Coalition Homomorphisms of Games with Preference Relations

Tatiana Savina

Russian Federation suri-cat@yandex.ru

Keywords: Game with preference relations, Coalition homomorphism, Homomorphism, Acceptable outcomes

Abstract: Let G be a game with preference relations of players I. Then we can construct a game of coalition if strategies and preference relations of coalitions are given. Let G, H be two games with preference relations. A homomorphism from game G into game H is said to be a coalition homomorphism if it preserves preference relations for coalitions. We study the following problems. We find conditions under which a homomorphism of games is a homomorphism for games of coalitions. We stand a correspondence between acceptable outcomes of games which are in homomorphic relations of various types. We find connections between acceptable outcomes of game with preference relations and a-core for games with payoff functions.

1. The cooperative aspect of a game is connected with its coalitions. Consider a game of players $N = \{1, ..., n\}$ with preference relations

$$G = \langle \left(X_i \right)_{i \in N}, A_i \! \left(\rho_i \right)_{i \in N}, F \rangle.$$

For any coalition $T\subseteq N$ we need define its set of strategies X_T and its preference relation ρ_T . We consider X_T in the form

$$X_T := \prod_{i \in T} X_i$$

and a preference relation for coalition T in one of the following ways:

$$\text{A) } a_{\mathbf{i}} \leq a_{\mathbf{i}} \Rightarrow \left(\forall i \in T \right) a_{\mathbf{i}} \leq a_{\mathbf{i}} - \text{Pareto concordance of preferences of players,}$$

OR

B)
$$\begin{cases} a_1 < a_2 \Rightarrow (\forall i \in T) a_1 < a_2, \\ a_1 \sim a_2 \Rightarrow (\forall i \in T) a_1 \sim a_2, \\ a_1 \sim a_2 \Rightarrow (\forall i \in T) a_1 \sim a_2 \end{cases}$$
 modified Pareto concordance of preferences of

players.

2. In this paper we consider the following optimal solutions:

K -equilibrium points and K -acceptable outcomes.

Let K be an arbitrary family of coalitions in game G.

Definition 1. A strategy $x_T^0 \in X_T$ is called a refutation of coalition T against outcome a if for any strategy $x_{N \setminus T} \in X_{N \setminus T}$ the condition $a \stackrel{\sigma_T}{<} F(x_T^0, x_{N \setminus T})$ holds. An outcome a is called K-acceptable if any coalition $T \in K$ does not have a refutation against this outcome.

Definition 2. A strategy $x_T^0 \in X_T$ is called a refutation of coalition T against situation $x \in X$ if the condition $F(x) \stackrel{p_T}{<} F(x_T^0, x_{N \setminus T})$ holds. A situation $x^0 \in X$ is called K-equilibrium if any coalition $T \in K$ does not have a refutation against this situation.

In this section we find some connections between optimal cooperative solutions of games which are in homomorphic relations.

Let $\Gamma = \langle (U_i)_{i \in N}, B_i(\sigma_i)_{i \in N}, \Phi \rangle$ be one more game of the same players and $f = (\phi_1, \dots, \phi_n, \psi)$ be a homomorphism from game G into game Γ .

Definition 3. A homomorphism f is said to be:

• a coalition homomorphism if it preserves preference relations for coalitions, i.e. for any coalition $T \subseteq N$ the condition

$$a_1 \overset{\rho_T}{\leq} a_2 \Rightarrow \psi(a_1) \overset{\tau_T}{\leq} \psi(a_2)$$

holds;

• a strict coalition homomorphism if for any coalition $T\subseteq N$ the system of the conditions

$$\begin{cases} a_1 \overset{\circ_T}{<} a_2 & \Rightarrow & \psi(a_1) \overset{\circ_T}{<} \psi(a_2), \\ a_1 \overset{\circ_T}{\sim} a_2 & \Rightarrow & \psi(a_1) \overset{\circ_T}{\sim} \psi(a_2) \end{cases}$$

is satisfied;

• a regular coalition homomorphism if for any coalition $T \subseteq N$ the system of the conditions

$$\begin{cases} \psi(a_1) \overset{\sigma_T}{<} \psi(a_2) & \Rightarrow & a_1 \overset{\sigma_T}{<} a_2, \\ \psi(a_1) \overset{\sigma_T}{\sim} \psi(a_2) & \Rightarrow & \psi(a_1) = \psi(a_2) \end{cases}$$

is satisfied.

The main result of this paper is finding of a correspondence between sets of K -acceptable outcomes and K -equilibrium situations of games which are in homomorphic relations of indicated types.

References

[1] Rozen, V.V. (2009). Cooperative Games with Ordered Outcomes. Game Theory and Management. Collected abstracts of papers presented on the Third International Conference Game Theory and Management. SPb.: Graduate School of Management SPbU, pp. 221—222

ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА

Серия 10 ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ

Ответственный редактор серии: Л.А. Петросян Зам. ответственного редактора: Д.А. Овсянников С.В. Чистяков

Издательство Санкт-Петербургского университета

