT lower bound is
obtained by adding the minimum upper tolerance value in the
shortest subcycle to the value of the AP lower bound; its value is
LB(ABUT)¼ fC(An) þ ua, where ua ¼ uðKi0 Þ is the minimum upper
tolerance value of the subcycle with the smallest cardinality, i.e.,
Ki0 AargminfjKij : KiAA�g. The ABUT lower bound can be com-
puted by calculating the upper tolerances of all arcs in a subcycle
with the smallest cardinality, which takes Oðn2 � jKi0 jÞ time. The
EBUT lower bound is defined as LB(EBUT) ¼ fC(An) þ ue, where
ue¼max {u(Ki) : i¼1,y,k}. This means that we compute the
minimum upper tolerance values in all subcycles and take the
largest of these, which takes O(n3) time.

Theorem 3 shows that the EBLT and ABLT lower bounds are
tighter than their counterparts the EBUT and ABUT lower bounds,
respectively.
Theorem 3. The following assertions hold:
1.
 LBðEBLTÞZLBðEBUTÞ;

2.
 LBðABLTÞZLBðABUTÞ.
Proof. Take any KiAKðA�Þ. Let e¼ ðv,wÞAOUTðKiÞ be such that
fCðA

�
þ ðeÞÞ ¼ fCðA

�Þþ lðKiÞ,vAVðKiÞ,w=2VðKiÞ. Then there exists g ¼

ðv,zÞAKi such that g=2A�þ ðeÞ. So we have that fCðA
�
�ðgÞÞr fCðA

�
þ ðeÞÞ,

which implies that uðgÞ ¼ fCðA
�
�ðgÞÞ�fCðA

�Þr lðeÞ ¼ fCðA
�
þ ðeÞÞ�fCðA

�Þ

or uðKiÞr lðKiÞ.

Since Ki is chosen arbitrarily, it holds that:
1.
 LBðABLTÞ ¼ fCðA
�Þþ lðKi0ÞZ fCðA

�ÞþuðKi0Þ ¼ LBðABUTÞ;

2.
 LBðEBLTÞ ¼ fCðA

�Þþmax½lðKi : KiAKðA�Þ�Z fCðA
�Þþmax½uðKiÞ :

KiAKðA�Þ� ¼ LBðEBUTÞ. &

The lower tolerance-based lower bounds are tighter than their
upper tolerance-based counterparts when inequalities hold in
Theorem 3. Such a situation can occur if the distances between
subcycles are relatively large compared to the distances between
nodes in the same subcycle. The cost of breaking a subcycle is then
relatively low compared to the cost of connecting two subcycles.
Fig. 2 shows a simple example of such an instance. The AP solution
consists of the zero cost arcs, and the AP solution value is 0. The
upper tolerance values of all arcs in both subcycles are 3, because
the removal of an arc in the AP solution leads to a reversion of the
orientation in its subcycle. Clearly, the values of both LB(ABUT)
and LB(EBUT) are fC(An) þ l(K1) ¼ 0 þ 3 ¼ 3 (subcycle K2 could
have been selected as well here). In order to determine EBLT and
ABLT, it is necessary to compute the lower tolerance values leading
out of both subcycles. In this example, there are only two candidate
arcs, namely the black arcs between the subcycles. The lower
tolerance values of both arcs are 6, and so are the values of
LB(ABLT) and LB(EBLT) here. This is clearly higher than the values
of their upper tolerance-based counterparts.
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4. Classification of the algorithms

In this section, we describe the algorithms to be compared in
the computational experiments. We mainly consider BnB algo-
rithms. According to [18], each BnB algorithm can be character-
ized as a combination of the following four building blocks:
�
 The search strategy determines the order in which the open
subproblems are solved, i.e., the subproblems that have been
created but have not yet been solved are discarded.

�
 The branching rule determines how the current ATSP should be

divided into subproblems.

�
 The lower bound is discussed in Section 1 and 3.

�

Table 1
Search tree sizes of BnB algorithms with the ‘‘normal’’ branching rule and various

lower bounds, for ATSPLIB instances.

Instance n Lower bound

APLB CLB EBUT EBLT ABUT ABLT

ft53 53 20111 2877 7043 1435 7365 1927

ft70 70 25369 2367 5544 401 6582 1644

ftv33 34 6889 3486 2195 1938 3097 3018

ftv35 36 6888 3620 2567 2447 3241 2963

ftv38 39 6195 3195 2247 2089 2927 2585

ftv44 45 619 387 187 181 223 223

ftv47 48 28995 16063 8305 6735 9529 7981

ftv55 56 92445 49171 12279 7515 24841 12123

ftv64 65 43343 17401 7415 2975 9495 6007

ftv70 71 252527 108379 26595 15227 47869 39601
The upper bound is usually the value of the best ATSP tour
found so far; in all our algorithms we use Karp–Steele patching
at every node of the search tree [17].

The tolerance-based BnB algorithms apply the search strategy
depth first search (DFS), in which the most recently generated
subproblem is solved first. DFS is commonly applied in practice,
because it is relatively easy to implement and it generally obtains
a good solution quickly. When a DFS algorithm is terminated
prematurely, it is likely that the best solution found until then is
of high quality; see [24]. A competing strategy is best first search
(BFS), in which the most promising subproblem is solved next.
Algorithms with BFS are generally faster than those with DFS, but
more difficult to implement.

The branching rule determines, firstly, how an unsolved and
unfathomed subproblem is divided into subproblems and, sec-
ondly, it fixes the order in which these new subproblems are
going to be solved in the further BnB process. In case of the ATSP,
subproblems are usually defined by the subsets of arcs from the
current solution that are forbidden (removed) in the subproblem.
The branching rule used in the experiments is based on the ‘‘New
Branching Scheme’’ from [4]. It excludes the arcs in a shortest
subcycle from the AP solution (i.e., with the smallest number of
arcs) one by one.

In particular in DFS, the ordering of the next subproblem
matters. The ‘‘normal’’ rule branches on these arcs in a non-
increasing order of arc costs. The ABUT branching rule branches
on the arcs in a non-decreasing order of arc upper tolerances. It is
found in [22] that it makes sense to branch on tolerances in a
shortest subcycle. The authors call the algorithm BnB(SCS),
because it determines the bottleneck upper tolerance value from
the smallest cycle set (SCS), i.e., from an arbitrary subcycle with
the smallest cardinality. In this paper, we choose to denote it by
UBnB, to distinguish it from the lower tolerance-based algorithm
that uses a smallest cycle set in its lower bounding process. Note
that if there are multiple shortest subcycles, we choose a shortest
one at random.

In the bounding part, our contribution is the addition of two new
lower bounds from the previous section, namely the ABLT and EBLT
bounds. These are compared to the following lower bounds: the
ABUT and EBUT bounds from [11], the Christofides bound from [6]
(CLB) and the AP solution value (APLB). The quality of the lower
bounds is measured through the number of nodes that can be
fathomed in a search tree, the search tree reduction.

Since we only vary the lower bound and the branching rule in
our tested algorithms, we characterize our algorithms with
BnB(BR, LB), where the branching rules BR are ABUT and Normal.
We found that it is ineffective to use AP lower tolerances for
branching. The candidate lower bounds are ABLT, EBLT, ABUT,
EBUT, CLB and APLB. We also include the state-of-the-art methods
CDT [5] and Concorde [3] in our experiments. CDT is an AP-based
BnB algorithm introduced in [5] which solves in particular
random instances rapidly. The Concorde algorithm from [3] uses
the LP relaxation. It is designed for the symmetric TSP (STSP) and
uses a transformation to formulate the ATSP instance as an STSP
instance. Its performance is comparable, though a little slower, to
that of the LP-based algorithm FT b&c from [9] and the CZ
algorithm from [8].

The codes of FT b&c and CZ were not available to us; therefore,
we choose to do the comparison with these algorithms indirectly,
based on the CPU times and the solution accuracies reported in
[9,8]. The search strategy is BFS and branching rules are in the
case of Concorde and FT b&c based on LP relaxations of the ATSP.
For this reason, we do not use the BnB(BR,LB) notation, but instead
denote these algorithms by their names.
5. Computational experiments with ATSP instances

In this section, we conduct the following computational
experiments. Firstly, we determine the search tree reductions
obtained with different lower bounds. We investigate whether
the use of lower tolerances leads to better lower bounds and then
to solution time reductions. After that, we include the algorithms
CDT and Concorde in the comparison in Tables 4 and 5.

Our test instances include 10 instances from the ATSPLIB
(see [21]) that are solvable within reasonable time limits. Our
randomly generated instances (‘‘Random’’) are of size 500 and
1000 and have intercity distances that are drawn from a uniform
distribution supported on {1,y,10 000}.

In the comparison with CDT and Concorde, we have selected
computationally difficult instances from Fischetti et al. [9]. Some
of these instances are so complex that even state-of-the-art
algorithms are only able to find approximate solutions within a
prespecified time limit of 10,000 s. The quality of the best solution
found until then is used to measure the performance of the
algorithms. The experiments are conducted on a Pentium 4 com-
puter with 512 MB RAM memory and 1.66 GHz speed. The
algorithms use the AP solver from [16].

First of all, we compare the quality of the different AP-based
lower bounds in a BnB algorithm. To this end, we fix the
branching rule to Normal and we vary the lower bound. CDT
and Concorde are not taken into account here, since they apply a
BFS strategy; CDT uses the APLB, whereas the Concorde lower
bounds are based on the LP relaxation. Table 1 shows that the
search trees obtained with the tolerance-based lower bounds are
usually smaller than those obtained with Christofides’ lower
bound. The ABLT and EBLT lower bounds enable large reductions
for the instances ft53 and ft70 in particular.

Next, we apply the upper tolerance-based ABUT branching rule
to the BnB algorithms with the tolerance-based lower bounds
EBLT, ABLT and EBUT. When upper or lower tolerance values are
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computed for the branching rule, they are available for a lower
bound as well without any further computations. In [22], it is
reported that branching on upper tolerances generally leads to
smaller search trees than normal, cost-based branching strategies.
Moreover, the effect of jointly using tolerance-based branching
rules and lower bounds is larger than the individual effects on the
search trees. The individual reductions amplify each other. This is
called the synergy effect. The expected reductions are the reduc-
tions that can be expected when separate reductions do not affect
each other; i.e., if the remaining search trees after the individual
reductions are 70% and 60% of the original search tree, we expect
a total search tree of 42% (0.7�0.6�100%) of the original one, so
that the expected reduction is 58%.

Table 2 indicates that the synergy effect also manifests itself
when lower tolerance-based bounds and the ABUT branching rule
are used in conjunction. For example, for ATSPLIB instances, the
combination of the EBLT lower bound and the ABUT branching
rule leads to an average search tree reduction of 95.53%, which
means that the remaining search tree is only 4.47% of that of
Table 4
Average solution times in seconds for Johnson instances, with number of solved instan

Instance type Nr. of instances LBnB UBnB

Time #Solved Time

ATSPLIB 27 63.90 (25) 77.06

coin 6 – (0) –

crane 6 664.09 (2) –

disk 6 11.36 (5) 22.83

stilt 6 – (0) –

shop 6 15.19 (6) 8.30

stilt 6 – (0) –

super 6 0.06 (5) 0.04

cls 15 20.66 (15) 25.51

ran 9 40.81 (9) 28.50

Table 3
Solution times in seconds for ATSPLIB instances with different lower bounds and

branching rules.

Instance n BnB(Normal,.) BnB(ABUT,.)

APLB CLB EBLT ABUT ABLT

ft53 53 5.20 1.22 6.33 7.43 1.56

ft70 70 7.89 1.51 1.84 4.65 2.54

ftv33 34 0.45 0.47 0.05 0.01 0.02

ftv35 36 0.46 0.59 1.35 0.74 0.63

ftv38 39 0.51 0.55 1.83 1.05 0.96

ftv44 45 0.06 0.09 0.29 0.08 0.09

ftv47 48 3.11 3.87 5.50 2.11 2.07

ftv55 56 12.01 14.84 21.74 16.35 10.59

ftv64 65 7.51 7.06 16.95 10.12 6.94

ftv70 71 54.07 52.71 26.53 9.43 8.81

Average 9.13 8.29 8.24 5.20 3.42

Median 4.16 1.37 3.67 3.38 1.82

Table 2
Search tree reductions for ATSPLIB and random instances: the synergy effect.

Lower bound Instance Actual (%) Expected (%)

EBLT ATSPLIB 95.53 93.24

Random 98.25 94.52

ABLT ATSPLIB 92.17 87.10

Random 98.13 94.22

CLB ATSPLIB 73.76 65.81

Random 70.43 76.35
BnB(Normal, APLB), although the expected reduction is only
93.24%. For the Christofides lower bound, the ABUT branching
rule leads only to small additional search tree reductions for the
ATSPLIB instances and for the randomly generated instances, the
actual reductions are even smaller than the expected ones. Since
separate computations are required for the Christofides lower
bound and for the ABUT branching, we will apply the Christofides
lower bound in combination with the ‘‘normal’’ branching rule.

Table 3 gives a summary of the solution times of our candidate
algorithms for ATSPLIB instances. The algorithm BnB(ABUT,ABLT)
obtains the shortest average and median solution times. The ABLT
lower bound reduces the search tree greatly for some instances,
whereas the additional computation time, compared to ABUT, is
short. Although the EBLT lower bound leads to the largest search
tree reductions, the tolerance computations take so much time
that BnB(ABUT,EBLT) is clearly slower than its competitors.

In the comparison with the CDT and Concorde algorithms, we
consider the algorithms BnB(ABUT, ABUT) and BnB(ABUT, ABLT).
From now on, we refer to these algorithms as UBnB and LBnB,
respectively. The experiments are performed on the same
instances as those in [9], introduced in [7]. There are usually five
instances of size 100 and one instance of size 316 of each instance
type. There are in total 15 clustered cls instances, of size 15, 20
and 25, and there are 10 ran (random) instances of size 500 and
1000. The results are summarized in Table 4; the average solution
time is taken for instances that have been solved within our time
limit of 1000 s CPU time, followed by the total number of
instances of this type. The number of solved instances is given
in between brackets.

Concorde solves the largest number of instances, but has
remarkable difficulties with the random instances. CDT and to a
lesser degree LBnB and UBnB solve these random instances
rapidly. The reverse holds for more difficult instances. For the
clustered instances, our LBnB approach achieves the best results.
The difficulty with clustered instances is that there are many AP
solutions that have multiple subcycles in each cluster of points. In
the search process, the lower tolerance-based lower bound
includes the additional costs of adding an arc to a vertex in a
different cluster. Through the lower tolerance-based lower bound,
the LBnB algorithm can fathom many of these solutions.

We consider 22 computationally difficult instances in more
detail, of which the bottom seven are from the ATSPLIB. The
solution times of the tested algorithms are reported, and, if no
optimal solution has been determined after 1000 s, the gap with
the best known solution as well. The results in Table 5 show that
the tolerance-based algorithms require intermediate CPU times:
usually, either CDT or Concorde is faster, but not both simulta-
neously. Take for example the instance disk316.10. the solution
times are 13.31 (LBnB), 11.89 (UBnB), 0.94 (CDT), and 37.54
(Concorde) seconds, respectively. For randomly generated instances,
ces between brackets.

CDT Concorde

#Solved Time #Solved Time #Solved

(25) 4.03 (22) 50.38 (27)

(0) – (0) 75.20 (5)

(0) – (0) 106.86 (5)

(5) 0.32 (5) 14.94 (6)

(0) – (0) 171.05 (6)

(6) 0.36 (6) 26.19 (6)

(0) – (0) 335.70 (6)

(5) 0.01 (5) 9.91 (6)

(12) 85.88 (11) 5.10 (11)

(9) 0.37 (9) 177.97 (8)



Table 5
Comparison of LBnB, UBnB, CDT and Concorde. Time limit of 1000 s.

Name LBnB UBnB CDT Concorde

%Gap Nodes Time %Gap Nodes Time %Gap Nodes Time %Gap Nodes Time

coin100.2 5.28 1117990 1000.00 5.65 1611864 1000.00 18.40 233061 1000.00 – 9 137.34

coin316.10 12.73 61163 1000.00 15.57 86836 1000.00 19.14 a 1000.00 1.36 a 1000.00

crane100.2 1.31 765221 1000.00 2.89 846717 1000.00 8.41 177779 1000.00 – 29 322.29

crane100.4 0.00 533459 1000.00 6.63 608345 1000.00 13.79 175989 1000.00 – 29 200.60

crane316.10 2.51 30820 1000.00 4.60 66333 1000.00 8.14 198395 1000.00 0.01 a 1000.00

disk316.10 – 760 13.31 – 917 11.89 – 3397 0.94 – 13 37.54

rtilt100.0 7.71 629364 1000.00 8.98 519722 1000.00 10.62 312583 1000.00 – 43 330.57

rtilt316.10 9.95 36674 1000.00 14.02 23502 1000.00 19.11 a 1000.00 – 61 563.71

shop316.10 – 1630 79.35 – 1230 39.69 – 1228 1.32 – 19 75.19

stilt100.4 5.41 555138 1000.00 10.95 394200 1000.00 22.05 206205 1000.00 0.13 a 1000.00

stilt316.10 6.88 39301 1000.00 9.01 49062 1000.00 24.21 a 1000.00 13.91 a 1000.00

super316.10 0.00 94479 1000.00 0.00 165671 1000.00 3.37 192423 1000.00 – 7 32.79

ran500.1 – 32 9.19 – 28 6.08 – 30 0.10 – 73 151.23

ran1000.0 – 61 98.46 – 48 56.62 – 44 0.98 0.19 a 1000.00

ran1000.2 – 56 47.15 – 46 28.57 – 158 0.80 – 177 946.63

ft53 – 1490 0.44 – 18354 6.45 15.28 165449 1000.00 – 1 0.27

ftv64 – 2676 1.56 – 14477 11.34 – 4552 0.30 – 5 30.21

ftv70 – 8934 4.89 – 15519 8.61 – 10328 1.23 – 5 8.43

kro124p 2.12 1300525 1000.00 2.12 1610092 1000.00 10.95 175212 1000.00 – 1 5.61

rbg358 – 1 0.03 – 1 0.02 – 1 0.04 – 19 847.10

rbg443 – 1 0.05 – 2 0.05 – 1 0.06 – 3 81.62

ry48p – 373151 77.35 – 552078 102.09 0.00 201207 1000.00 – 3 11.39

a Could not be computed.

Table 6
Best solution for unsolved instances.

Instance Smallest gap (%) Obtained with

coin316.10 1.36 Concorde

crane316.10 0.01 Concorde

stilt100.4 0.13 Concorde

stilt316.10 6.88 LBnB
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Concorde requires the largest computational times and it is not able
to find an optimal solution for ran1000.0. Note that CDT solves
them extremely fast while LBnB and UBnB are able to find an
optimal solution much faster than Concorde. There is one instance
for which our BnB algorithms outperform the state-of-the-art,
namely the instance stilt316.10. UBnB and LBnB return solutions
with gaps 6.88% and 9.01% within the time limit of 1000 s, while
Concorde and CDT terminate with error margins of 13.91% and
24.21%, respectively (Table 6).

There are four instances for which neither of the methods
obtains an optimal solution. Concorde obtains the smallest gap for
three instances, but for the instance stilt316.10, LBnB termi-
nates with the smallest gap.

The computational experiments do not contain the effective
algorithms, CZ and FT b&c, because their codes were not available
to us. In Table 1 from [8], it is shown that the solution times of CZ
follow a similar pattern to those of Concorde, but are usually some-
what faster. As a consequence, CZ is faster than our LBnB and UBnB
algorithms for many of the instance types. However, CZ performs
worse than Concorde for super-instances, for which our LBnB and
UBnB algorithms perform relatively well, with e.g. a close
to optimal solution of super316.10.

Our LBnB approach combines the connecting and breaking of
subcycles in an AP solution. It is thus able to achieve reasonably
short solution times or to terminate with a small gap for many
instances. UBnB, which only considers the breaking of subcycles,
has great difficulties for many of these instances. In comparison
with CDT and Concorde, LBnB performs particularly well for
clustered instances.
6. Discussion, summary and future research directions

Our computational experiments show that LBnB outperforms
the UBnB algorithm for most instances. The comparison with the
state-of-the-art BnB (Carpaneto–Dell’Amico–Toth) and branch-
and-cut (Concorde) codes shows that LBnB is faster than
branch-and-cut but somewhat slower than CDT for relatively
easy instances. The reverse holds for more difficult instances. For
some instances, most notably the clustered ones, LBnB achieves
the best results. We wish to focus on clustered ATSP instances in a
follow-up to this work and we expect that lower tolerance-based
algorithms have large potential for such instances.

There is potential to make use of lower tolerances for
other problems than the ATSP and its AP relaxation. It takes
about the same amount of time to compute upper and lower
tolerances for the minimum spanning tree problem [15] and the
shortest path problem [20]. There are many NP-hard problems
that have these problems as relaxations; see for example [10].
An interesting direction of future research is to use lower
tolerances of edges or arcs outside the optimal tree or the shortest
paths to determine solutions or lower bounds to these NP-hard
problems.
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