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Abstract

We solve the spectral synthesis problem for exponential systems on an interval. Namely, we prove
that any complete and minimal system of exponentials {eiλn t

}n∈N in L2(−a, a) is hereditarily complete
up to a one-dimensional defect. This means that for any partition N = N1 ∪ N2 of the index set, the
orthogonal complement to the system {eiλn t

}n∈N1 ∪ {e′
n}n∈N2 , where {e′

n} is the system biorthogonal to
{eiλn t

}, is at most one-dimensional. However, this one-dimensional defect is possible and, thus, there exist
nonhereditarily complete exponential systems. Analogous results are obtained for systems of reproducing
kernels in de Branges spaces. For a wide class of de Branges spaces we construct nonhereditarily complete
systems of reproducing kernels, thus answering a question posed by N. Nikolski.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction and main results

1.1. Hereditary completeness in general setting

A system of vectors {xn}n∈N in a separable Hilbert space H is said to be exact if it is both
complete (i.e., Span{xn} = H ) and minimal (i.e., Span{xn}n≠n0 ≠ H for any n0). Given an exact
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system we consider its (unique) biorthogonal system {x ′
n}n∈N which satisfies (xm, x ′

n) = δmn .
Then to every element x ∈ H we associate its formal Fourier series

x ∼


n∈N

(x, x ′
n)xn .

A natural condition is that this correspondence is one-to-one: no nonzero vector generates zero
series, in other words the biorthogonal system {x ′

n} is also complete. Another important property
is the possibility to reconstruct the vector x from its Fourier series:

x ∈ Span {(x, x ′
n)xn}.

If this holds, we say that the system {xn}n∈N is hereditarily complete. We will use an equivalent
description: for any partition N = N1 ∪ N2, N1 ∩ N2 = ∅, the system

{xn}n∈N1 ∪ {x ′
n}n∈N2

is complete in H . Equivalence of this property to the hereditary completeness is immediate (for
details, see [20, Lemma 3.1]). In the opposite situation (i.e., when {xn} and {x ′

n} are complete,
but {xn} is not hereditarily complete) we say that the system is nonhereditarily complete.

The importance of this notion is related to the spectral synthesis problem for linear operators.
If {xn} is the sequence of eigenfunctions and root functions of some compact operator (with
trivial kernel), then the hereditary completeness of {xn} is equivalent to the possibility of the so-
called spectral synthesis for this operator, i.e., its restriction to any invariant subspace is complete
(see [20] or [15, Chapter 4]).

The condition that the biorthogonal system {x ′
n} is also complete in H is by no means

automatic and corresponding examples can be easily constructed. It is less trivial to give
examples of the situations where both {xn} and {x ′

n} are complete, but the system {xn} fails
to be hereditarily complete. In fact, first examples go back to Hamburger [13] who constructed a
compact operator with a complete set of eigenvectors, whose restriction to an invariant subspace
is a nonzero Volterra operator (and, hence, is not complete). Further examples of nonhereditarily
complete systems were found by Markus [20] and Nikolski [21], while a general approach
to constructing nonhereditarily complete systems was developed by Dovbysh, Nikolski and
Sudakov [9,10]. Any nonhereditarily complete system gives an example of an exact system which
is not a summation basis. On the other hand, uniform minimality and closeness to an orthonormal
system may be combined with nonhereditary completeness [10].

1.2. Hereditary completeness for exponential systems

It is natural to study the problem of hereditary completeness for special systems in functional
spaces, e.g. those which appear as families of eigenvectors and root vectors of a certain operator.
Exponential systems form an important class in this respect. Let Λ = {λn} ⊂ C and let eλ(t) =

exp(iλt). We consider the exponential system {eλ}λ∈Λ in L2(−a, a), a > 0. It was shown
by Young [25] that, in contrast to the general situation, for any exact system of exponentials
its biorthogonal system is complete. Another approach to this problem was suggested in [12],
where it is shown that any exact system of exponentials is the system of eigenfunctions of the
differentiation operator i d

dx in L2(−a, a) with a certain generalized boundary condition.
Applying the Fourier transform F one reduces the problem for exponential systems in

L2(−π, π) to the same problem for systems of reproducing kernels in the Paley–Wiener space
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P Wπ = F L2(−π, π). Recall that the reproducing kernel of P Wπ corresponding to a point
λ ∈ C is of the form

Kλ(z) =
sin π(z − λ)

π(z − λ)
, f (λ) = ( f, Kλ)P Wπ

.

Hereditary completeness of exponential systems is a particular case of the following problem
posed by Nikolski: whether there exist nonhereditarily complete systems of reproducing
kernels in the model subspaces of the Hardy space (for the theory of model spaces see [22];
the Paley–Wiener space and de Branges spaces are such spaces up to a canonical unitary
equivalence). Let us also recall a related result by Olevskii [23]: there exists an orthonormal
basis {ϕn} in L2(−π, π) consisting of trigonometric polynomials, for which the approximation of
functions f by the sums


n: ( f,ϕn)≠0 cnϕn fails in the metric of C[−π, π] or L p(−π, π), p > 2.

We completely solve the problem of hereditary completeness for exponential systems.
Namely, we show that hereditary completeness holds up to a possible one-dimensional defect.

Let Λ ⊂ C be such that the system of reproducing kernels {Kλ}λ∈Λ is exact in the
Paley–Wiener space P Wπ . Then the biorthogonal system {gλ}λ∈Λ is given by

gλ(z) =
G(z)

G ′(λ)(z − λ)
,

where G is the so-called generating function of the set Λ. By the above-mentioned result of
Young, {gλ}λ∈Λ is also an exact system. It is well known that G is a function of exponential type
π and has only simple zeros at the points of Λ.

Theorem 1.1. If {Kλ}λ∈Λ is exact in the Paley–Wiener space P Wπ , then for any partition
Λ = Λ1 ∪ Λ2, the orthogonal complement in P Wπ to the system

{gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 (1.1)

is at most one-dimensional.

Moreover, there are certain obstacles for the existence of this exceptional one-dimensional
complement. This cannot happen when the sequence Λ1 has non-zero upper density. Given a
sequence Λ set

D+(Λ) = lim sup
r→∞

nr (Λ)

2r
,

where nr (Λ) is the usual counting function of the sequence Λ, nr (Λ) = card {λ ∈ Λ, |λ| ≤ r}.

Theorem 1.2. Let Λ ⊂ C, let the system {Kλ}λ∈Λ be exact in P Wπ , and let the partition
Λ = Λ1 ∪ Λ2 satisfy D+(Λ1) > 0. Then the system (1.1) is complete in P Wπ .

Surprisingly, the one-dimensional defect for exponential systems is still possible.

Theorem 1.3. There exist a system of exponentials {eiλn t
}n∈Z, λn ∈ R, which is complete and

minimal in L2(−π, π), but is not hereditarily complete.

Thus, hereditary completeness may fail even for exponential systems (reproducing kernels of
the Paley–Wiener space), which answers the question of Nikolski. Further counterexamples will
be discussed in the next subsection.
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1.3. Reproducing kernels of the de Branges spaces

The above results may be extended to the de Branges spaces. Let E be an entire function in
the Hermite–Biehler class, that is E has no zeros on R, and

|E(z)| > |E∗(z)|, z ∈ C+,

where E∗(z) = E(z) and C+ stands for the upper half-plane. With any such function we
associate the de Branges space H(E) which consists of all entire functions F such that F/E
and F∗/E restricted to C+ belong to the Hardy space H2

= H2(C+). The inner product in
H(E) is given by

(F, G)E =


R

F(t)G(t)

|E(t)|2
dt.

The reproducing kernel of the de Branges space H(E) corresponding to the point w ∈ C is given
by

Kw(z) =
E(w)E(z) − E∗(w)E∗(z)

2π i(w − z)
.

The Hilbert spaces of entire functions H(E) were introduced by L. de Branges [8] in
connection with inverse spectral problems for differential operators. These spaces are also of
great interest from the function theory point of view. The Paley–Wiener space P Wa is the de
Branges space corresponding to E(z) = exp(−iaz).

An important characteristics of the de Branges space H(E) is its phase function, that is, an
increasing C∞-function ϕ such that E(t) exp(iϕ(t)) ∈ R, t ∈ R (thus, essentially, ϕ = − arg E
on R). Clearly, for P Wa, ϕ(t) = at . If ϕ′

∈ L∞(R) (in which case we say that ϕ has sublinear
growth), the space H(E) shares certain properties with the Paley–Wiener spaces.

A crucial property of the de Branges spaces is the existence of orthogonal bases of reproducing
kernels corresponding to real points [8]. For α ∈ [0, π) we consider the set of points tn ∈ R such
that

ϕ(tn) = α + πn, n ∈ Z. (1.2)

Thus, {tn} is the zero set of the function eiα E − e−iα E∗. It should be mentioned that the points
tn may exist not for all n ∈ Z (e.g., the sequence {tn} may be one-sided, that is, tn may exist only
for n ≥ n0). If the points tn are defined by (1.2), then the system of reproducing kernels {Ktn }

is an orthogonal basis for H(E) for each α ∈ [0, π) except, may be, one (α is an exceptional
value if and only if eiα E − e−iα E∗

∈ H(E)). One should think of the sequence {tn} as a spectral
characteristic of the space H(E).

The completeness of a system biorthogonal to an exact system of reproducing kernels was
studied in [3,11]. In particular, it was shown in [11] that such biorthogonal systems are always
complete when ϕ′

∈ L∞(R). The following extension of this result is obtained in [3]: if, for some
N > 0, ϕ′(t) = O(|t |N ), |t | → ∞, then either eiα E − e−iα E∗

∈ H(E) for some α ∈ [0, π), or
any system biorthogonal to an exact system of reproducing kernels is complete in H(E).

The method of the proof of Theorem 1.1 extends to the case of the de Branges spaces with
sublinear growth of the phase function.

Theorem 1.4. Let H(E) be a de Branges space such that ϕ′
∈ L∞(R). If the system of

reproducing kernels {Kλ}λ∈Λ is exact in H(E), then for any partition Λ = Λ1 ∪ Λ2, the
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orthogonal complement in H(E) to the system

{gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 (1.3)

is at most one-dimensional.

A crucial step in the proofs of Theorems 1.1 and 1.4 is the use of expansions of functions
in P Wπ or in H(E) with respect to two different orthogonal bases of reproducing kernels. At
first glance it may look like an artificial trick; however it should be noted that the existence of
two orthogonal bases of reproducing kernels is a property which characterizes de Branges spaces
among all Hilbert spaces of entire functions (see [5,6]). Therefore, we believe this method to be
intrinsically connected with the deep and complicated geometry of de Branges spaces.

As in the Paley–Wiener case, there are obstacles to the existence of the one-dimensional
complement. Here we give just a result for one-component inner functions E∗/E (see, for
instance, [1]) of special type.

Theorem 1.5. Let H(E) be a de Branges space such that ϕ′
∈ L∞(R),

sup
x

|ϕ(2x)|

|ϕ(x)| + 1
< ∞,

and ϕ′(a)

ϕ′(b)

 ≤ c if
1
2

≤
ϕ(a)

ϕ(b)
≤ 2.

Let Λ ⊂ R, let the system of reproducing kernels {Kλ}λ∈Λ be exact in H(E), and let the partition
Λ = Λ1 ∪ Λ2 satisfy

Dϕ
+(Λ1) = lim sup

r→∞

nr (Λ)

ϕ(r) − ϕ(−r)
> 0.

Then the system (1.3) is complete in H(E).

Furthermore, we show that nonhereditary completeness for reproducing kernels is possible in
many de Branges spaces. Namely, we construct such examples under some mild restrictions on
the spectrum {tn} (including, e.g., all power growth spectra |tn| = |n|

γ , γ > 0, n ∈ N or n ∈ Z).

Theorem 1.6. Let {tn} be a sequence of real points such that tn < tn+1 and |tn| → ∞, n → ∞.
Assume that for some N > 0, c > 0, we have

c|tn|
−N

≤ tn+1 − tn = o(|tn|), |n| → ∞. (1.4)

Then there exists a de Branges space H(E) such that {tn} is the zero set of the function
E + E∗

∉ H(E) and there is an exact system of reproducing kernels {Kλ} in H(E) such that its
biorthogonal system is complete, but the original system {Kλ} is nonhereditarily complete.

We also mention here that recently Burnol [7] studied the hereditary completeness property
of the system


ζ(s)

(s−λ)k


, where λ are nontrivial zeros of the Riemann zeta function and 1 ≤ k ≤

mλ, mλ being the multiplicity of λ. He showed that this system is complete and minimal in some
associated space of analytic functions, and, moreover, that this system is hereditarily complete
up to a possible one-dimensional defect. It is not known whether this one-dimensional defect
is really possible, but in view of our results, the presence of this complement seems to be a
sufficiently general phenomenon.
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The above counterexamples admit an operator-theoretic interpretation. It was recently shown
in [4, Theorem 2.5] that any exact system of reproducing kernels in a de Branges space is unitarily
equivalent to a system of eigenvectors of some rank one perturbation of a compact self-adjoint
operator:

Let H(E) be a de Branges space such that eiα E − e−iα E∗
∉ H(E) for any α ∈ R, and let

{tn} be the zero set of E + E∗, tn ≠ 0. Put sn = t−1
n and let A be a compact selfadjoint operator

with the spectrum {sn}. Then for any exact system {Kλ}λ∈Λ of reproducing kernels in H(E) there
exists a bounded rank-one perturbation L of A (i.e., Lx = Ax + (x, b) a) such that the system
{Kλ}λ∈Λ is unitarily equivalent to the system of eigenvectors of L , while its biorthogonal is
unitarily equivalent to the system of eigenvectors of the adjoint operator L∗.

Thus, we have the following corollary of Theorem 1.6.

Corollary 1.7. Let {sn} be a sequence of real numbers such that sn ↘ 0, n ≥ 0, n → ∞, while
sn ↗ 0, n < 0, n → −∞. Assume also that for some N > 0, c > 0, we have

c|sn|
N

≤ |sn+1 − sn| = o(|sn|), |n| → ∞.

Let A be a compact selfadjoint operator with the spectrum {sn}. Then there exists a rank
one perturbation L of A (with trivial kernel) such that both L and L∗ have complete sets of
eigenvectors, but L does not admit spectral synthesis.

Throughout the paper the notation U (z) . V (z) (or equivalently V (z) & U (z)) means that
there is a constant C such that U (z) ≤ CV (z) holds for all z in the set in question, which may
be a Hilbert space, a set of complex numbers, or a suitable index set. We write U (z) ≍ V (z) if
both U (z) . V (z) and V (z) . U (z).

2. Preliminaries

Note that if Λ = Λ1 ∪Λ2, and one of the sets Λ1 or Λ2 is finite, then the corresponding system
(1.1) is complete by a simple Hilbert space argument. Therefore, from now on we exclude the
case when one of the sets Λ1,Λ2 is finite.

Let h ∈ P Wπ be a function orthogonal to the system (1.1). Assume that Λ ∩ Z = ∅ and write
the expansion of the vector h with respect to the Shannon–Kotelnikov–Whittaker orthonormal
basis Kn(z) =

sin π(z−n)
π(z−n)

, n ∈ Z,

h(z) =


n∈Z

an Kn(z) =
1
π


n∈Z

an(−1)n sin π z

z − n
,

where an = h(n) and ∥h∥
2

=


n∈Z |an|
2 < ∞. For simplicity, in this section, we write


n

instead of


n∈Z.
The fact that h is orthogonal to

G(z)
z−λ


λ∈Λ1

is equivalent to
G(z)

z − λ
, h


=


n

anG(n)

n − λ
= 0, λ ∈ Λ1, (2.1)

while (h, Kλ) = 0, λ ∈ Λ2, implies that
n

an(−1)n

λ − n
= 0, λ ∈ Λ2. (2.2)
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Without loss of generality we may assume that h does not vanish at integers, that is,
an ≠ 0, n ∈ Z. Otherwise, since the zero set of h is discrete, there exists α ∈ (0, 1) such
that h(n + α) ≠ 0, n ∈ Z, and we can expand h with respect to the basis {Kn+α}.

Now let G2 be an entire function of genus 1 with the zero set Λ2, and let G1 = G/G2.
The function G2 is defined uniquely up to an exponential factor eγ1+γ z . Note that the zeros
of G satisfy the Blaschke condition in C+ and in C−. Therefore, we may choose γ such that
G∗

2/G2 = B1/B2 for some Blaschke products B1 and B2. Hence G∗

1/G1 is the ratio of two
Blaschke products as well, since G∗/G is of this form for any generating function G of a
complete minimal system of reproducing kernels.

We can rewrite conditions (2.1)–(2.2) as
n

anG(n)

z − n
=

πG1(z)S1(z)

sin π z
, (2.3)


n

an(−1)n

z − n
=

πG2(z)S2(z)

sin π z
, (2.4)

where S1 and S2 are some entire functions.
The pairs (S1, S2) of entire functions satisfying (2.3)–(2.4) parametrize all functions

orthogonal to (1.1). We will denote the set of such pairs by Σ (Λ1,Λ2). Note that the function
S2 = h/G2 does not depend on the choice of the orthogonal basis {Kn+α} (we will use this fact
repeatedly), while S1 will depend on the choice of the basis.

Comparing the residues at n in (2.3)–(2.4) we get

S1(n) = (−1)nanG2(n), G2(n)S2(n) = an . (2.5)

Put S = S1S2. Then

S(n) = S1(n)S2(n) = (−1)n
|an|

2. (2.6)

Lemma 2.1. The function G1S1 is in P Wπ + zP Wπ .

Proof. If w is a zero of G1S1, then it follows from (2.3) and the inclusion {G(n)(1+|n|)−1
}n ∈ ℓ2

that

πG1(z)S1(z)

z − w
= sin π z


n

anG(n)

(n − w)(z − n)
∈ P Wπ . � (2.7)

In what follows we denote by P Wπ +C sin π z the class of functions of the form f +c sin π z,
where f ∈ P Wπ , c ∈ C.

Lemma 2.2. Let h ∈ P Wπ be orthogonal to some system of the form (1.1) and let (S1, S2) ∈

Σ (Λ1,Λ2). Then S ∈ P Wπ + C sin π z.

Proof. Consider the function Q ∈ P Wπ which solves the interpolation problem Q(n) =

(−1)n
|an|

2, n ∈ Z (where an are the coefficients in the expansion h =


n an Kn) and put
S̃ = S − Q. Then S̃ vanishes on Z and so S̃(z) = H(z) sin π z. It remains to show that H is a
constant. Note that G2S2 = h ∈ P Wπ and, by Lemma 2.1, G1S1 ∈ P Wπ + zP Wπ . Hence,

GS ∈ P W2π + zP W2π , (2.8)
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and, since G ∈ P Wπ + zP Wπ and G Q ∈ P W2π + zP W2π , also

G(z)S̃(z) = G(z)H(z) sin π z ∈ P W2π + zP W2π .

We may divide by sin π z, and so

G H ∈ P Wπ + zP Wπ .

Since G is an entire function of exponential type π , we conclude that H is of zero exponential
type. Now if H has at least one zero z1, we conclude that H(z)G(z)

z−z1
∈ P Wπ which contradicts the

fact that Λ is a uniqueness set for the Paley–Wiener space. Thus, H is a constant. �

Lemma 2.3. Let h ∈ P Wπ be orthogonal to some system of the form (1.1) and let (S1, S2) ∈

Σ (Λ1,Λ2). Then both functions S1/S∗

1 and S2/S∗

2 are ratios of two Blaschke products.

Proof. The zero sets of S1 and S2 satisfy the Blaschke condition in C+ and in C− since
G1S1 ∈ P Wπ + zP Wπ and h = G2S2 ∈ P Wπ . Thus, it remains to show that S1/S∗

1 and
S2/S∗

2 have no exponential factors. By Lemma 2.2 we know that S satisfies this property. Indeed,
if c ≠ 0 this is obvious, whereas if c = 0, then the function S coincides with the function
Q ∈ P Wπ which is real on R and has at least one zero in each interval (n, n + 1). So the size of
the conjugate indicator diagram of the function GS equals 4π . Hence, the size of the conjugate
indicator diagram both for G1S1 and for G2S2 equals 2π . Since G2S2 ∈ P Wπ , we obtain that
G2S2/(G∗

2 S∗

2 ) is a ratio of two Blaschke products. By the construction of G2, the same is true
for S2 and, hence, for S1. �

Lemma 2.4. If (S1, S2) ∈ Σ (Λ1,Λ2), then also (S∗

1 , S∗

2 ) ∈ Σ (Λ1,Λ2).

Proof. By Lemma 2.3, S∗

1/S1 is of the form B1/B2 for some Blaschke products B1 and B2. We
consider the following representation

πG1(z)S1(z)

sin π z
·

S∗

1 (z)

S1(z)
=


n

anG(n)

z − n
·

S∗

1 (n)

S1(n)
+ H(z), (2.9)

where H is an entire function (which holds since the residues at integers coincide). On the other
hand, G1S∗

1 ∈ P Wπ + zP Wπ , whence |H(z)| . 1 + |z| and so H is a polynomial of degree
at most 1. Finally, (2.3) implies that e−π |y|

|G1(iy)S1(iy)| → 0, |y| → ∞. Since the function
S∗

1/S1 is reciprocal to itself at conjugate points, we conclude that min(|H(iy)|, |H(−iy)|) →

0, |y| → ∞, and so H ≡ 0.
Set bn = an S∗

1 (n)/S1(n). We can use an analogous argument to show that

πG2(z)S∗

2 (z)

sin π z
=


n

an(−1)n

z − n
·

S∗

2 (n)

S2(n)
. (2.10)

Since S(n) = S1(n)S2(n) ∈ R and so S∗

2 (n)/S2(n) = S1(n)/S∗

1 (n), we get

an(−1)n S∗

2 (n)/S2(n) = bn(−1)n .

Thus, the pair (S∗

1 , S∗

2 ) corresponds to the sequence {bn} in Eqs. (2.3) and (2.4). This means that
(S∗

1 , S∗

2 ) ∈ Σ (Λ1,Λ2). �

By Lemma 2.4, if (S1, S2) ∈ Σ (Λ1,Λ2), then (S1 + S∗

1 , S2 + S∗

2 ) ∈ Σ (Λ1,Λ2) and
(i S1 − i S∗

1 , −i S2 + i S∗

2 ) ∈ Σ (Λ1,Λ2). Thus, in what follows we may assume that the functions
S1 and S2 are real on R. In this case we have an immediate corollary from (2.6).
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Corollary 2.5. If S1 and S2 are real on R, then each open interval (n, n + 1), n ∈ Z, contains
exactly one zero of S, and S has no other zeros.

Proof. Since S is real on R and changes the sign at n ∈ Z, it has at least one zero in every
interval (n, n + 1). Choosing a zero in each interval we construct the (principal value) canonical
product S0. Then S = S0 H for some entire function H of zero exponential type which is real
on R. Clearly, |S0(iy)| & |y|

−1eπ |y|, |y| → ∞. By Lemma 2.2 we have S ∈ P Wπ + C sin π z.
Hence, |H(iy)| . |y|, |y| → ∞, which implies that H is a polynomial of degree at most 1.
Since the signs of S(n) interchange, S cannot have two zeros in any of the intervals (n, n + 1).
Thus, H is a constant. �

3. Proofs of Theorems 1.1 and 1.2

We are now ready to prove the main positive results on hereditary completeness for
exponential systems.

3.1. Completeness up to a one-dimensional defect

Proof of Theorem 1.1. Without loss of generality assume that Λ∩ Z = ∅. Let f =


n∈Z an Kn

and h =


n∈Z bn Kn be two linearly independent vectors orthogonal to (1.1), and let (S1, S2) and
(T1, T2) be the corresponding pairs of entire functions from Σ (Λ1,Λ2). Since, by Lemma 2.4, the
pairs (S1+S∗

1 , S2+S∗

2 ), (i S1−i S∗

1 , −i S2+i S∗

2 ), (T1+T ∗

1 , T2+T ∗

2 ), and (iT1−iT ∗

1 , −iT2+iT ∗

2 )

also belong to Σ (Λ1,Λ2), we may assume from the very beginning that the pairs (S1, S2) and
(T1, T2) are linearly independent and the functions S1, S2, T1, and T2 are real on R.

Using Eqs. (2.5) for S and T we get

S1(n)T2(n)G2(n) = T1(n)S2(n)G2(n) = (−1)nG2(n)anbn,

and hence,

S1(n)T2(n) = S2(n)T1(n) = βnanbn,

with |βn| = 1.
Denote by Q the function in P Wπ which solves the interpolation problem Q(n) = βnanbn .

Then

T1(z)S2(z) = Q(z) + a(z) sin π z, S1(z)T2(z) = Q(z) + b(z) sin π z,

for some entire functions a and b. We show now that a and b are constants.
Note that the functions S = S1S2 and T = T1T2 are in P Wπ + C sin π z by Lemma 2.2.

Furthermore, the pair (S1 + T1, S2 + T2) corresponds to the vector f + h while the pair
(S1 + iT1, S2 − iT2) corresponds to the vector f + ih. Applying again Lemma 2.2 we obtain
that U = (S1 + T1)(S2 + T2) and V = (S1 + iT1)(S2 − iT2) are in P Wπ + C sin π z. Hence the
functions

S1T2 + S2T1 = U − S − T, i(S2T1 − S1T2) = V − S − T

belong to P Wπ + C sin π z. Thus, S1T2, S2T1 ∈ P Wπ + C sin π z, and we conclude that a and b
are constants.
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Assume that a ≠ 0. Let us denote by M the set of m ∈ Z such that in the interval
[m − 1/2, m + 1/2) there exists a zero of S2, and let us denote this zero (or one of these zeros)
by sm . Then

Q(sm) + a(−1)m sin π(sm − m) = 0,

whence
m∈M

|sm − m|
2

≍


m∈M

sin2 π(sm − m) ≍


m∈M

|Q(sm)|2 < ∞.

On the other hand, the zeros of S2 do not depend on the choice of the basis, they are the zeros of
h/G2. Expanding with respect to another basis (say, {Kn+δ} with small δ > 0) we conclude that

m∈M |sm − m − δ|2 < ∞. This is obviously wrong.
Thus, for some choice of the basis {Kn+δ}, we have proved that a = b = 0 and all an, bn are

nonzero. Therefore, S1T2 = T1S2 = Q, the functions S1 and S2 have no common zeros, and the
same is true for T1, T2. We conclude that the zero sets of S2 and T2 coincide, and, thus, f = ch
for some constant c, a contradiction. �

3.2. Proof of Theorem 1.2

The following proposition plays the key role in the proof of Theorem 1.2. In Section 5 we
prove a slightly stronger result which applies to general de Branges spaces (see Proposition 5.4).
We prefer, however, to include an elementary proof to make the exposition concerning
exponential systems more self-contained.

Proposition 3.1. Let S ∈ P Wπ +C sin π z be a real entire function with real zeros ZS interlacing
with Z. If


n∈Z |S(n)| < ∞, then for every δ > 0 we have

Lδ := lim
N→∞

1
N

card

|k| ≤ N : dist (ZS ∩ [k, k + 1], Z) > δ


= 0.

Proof. Let S(n) = (−1)ncn . Without loss of generality we may assume that cn > 0 and
n∈Z cn = 1. Then S(z)/ sin π z is a Herglotz function in C+ and

S(z)

sin π z
= b +


n∈Z

cn

z − n

for some b ∈ R. Set s(x) =


n∈Z
cn

x−n .

Case 1. If b ≠ 0, then

lim
x∈ZS ,|x |→∞

dist (x, Z) = 0.

Indeed, suppose that for some δ > 0, there exists a sequence {xn} ⊂ ZS, |xn| → ∞, n → ∞,
such that dist (xn, Z) ≥ δ. Since s(xn) → 0, we obtain that b = 0, which is absurd.

Case 2. Suppose that b = 0. Fix two positive numbers δ < 1/4 and η < δ3 and choose M so that
|n|≤M cn > 1 − η.
Now let the integer N be so large that δN > M . Put

EN =


x ∈ R :


n∈Z

cn

x − n

 ≥
1
N


.
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By Boole’s lemma (see, e.g., [18]), |EN | = 2N (by |E | we denote the Lebesgue measure of the
set E).

Next, set

FN =


x ∈ R :

 
|n|>M

cn

x − n

 ≥
δ

2N


.

Then

|FN | ≤
4Nη

δ
.

Let JN = [−N − δN − M, N + δN + M]. Since 
|n|≤M

cn

x − n

 ≤
1

(1 + δ)N
, x ∉ JN ,

we have, for x ∈ EN \ JN , 
|n|>M

cn

x − n

 ≥
1
N

−
1

(1 + δ)N
=

δ

(1 + δ)N
,

and so x ∈ FN . We conclude that EN \ JN ⊂ FN .
Consider the family I N of the intervals of the form Ik = [k, k + 1] ⊂ JN with |k| ≥ M + δN

satisfying the following two properties:

(I ∗

k ∩ EN ) \ FN ≠ ∅, I ∗

k = [k + δ, k + 1 − δ]; (3.1)

|Ik ∩ FN | < δ. (3.2)

We will show that, for sufficiently large N , we have

card I N ≥ (1 − A1δ)|JN |, (3.3)

where A1 is some absolute (numeric) constant. In what follows, symbols A1, A2, etc., will denote
different absolute constants.

If (I ∗

k ∩ EN ) \ FN = ∅ (i.e., the interval I ∗

k does not satisfy (3.1)), then I ∗

k ⊂ (JN \ EN )∪ FN
and

|(JN \ EN ) ∪ FN | ≤ |JN | − |JN ∩ EN | + |FN |

= |JN | − |EN | + |EN \ JN | + |FN |

≤ 2N + 2δN + 2M − 2N +
8Nη

δ
≤ A2δN .

Hence, for the number N1 of those intervals I ∗

k which do not satisfy (3.1), we have the estimate

N1(1 − 2δ) ≤ A3δN .

On the other hand, for the number N2 of those intervals Ik which do not satisfy (3.2), we get
N2δ ≤

4Nη
δ

, and so N2 ≤
4Nη

δ2 ≤ A4δN , since η < δ3. Thus, for sufficiently large N ,

card I N ≥ 2N − N1 − N2 ≥ 2N − A5δN .

The latter inequality implies (3.3).
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Now, if Ik ∈ I N , then there exists a point y ∈ (I ∗

k ∩ EN ) \ FN and so we have 
|n|≤M

cn

y − n

 ≥
1
N

−
δ

2N
>

1
2N

.

For any x ∈ I ∗

k using the fact that |k| ≥ M + δN we get 
|n|≤M

cn

x − n
−


|n|≤M

cn

y − n

 ≤


|n|≤M

cn|x − y|

|(x − n)(y − n)|
≤

1

δ2 N 2 ≤
1

4N
(3.4)

for sufficiently large N , and hence, 
|n|≤M

cn

x − n

 ≥
1

4N
, x ∈ I ∗

k .

Suppose that for some w ∈ I ∗

k we have s(w) =


n∈Z
cn

w−n = 0. Then 
|n|>M

cn

w − n

 ≥
1

4N
>

δ

N
.

So w ∈ FN and, moreover, since the function under the modulus sign is monotone on Ik we
obtain that either [k, w] ⊂ FN or [w, k + 1] ⊂ FN , which is impossible due to (3.2).

Thus, the zeros of s (and hence of S) on Ik ∈ I N are in Ik \ I ∗

k . It follows from (3.3) that

Lδ = lim sup
N→∞

1
N

card

|k| ≤ N : dist (ZS ∩ [k, k + 1], Z) > δ


≤ Aδ

for some absolute constant A. Since Lδ is a non-increasing nonnegative function of δ on (0, 1/4),
it follows that Lδ ≡ 0. �

Proof of Theorem 1.2. Assume that there is a nontrivial function h orthogonal to the system
(1.1) such that D+(Λ1) > 0. Denote by Z1 and Z2 the zero sets of S1 and S2, respectively.

Since G1S1 ∈ P Wπ +zP Wπ , by the Levinson theorem (see, for instance, [16, Section IIIH3])
we have

D(Λ1 ∪ Z1) = lim
r→∞

nr (Λ1 ∪ Z1)

2r
≤ π,

and so

D−(Z1) = lim inf
r→∞

nr (Z1)

2r
< π.

Since S is of exponential type π , we have D+(Z2) > 0.
The function S2 = h/G2 does not depend on the choice of the basis, and replacing if necessary

the basis {Kn} by the basis {Kn+α} we may find α such that for a subsequence Z̃2 of Z2 with
positive upper density we have dist (Z̃2, Z + α) ≥ 1/4. Without loss of generality assume that
this holds for α = 0. Construct the function S1 corresponding to this basis by formula (2.3). Then
for S = S1S2 we have


n∈Z |S(n)| < ∞. Note that by Corollary 2.5 the zeros of S interlace

with Z. By Proposition 3.1 all zeros of S except the set of zero density are close to Z, and we
come to a contradiction. �
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4. An example of a nonhereditarily complete exponential system

In this section we prove Theorem 1.3. As before, we pass to the equivalent problem in the
Paley–Wiener space and construct a nonhereditarily complete system of reproducing kernels
{Kλ}λ∈Λ in P Wπ .

We deduce Theorem 1.3 from the following statement.

Proposition 4.1. There exist a sequence {an} ∈ ℓ1(Z) such that an > 0, and an infinite sequence
{nk}

∞

k=1 ⊂ N, nk+1 > 2nk, k ≥ 1, such that the functions

h(z) = π−1 sin π z

n∈Z

an

z − n
, S(z) = π−1 sin π z


n∈Z

a2
n

z − n

vanish at the points sk = nk + 1/2, k ∈ N, and ank = αkk−2 with αk ∈ (1/2, 3), k ∈ N.

Proposition 4.1 is proved using standard fixed point arguments of nonlinear analysis.
We postpone its (rather technical) proof and show first how Theorem 1.3 follows from
Proposition 4.1.

Proof of Theorem 1.3. We have seen in Section 2 that if {Kλ}λ∈Λ is a complete minimal system
in P Wπ with a generating function G and Λ = Λ1 ∪ Λ2, then we may construct entire functions
G1 and G2 with zero sets Λ1 and Λ2 respectively such that each of the functions G∗

1/G1 and
G∗

2/G2 is a ratio of two Blaschke products and G = G1G2. Once such functions G1 and G2 are
chosen, we have seen that the system (1.1) is not complete in P Wπ if and only if there exists a
nonzero sequence {an} ∈ ℓ2 and entire functions S1 and S2 satisfying Eqs. (2.3)–(2.4).

We first choose S1, S2 and G2, and finally construct G1 as a perturbation of S2. Let {an} ∈ ℓ1

and {nk} ⊂ N be the sequences from Proposition 4.1. As in Proposition 4.1 put

h(z) = π−1 sin π z

n∈Z

an

z − n
, (4.1)

S(z) = π−1 sin π z

n∈Z

a2
n

z − n
.

Note that for the functions h and S we have

|h(iy)|

eπ |y|
≍

1
|y|

,
|S(iy)|

eπ |y|
≍

1
|y|

, |y| ≥ 1. (4.2)

Denote by S2 the genus zero canonical product with the zeros nk +
1
2 . Then we may represent

h and S as

h = G2S2, S = S1S2

for some entire functions S1 and S2. Since an > 0 for any n ∈ Z, the function h(z)/ sin π z is a
Herglotz function and so all the zeros of h (and thus of G2) are simple and real.

We need to show that there exists an entire function G1 with simple real zeros (different from
the zeros of G2) such that G = G1G2 is the generating function of some complete and minimal
system of reproducing kernels, and

πG1(z)S1(z)

sin π z
=


n∈Z

an(−1)nG(n)

z − n
(4.3)
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(this equation is actually Eq. (2.3) for the sequence {(−1)nan}n). Note that (4.1) gives us (2.4)
for the same sequence.

Put

G1(z) =

∞
k=1


1 −

z

nk +
1
2 − k2


.

Then an easy estimate of the infinite products gives us

|G1(n)|

|S2(n)|
≍

n + k2
− nk −

1
2

n − nk −
1
2

 ,
nk−1 + nk

2
≤ n ≤

nk + nk+1

2
,

whence, in particular,

|G1(nk)|

|S2(nk)|
≍ k2 and

|G1(n)|

|S2(n)|
. |n|

1/2, n ≠ 0.

Since G = hG1/S2, we have

|G(nk)| =
|h(nk)G1(nk)|

|S2(nk)|
≍ ank k2

≍ 1

(recall that in Proposition 4.1, |h(nk)| = ank = αkk−2, αk ∈ (1, 3)), and

|G(n)| . |n|
1/2

|h(n)|, n ≠ 0.

Hence, {G(n)}n∈Z ∉ ℓ2, and thus G ∉ P Wπ . However,


G(n)
|n|+1


n∈Z

∈ ℓ2, and, using the fact that

|G(iy)|

eπ |y|
≍

1
|y|

, |y| ≥ 1, (4.4)

we conclude that G(z)
z−λ

∈ P Wπ for any zero λ of G. Now let us turn to the formula (4.3).
Comparing the residues at n ∈ Z we have S1(n)S2(n) = (−1)na2

n and S2(n)G2(n) = an(−1)n

whence G1(n)S1(n) = anG(n). Therefore, the residues in the left and the right-hand sides of
(4.3) coincide. Hence,

πG1(z)S1(z)

sin π z
=


n∈Z

an(−1)nG(n)

z − n
+ H(z)

for some entire function H . By the standard growth arguments H is of zero exponential type.
Note also that G1S1 = SG1/S2 whence, by (4.2) and the fact that |G1(iy)| ≍ |S2(iy)|, |y| → ∞,
we get

|G1(iy)S1(iy)|

eπ |y|
≍

1
|y|

, |y| → ∞.

Thus, H(iy) → 0, |y| → ∞, whence H ≡ 0 and (4.3) is proved.
It remains to show that G is the generating function of a complete and minimal system of

reproducing kernels. We have already seen that G ∉ P Wπ but G ∈ P Wπ + zP Wπ . Assume now
that the zero set Λ of G is not a uniqueness set for P Wπ . Then there exists a nonzero function
T of zero exponential type such that T G ∈ P Wπ . Hence, eiπ zT G ∈ H2(C+), e−iπ zT ∗G∗

∈
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H2(C−), and it follows from (4.4) that

|T (iy)|

|y|
≍

|T (iy)G(iy)|

eπ |y|
. |y|

−1/2, |y| ≥ 1.

Thus T is a constant function whence T ≡ 0. �

Proof of Proposition 4.1. We will construct the sequence an as follows: let a0 be an arbitrary
positive number, an = n−2 for n ≠ 0 and for n ≠ nk, nk + 1, nk + 2, while

ank = 2r2k−1k−2, ank+1 = r2kk−2, ank+2 = 3k−2

for some free parameters r2k−1 and r2k . Here nk is some very sparse subsequence of positive
integers. The sparseness condition is to be specified later. Thus the coefficients ank have a much
slower decay than all other coefficients.

Using basic tools of nonlinear analysis we will show that it is possible to find parameters
r2k−1, r2k ∈ (1/2, 3/2), k ∈ N, such that

h(sk) = S(sk) = 0, k ∈ N, sk = nk +
1
2
. (4.5)

Denote by N the set


k{nk} ∪ {nk + 1}. Clearly, (4.5) is equivalent to the system of equations

∞
l=1


2r2l−1

l2(sk − nl)
+

r2l

l2(sk − nl − 1)


= −


n∉N

an

sk − n
(4.6)

and

∞
l=1


4r2

2l−1

l4(sk − nl)
+

r2
2l

l4(sk − nl − 1)


= −


n∉N

a2
n

sk − n
. (4.7)

Multiply Eq. (4.6) by k2/2 and (4.7) by k4/2. Using the fact that sk = nk + 1/2 and that
ank+2 = 3k−2, we may single out the diagonal part which will form the main contribution to
the equations:

2r2k−1 − r2k +


l≠k


k2r2l−1

l2(sk − nl)
+

k2r2l

2l2(sk − nl − 1)



= 1 −


n∉N ,n≠nk+2

k2an

2(sk − n)
, (4.8)

4r2
2k−1 − r2

2k +


l≠k


2k4r2

2l−1

l4(sk − nl)
+

k4r2
2l

2l4(sk − nl − 1)



= 3 −


n∉N ,n≠nk+2

k4an

2(sk − n)
. (4.9)

Diagonal part of the map. Denote by r the vector (r j )
∞

j=1 and consider the nonlinear mapping
D : ℓ∞

→ ℓ∞,

(Dr)2k−1 = 2r2k−1 − r2k,

(Dr)2k = 4r2
2k−1 − r2

2k .
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Thus, D is a block-diagonal mapping and the solution of the equation D(r) = y is given by

(D−1 y)2k−1 = r2k−1 =
y2k + y2

2k−1

4y2k−1
, (D−1 y)2k = r2k =

y2k − y2
2k−1

2y2k−1
,

y2k−1 ≠ 0. (4.10)

If we set r◦

j ≡ 1, then D(r◦) = y◦ with y◦

2k−1 = 1, y◦

2k = 3. Next, for any y ∈ ℓ∞ such that
∥y − y◦

∥∞ < 1/2 there exists a unique solution r ∈ ℓ∞ of the equation D(r) = y.
Moreover, it is easy to see from the form (4.10) of the block-diagonal mapping D−1 that there

exists an absolute constant A0 > 0 such that

∥D−1(y) − D−1(z)∥∞ ≤ A0∥y − z∥∞ (4.11)

for all y, z ∈ ℓ∞ such that ∥y − y◦
∥∞ < 1/2, ∥z − y◦

∥∞ < 1/2.

We need one more estimate for the mapping D−1. Put F(u) =
u2+u2

1
4u1

, u = (u1, u2). Then an
elementary estimate gives us

|(F(u + 1u) − F(u)) − (F(v + 1v) − F(v))|

≤ A1∥1u − 1v∥∞ + A2∥1v∥∞∥u − v∥∞

for some absolute constants A1 and A2 whenever u1, v1 ∈ (1/2, 3/2), u2, v2 ∈ (2, 4) and

∥1u∥∞ ≤ 1/10, ∥1v∥∞ ≤ 1/10. An analogous estimate holds for F(u) =
u2−u2

1
2u1

. Hence,

taking into account formula (4.10) for D−1, we conclude that

∥(D−1(y + 1y) − D−1(y)) − (D−1(z + 1z) − D−1(z))∥∞

≤ A1∥1y − 1z∥∞ + A2∥1z∥∞∥y − z∥∞ (4.12)

for all y, z ∈ ℓ∞ such that ∥y − y◦
∥∞ < 1/2, ∥z − z◦

∥∞ < 1/2, and ∥1y∥∞ < 1/10, ∥1z∥∞ <

1/10.
Finally we will need the following obvious estimate: there exists an absolute constant A3 > 0

such that

∥D(r) − D(s)∥∞ ≤ A3∥r − s∥∞, ∥r∥∞ ≤ 10, ∥s∥∞ ≤ 10. (4.13)

Sparseness conditions on {nk}. Now we impose the first sparseness condition on the sequence
nk : 

n∉N ,n≠nk+2

 k2an

2(sk − n)

+ 
n∉N ,n≠nk+2

 k4an

2(sk − n)

 <
1

200(A0 + 1)
, k ∈ N (4.14)

(where A0 is the constant from (4.11)). Since an = n−2, n ∉ N ∪ {nl + 2}
∞

l=1, we have
|an| ≍ n−2

k , n ∈ [nk/2, 2nk], n ≠ nk, nk + 1, nk + 2, and so the terms k2an

2(sk − n)

 ,  k4an

2(sk − n)


may be made arbitrarily small when nk grows sufficiently fast. For example, we may take
nk = M2k with a sufficiently large constant M .

Let us consider the vector y∗
∈ ℓ∞ defined by

y∗

2k−1 = 1 −


n∉N ,n≠nk+2

k2an

2(sk − n)
, y∗

2k = 3 −


n∉N ,n≠nk+2

k4an

2(sk − n)
.
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By (4.14), ∥y∗
− y◦

∥∞ < (200(A0 + 1))−1. Hence, there exists r∗ such that D(r∗) = y∗ and,
by (4.11), ∥r∗

− r◦
∥∞ < A0 · (200(A0 + 1))−1 < 1/200.

Next we define the mapping W corresponding to the nondiagonal part of the Eqs. (4.8)–(4.9):

(Wr)2k−1 =


l≠k


k2r2l−1

l2(sk − nl)
+

k2r2l

2l2(sk − nl − 1)


,

(Wr)2k =


l≠k


2k4r2

2l−1

l4(sk − nl)
+

k4r2
2l

2l4(sk − nl − 1)


.

Choosing the sequence nk sufficiently sparse (again nk = M2k will do the job) we may achieve
our second and third sparseness conditions:

∥W (r)∥∞ ≤
1

200(1 + A0 + A2 A3)
, ∥r∥∞ ≤ 10, (4.15)

and

∥W (r) − W (s)∥∞ ≤
∥r − s∥∞

200A1
, ∥r∥∞ ≤ 10, ∥s∥∞ ≤ 10, (4.16)

where A1, A2 and A3 are constants from (4.12)–(4.13).

Application of the fixed point theorem. Eqs. (4.8)–(4.9) are equivalent to

D(r) + W (r) = y∗.

Consider the mapping

T (r) = r∗
+ r − D−1(D(r) + W (r)).

We show that T is a contractive mapping on the ball B = {∥r − r◦
∥∞ ≤ 1/100}. Then there

exists r ∈ B such that T (r) = r which is equivalent to D−1(D(r) + W (r)) = r∗, whence
D(r) + W (r) = D(r∗) = y∗.

1. T is well-defined on B. Clearly, we have ∥D(r) − D(r◦)∥∞ < 1/4 and ∥W (r)∥∞ < 1/200
when ∥r − r◦

∥ ≤ 1/100. Thus, ∥D(r) + W (r) − y◦
∥∞ < 1/2 and so D−1(D(r) + W (r)) is

well-defined.
2. T (B) ⊂ B. We have already seen that ∥r∗

− r◦
∥∞ < 1/200. Then

∥T (r) − r◦
∥∞ ≤ ∥r∗

− r◦
∥∞ + ∥D−1(D(r)) − D−1(D(r) + W (r))∥∞

<
1

200
+ A0∥W (r)∥∞ <

1
100

by (4.11) and (4.15).
3. T is a contraction on B. Let r, s ∈ B. Then

T (r) − T (s) =

D−1(D(s) + W (s)) − D−1(D(s))


−

D−1(D(r) + W (r)) − D−1(D(r))


.

By (4.12) applied to y = D(s), 1y = W (s), and z = D(r), 1z = W (r), we have

∥T (r) − T (s)∥∞ ≤ A1∥W (s) − W (r)∥∞ + A2∥W (r)∥∞∥D(s) − D(r)∥∞

≤ A1∥W (s) − W (r)∥∞ + A2 A3∥W (r)∥∞∥r − s∥∞ ≤
∥r − s∥∞

100
.
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We used estimate (4.13) in the second inequality and (4.15) and (4.16) in the last one. Thus, T is
a contractive mapping from B to B and we conclude that T has a fixed point. �

5. Extensions to the de Branges spaces

5.1. Preliminary remarks

We start with a general construction of functions biorthogonal to a system of reproducing
kernels. Let H(E) be a de Branges space, and let ϕ be the corresponding phase function. As
usual, we write E = A − i B. To avoid inessential difficulties we will always assume that
A ∉ H(E). The reproducing kernel of H(E) can be written as

Kw(z) =
A(w)B(z) − B(w)A(z)

π(z − w)
.

Let Λ ⊂ C be such that the system of reproducing kernels {Kλ}λ∈Λ of the space H(E) is exact.
Then there exists the generating function, that is, an entire function G ∈ H(E) + zH(E), such
that G H ∉ H(E) for any nontrivial entire function H , and vanishing exactly on the set Λ. The
biorthogonal system to {Kλ}λ∈Λ is given by

gλ(z) :=
G(z)

G ′(λ)(z − λ)
.

We will assume that {gλ}λ∈Λ is also an exact system in H(E) (recall that this is the case, e.g.,
when ϕ′

∈ L∞(R) [11] or when ϕ′ has at most power growth and Θ = E∗/E has no finite
derivative at ∞ [3]).

Denote by T = {tn} the zero set of A (assume that T ∩ Λ = ∅) and recall that the functions

A(z)

z − tn
= π i

Ktn (z)

E(tn)

form an orthogonal basis in H(E) [8, Theorem 22] and ∥
A(z)
z−tn

∥
2

= πϕ′(tn). Then every
h ∈ H(E) can be written as

h(z) = A(z)


n

anµ
1/2
n

z − tn
, {an} ∈ ℓ2, (5.1)

where µn = 1/ϕ′(tn),
n

µn

1 + t2
n

< ∞.

Let h ∈ H(E) be orthogonal to {gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 . Then


n

anµ
1/2
n

z − tn
=

G2(z)S2(z)

A(z)
(5.2)

for some entire function S2. As in the Paley–Wiener case we assume that G2 is an entire function
which vanishes exactly on Λ2 and G∗

2/G2 = B1/B2 for some Blaschke products B1 and B2. On
the other hand, since h ⊥ gλ, λ ∈ Λ1, we obtain


n

G(tn)

E(tn)

anµ
1/2
n

z − tn
= −i

G1(z)S1(z)

A(z)
(5.3)
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for some entire function S1 (argue as in the Paley–Wiener case). Comparing the residues we get

S1(tn)G1(tn) = i
anµ

1/2
n A′(tn)G(tn)

E(tn)
, (5.4)

and

S2(tn)G2(tn) = anµ
1/2
n A′(tn). (5.5)

Hence, for S = S1S2, we have

S(tn) = i |an|
2µn(A′(tn))2/E(tn).

Since i A′(tn) = E(tn)ϕ′(tn) (the phase function ϕ is chosen in such a way that ϕ(tn) =

π/2 + πn), we get

S(tn) = |an|
2 A′(tn). (5.6)

In what follows we need the following theorem due to M.G. Krein (see, e.g., [14, Chapter I,
Section 6]): If an entire function F is of bounded type both in C+ and in C−, then F is of finite
exponential type. If, moreover, F is in the Smirnov class both in C+ and in C−, then F is of
zero exponential type. Recall that a function f analytic in C+ is said to be of bounded type, if
f = g/h for some functions g, h ∈ H∞(C+). If, moreover, h may be taken to be outer, we say
that f is in the Smirnov class in C+.

In particular, any analytic function f such that Im f > 0 in C+ is in the Smirnov class. In
what follows we use the fact that if we put Θ = E∗/E , then Θ is inner, and both A/E = 1 + Θ
and E/A = (1 + Θ)−1 are in the Smirnov class. Another useful observation is that if G is a
generating function of some exact system of reproducing kernels, then both G/E and G∗/E
are of the form Bh, where B is a Blaschke product and h is outer in C+. Indeed, if G/E has
an exponential factor, i.e., G(z)/E(z) = eiaz B(z)h(z), where a > 0 and h is outer, then the
function

z → E(z)
eiaz

− 1
z

B(z)h(z)

belongs to H(E) and vanishes at Λ.
From now on we assume that ϕ is of tempered growth, that is,

ϕ′(t) = O(|t |N ), |t | → ∞, (5.7)

for some N . It follows from (5.7) that, for any F ∈ H(E),

|F(x)|

|E(x)|
≤

∥Kx∥E∥F∥E

|E(x)|
=


ϕ′(x)

π

1/2

∥F∥E . (|x | + 1)N/2, x ∈ R.

Using the same arguments as in the proof of Lemma 2.1 we get G1S1 ∈ H(E) + zH(E). Hence,

GS ∈ P N
2 +1 · H(E2), (5.8)

where P M is the set of polynomials of degree at most M .
Arguing analogously to the proof of Lemma 2.2 we obtain the following growth restriction.
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Lemma 5.1. Assume that ϕ satisfies (5.7). Let h ∈ H(E) be orthogonal to some system
{gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 and let (S1, S2) be the corresponding pair. Then S ∈ P M · H(E) for
some M depending only on N and S(iy)

A(iy)

 &
1

|y|K , |y| → ∞, (5.9)

for some K > 0.

Proof. By (5.6) we have

|S(tn)|

|E(tn)|(ϕ′(tn))1/2 = |an|
2(ϕ′(tn))1/2 . |an|

2
|tn|

N/2,

and, dividing out sufficiently many zeros s1, . . . , sM of S we obtain that


n

|S̃(tn)|2

|E(tn)|2ϕ′(tn)
< ∞, S̃(z) =

S(z)

(z − s1) · · · (z − sM )
.

Now let Q be the (unique) function in H(E) which solves the interpolation problem Q(tn) =

S̃(tn). Using (5.8) and an analogous estimate for G Q, we obtain that G(S̃ − Q) ∈ P M · H(E2).
Since S̃ − Q vanishes on {tn}, we have G(S̃ − Q) = G AH ∈ P M · H(E2) for some entire
function H . We want to show that H is a polynomial of degree at most M + 1, whence
S̃ = Q + AH ∈ P M+1 · H(E).

By the remarks after the formulation of Krein’s theorem, (G A)/E2 and (G∗ A)/E2 are of the
form Bh, where B is a Blaschke product and h is outer in C+. Since G AH = g ∈ P M · H(E),
we see that H =

g
E2 ·

E2

G A is in the Smirnov class in C+ and the same holds for H∗. Then, by
Krein’s theorem, H is of zero exponential type.

If H has at least M + 2 zeros, then dividing them out we obtain an entire function H̃ such
that G AH̃ ∈ H(E2) and |G(iy)H̃(iy)|/|E(iy)| = o(y−1), |y| → ∞ (we use the fact that
|A(iy)|/|E(iy)| & y−1, y → +∞). Let vn be such that ϕ(vn) = πn (thus, {vn} is the support of
another orthogonal family of reproducing kernels). Since |A(vn)| = |E(vn)|, we conclude that

G(vn)H̃(vn)/E(vn) ∈ L2(ν), ν =


n

(ϕ′(vn))−1δvn .

Now it remains to apply [8, Theorem 26] to conclude that G H̃ ∈ H(E), a contradiction to the
fact that G is the generating function of a complete system of kernels.

We have shown that S = H1(Q + AH2) for some polynomials H1, H2. It follows from the
representation of functions in H(E) (formula (5.1)) that Q(iy)+A(iy)H2(iy) ∼ A(iy)H2(iy) for
any Q ∈ H(E) and any nonzero polynomial H2. Thus, in this case |S(iy)| & |A(iy)|, |y| → ∞,
and (5.9) is trivial. In the case when H2 ≡ 0 and S = H1 Q we use that the function Q is the
solution of the interpolation problem

Q(tn) =
S(tn)

(tn − s1) · · · (tn − sM )

=
A′(tn)|an|

2

(tn − s1) · · · (tn − sM )
= A′(tn)|an|

2


1

t M
n

+
bn + icn

t M+1
n


,
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where {bn}n and {cn}n are bounded sequences, and assume without loss of generality that M is
even and tn ≠ 0. Then

Q(z)

A(z)
=


n

|an|
2

z − tn


1

t M
n

+
bn + icn

t M+1
n


,

and

−Im
Q(iy)

A(iy)
=


n

|an|
2

y2 + t2
n


y

t M
n

+
bn y

t M+1
n

+
cn

t M
n


.

All the sums in the brackets except, possibly, a finite number are positive when y → +∞ and
negative when y → −∞. Expanding the right-hand side in powers of 1/y, we deduce (5.9). �

It follows from (5.9) that S∗/S is a ratio of two Blaschke products, i.e., has no exponential
factor. We show now that the same is true for each of the functions S∗

2/S2 and S∗

1/S1. Suppose
that G∗

2 S∗

2/(G2S2) is not a ratio of Blaschke products, i.e., let G∗

2 S∗

2/(G2S2) = eibz B1/B2, where
B1 and B2 are meromorphic Blaschke products and b ∈ R. Assume that b > 0 (the case b < 0 is
analogous). Then the function eicz S2G2, 0 < c ≤ b, is also in H(E) and formulas (5.2) and (5.3)
will hold also for the functions eicz S2G2 and e−icz S1G1, 0 < c < b, with {e−ictn an}n in place
of {an}n . Hence, (S1e−icz, S2eicz) ∈ Σ (Λ1,Λ2) and ((1 + e−icz)S1, (1 + eicz)S2) ∈ Σ (Λ1,Λ2).
Now, by Lemma 5.1, the function S̃(z) = S(z)(1+eicz)(1+e−icz) belongs to P M ·H(E), whence
S̃/A is of Smirnov class in the upper half-plane. However, this contradicts to (5.9). Thus, S2/S∗

2
and S1/S∗

1 are ratios of Blaschke products.
Now by an argument, analogous to that in the proof of Lemma 2.4, the pair (S∗

1 , S∗

2 ) also
corresponds to some function orthogonal to {gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 . Thus, we may always find
functions S1, S2 which are real on R. By (5.6), the function S changes its sign at adjacent points tn
(as usual we assume that the basis is chosen in such a way that all coefficients an are nonzero), and
thus, there is a zero of S in each of the intervals (tn, tn+1). We have an analogue of Corollary 2.5.

Lemma 5.2. Assume that ϕ satisfies (5.7). If a pair (S1, S2) corresponds to a function h ∈ H(E)

orthogonal to some system {gλ}λ∈Λ1 ∪ {Kλ}λ∈Λ2 and S1 and S2 are real on R, then S = S0 H,
where S0 has exactly one zero in any interval (tn, tn+1) and H is a polynomial of degree bounded
by M = M(N ).

5.2. Proof of Theorem 1.4

Without loss of generality assume that ϕ is unbounded both from below and from above, and
Λ ∩ {tn} = ∅, where ϕ(tn) = πn, n ∈ Z. Let f and h be orthogonal to the system (1.3),

f (z) = A(z)


n

anµ
1/2
n

z − tn
, h(z) = A(z)


n

bnµ
1/2
n

z − tn
, {an}, {bn} ∈ ℓ2.

Let (S1, S2) and (T1, T2) be the corresponding pairs of entire functions such that S1, S2, T1 and
T2 are real on R. Using Eqs. (5.4)–(5.5) in the same way as in the proof of Theorem 1.1, we
obtain

S1(tn)T2(tn) = T1(tn)S2(tn) = anbn|E(tn)|ϕ′(tn)βn,
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where |βn| = 1. The hypothesis supn ϕ′(tn) < ∞ implies that
n

|S1(tn)T2(tn)|2

|E(tn)|2ϕ′(tn)
=


n

a2
nb2

n < ∞.

Since {Ktn } is an orthogonal basis in H(E) and ∥Ktn ∥
2
E = |E(tn)|2ϕ′(tn)/π , we conclude that

there exists a unique function Q ∈ H(E) which solves the interpolation problem Q(tn) =

anbn|E(tn)|ϕ′(tn)βn . Then

T1(z)S2(z) = Q(z) + a(z)A(z), S1(z)T2(z) = Q(z) + b(z)A(z),

for some entire functions a and b. We show now that a and b are polynomials.
Note that by Lemma 5.1 the functions S = S1S2 and T = T1T2 as well as (S1 + T1)(S2 + T2)

and (S1+iT1)(S2−iT2) are in P M ·H(E). Hence, the functions S1T2 and S2T1, and, consequently,
the functions S1T2 − Q and S2T1 − Q are in P M · H(E).

Now assume that F = AH for some entire function H , and F ∈ P M · H(E). First, since E/A
and F/E are in the Smirnov class in C+, we conclude that, by Krein’s theorem, H is of zero
exponential type. We claim that H must be a polynomial.

Indeed, if H has at least M zeros z j , then dividing F by
M

j=1(z − z j ) we obtain a function in
H(E) which vanishes on {tn} and, thus, is identically zero. Applying this argument to S1T2 − Q
and S2T1 − Q we conclude that a and b are polynomials.

Now assume that a ≠ 0. Let us denote by sm the zero of S2 such that |ϕ(sm) − ϕ(tm)| ≤ π/2
whenever such a zero exists. Then

Q(sm) + a(sm)A(sm) = 0.

Note that {tm} is separated sequence (i.e., infn≠m |tn − tm | > 0) and so sm is the union of two
separated sequences. By a simple variant of Carleson embedding theorem for the de Branges
spaces with ϕ′

∈ L∞(R) (an explicit statement may be found in [2, Theorem 5.1], though the
proof may be recovered already from [24, Theorem 2]) we have

m

|Q(sm)|2

|E(sm)|2
< ∞

for any Q ∈ H(E), whence
m

|A(sm)|2

|E(sm)|2
< ∞.

By the definition of the phase function, |A(sm)| = |E(sm) sin(ϕ(sm) − ϕ(tm))|. Thus, we obtain
that 

m
sin2(ϕ(sm) − ϕ(tm)) ≍


m

(ϕ(sm) − ϕ(tm))2 < ∞.

To complete the proof we apply once again the argument with the shift of the basis. The zeros
of S2 do not depend on the choice of the basis. Expanding with respect to another basis, say
{K t̃n }, with ϕ(t̃n) = δ + πn for some small δ, we get that


m(ϕ(sm) − ϕ(t̃m))2 < ∞. However,

|ϕ(tm) − ϕ(t̃m)| = δ and we come to a contradiction.
Thus, we have proved that a = b = 0, and so S1T2 = T1S2 = Q. Since S1 has no common

zeros with S2 (we choose the basis so that all an are nonzero) we conclude that the zero sets of
S2 and T2 coincide, and, thus, f is proportional to h.
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Theorem 5.3. If ϕ is of tempered growth, then the orthogonal complement to the system (1.3) is
always finite dimensional, with a bound on the dimension depending only on N from (5.7).

Proof. By Lemma 5.2, there exists M = M(N ) such that for any pair (S1, S2) which corresponds
to a function f in the orthogonal complement to (1.3) and is real on R, we have S = S0 H, H ∈

P M . In particular, any interval (tn, tn+1) contains at most M + 1 zeros of S.
Now assume that the orthogonal complement to (1.3) contains at least M + 3 linearly

independent vectors f j,0, j = 1, . . . , M + 3, such that the corresponding functions S1, j,0, S2, j,0
are real on R. Considering linear combinations (with real coefficients) f j,1 = f j,0 −

α j fM+3,0, j = 1, . . . , M + 2, we may achieve that the functions S1, j,1 corresponding to f j,1
have a common zero at x1 ∈ (t0, t1). Repeating this procedure we obtain a nonzero function
fM+2,1 in the orthogonal complement to (1.3) such that the corresponding function S1,M+2,1
vanishes at M + 2 distinct points x1, . . . , xM+2 ∈ (t0, t1) which gives a contradiction. �

5.3. Density results

Let a pair (S1, S2) correspond to a function h ∈ H(E) orthogonal to some system {gλ}λ∈Λ1 ∪

{Kλ}λ∈Λ2 and let S1 and S2 be real on R. We show that most of the zeros of S are in a certain
sense close to the set {tn} (the support of a de Branges orthogonal basis). Thus, the zeros of S2
which do not depend on the choice of the basis form a small proportion of the zeros of S (see
Corollary 5.5).

By Lemma 5.2, S = S0 H , where S0 has exactly one zero in each of the intervals (tn, tn+1) and
H is a polynomial. Moreover, by (5.6) we have {S(tn)/A′(tn)} ∈ ℓ1, whence {S0(tn)/A′(tn)} ∈

ℓ1. By Lemma 5.1 we have S ∈ P M · H(E) for some M , whence S0/A grows at most
polynomially along iR+. Since the zeros of A and S0 interlace, the function S0/A is a Herglotz
function and thus has a representation

S0(z)

A(z)
= az + b +


n

cn

z − tn
, {cn} ∈ ℓ1. (5.10)

We will show that in this case the zeros of S0 (and S) must be necessarily close (in some sense)
to the points tn . The case when a ≠ 0 or b ≠ 0 should be treated exactly as in Proposition 3.1.
The remaining case follows from the following proposition (apparently, known to experts).

Proposition 5.4. Let tn ∈ R, n ∈ Z, tn → ±∞, n → ±∞, and let µn > 0,


n µn = M < ∞.
Let A be an entire function which is real on R and has only simple real zeros at the points {tn}.
Define an entire function B by the Herglotz representation

B(z)

A(z)
=


n

µn

z − tn
.

Denote by sn the zero of B in (tn, tn+1). Then
sn>0

tn+1 − sn

sn
< ∞,


sn<0

sn − tn
|sn|

< ∞. (5.11)

Proof. The zeros of B are simple and interlace with the zeros of A. Since Im B
A > 0 in C+, the

function E = A − i B is in the Hermite–Biehler class and so we can define the de Branges space
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H(E). The measure µ =


n µnδtn is a corresponding Clark measure for which the embedding
operator 1

π E H(E) → L2(µ) is unitary.
Consider the inner function Θ = E∗/E . Since 2A/E = 1 + Θ and 2B/E = −i(Θ − 1), we

have

i
1 − Θ(z)

1 + Θ(z)
=


R

dµ(t)

t − z
∼ i

M

y
, z = iy, y → +∞.

Hence,

1 + Θ(iy)

1 − Θ(iy)
∼

y

M
, y → +∞. (5.12)

It is well known that the function Θ may be reconstructed from the sets {tn} = {Θ = 1} and
{sn} = {Θ = −1} by the formula

log
Θ + 1
Θ − 1

= c +


R


1

t − z
−

t

t2 + 1


f (t)dt,

where

f (t) =


−1/2, t ∈ (tn, sn),

1/2, t ∈ (sn, tn+1),

and c ∈ R (essentially, this is a very special case of the Krein spectral shift formula [17], see
also [19, Section 6.1]). Then, by (5.12), we have

R

(1 − y2)t

(t2 + y2)(t2 + 1)
f (t)dt = Re


R


1

t − iy
−

t

t2 + 1


f (t)dt = log y + O(1),

y → +∞.

A direct computation shows, however, that
R

(y2
− 1)|t |

(t2 + y2)(t2 + 1)
| f (t)|dt = log y + O(1), y → +∞,

whence
{t : t f (t)>0}

(y2
− 1) t f (t)

(t2 + y2)(t2 + 1)
dt = O(1), y → +∞,

and therefore
{t : t f (t)>0}

t f (t)

t2 + 1
dt < ∞.

Since t f (t) > 0 for t ∈ (sn, tn+1), sn > 0, or t ∈ (tn, sn), sn < 0, we have
sn>0

 tn+1

sn

dt

t
=


sn>0

ln
tn+1

sn
< ∞,


sn<0

 sn

tn

dt

|t |
=


sn<0

ln
|tn|

|sn|
< ∞.

The latter convergences are obviously equivalent to (5.11). �

As a corollary we immediately obtain a slightly refined version of Proposition 3.1. Moreover,
if tn = n, n ∈ Z, A(z) = sin π z, and S = S1S2 is the function arising from the possible
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one-dimensional defect in the Paley–Wiener space, then
s∈Z2

1
|s|

< ∞.

Indeed, the zero set Z2 of the function S2 does not depend on the choice of the basis, therefore
applying Proposition 5.4 to tn = n and tn = n + δ (e.g., δ =

1
2 ), n ∈ Z, we obtain

s∈Z2, s>0

[s] + 1 − s

s
< ∞,


s∈Z2, s>0

[s − δ] + 1 + δ − s

s
< ∞,

whence


s∈Z2, s>0 s−1 < ∞. The convergence for s < 0 is analogous.
Under natural regularity conditions, Proposition 5.4 implies the following closeness of the

sequences {tn} and {sn}.

Corollary 5.5. Let A, B, {tn} and {sn} be as in Proposition 5.4. Put In = [tn, tn+1]. Assume that
|Ik | ≍ |In|, n ≤ k ≤ 2n, with the constants independent on k, n, and that |tan| ≥ ρ|tn| with some
a ≥ 2, ρ > 1. Then for any δ > 0 the set N of indices n such that tn > 0 and tn+1 − sn ≥ δ|In|

(respectively, tn < 0 and sn − tn ≥ δ|In|) has zero density.

Proof. Note that |tk | ≍ |tn|, n ≤ k ≤ an. If the upper density of N is positive, then there exists
a sequence M j → ∞ such that

n∈[M j ,aM j ]∩N

tn+1 − sn

sn
&


n∈[M j ,aM j ]∩N

tn+1 − tn
tn

&


n∈[M j ,aM j ]

tn+1 − tn
tn

& log
taM j

tM j

≥ log ρ,

and the first series in (5.11) diverges, a contradiction. �

Arguing as in the proof of Theorem 1.2 we deduce Theorem 1.5 from Corollary 5.5.

5.4. Nonhereditarily complete systems of reproducing kernels in de Branges spaces

In this section we prove Theorem 1.6, i.e., we construct a de Branges space H(E) and a
complete and minimal system of reproducing kernels {Kλ}λ∈Λ such that its biorthogonal system
is also complete, but the system {Kλ}λ∈Λ is not hereditarily complete.

We have already seen that the existence of a nonhereditarily complete system of reproducing
kernels generated by some function G in the de Branges space H(E) is equivalent to the
solvability of the equations

n

anµ
1/2
n

z − tn
=

G2(z)S2(z)

A(z)
,


n

G(tn)

E(tn)
·

anµ
1/2
n

z − tn
= −i

G1(z)S1(z)

A(z)
(5.13)

for some nonzero {an} ∈ ℓ2 and some entire functions S1 and S2. If all the above objects are
found, then h = G2S2 is orthogonal to the corresponding system. The corresponding equations
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will be constructed as small perturbations of an orthogonal expansion in a de Branges space with
respect to a reproducing kernels basis.

Let the sequence {tn} satisfy (1.4). Without loss of generality we may assume that tn ≥ 0, n ≥

0 and tn < 0, n < 0. It follows from (1.4) that |tn| ≍ |tn+1| and |tn| & |n|
γ , |n| → ∞, with

some γ > 0.
We construct the space H(E) and the functions G1, G2, S1 and S2 in the reverse order.

Namely, we start with the construction of the function S. First choose two sequences of positive
integers nk, lk → ∞ with the following properties:

2tnk < tnk+lk <
tnk+1

2
and k(tnk+1 − tnk ) ≤ tnk /100, k ∈ N.

Let an ∈ R be such that

|ank | = |ank+1| = |ank+lk | = |ank+lk+1| = k−1,

and let |an| = (|n|+1)−1 for all other values of n. Note that |an| & |tn|
−M for some M > 0. The

signs of an will be specified later on. Let A be a canonical Hadamard product (of finite genus)
whose zeros are simple and coincide with {tn} (thus, A is real on R). Define the entire function
S by

S(z)

A(z)
=


n

a2
n

z − tn
.

Then S has exactly one zero zn in each interval (tn, tn+1).
We write S as the product

S = S1S2 = T0T1S2,

where T0 is the canonical product with the zeros sk = znk in intervals (tnk , tnk+1) and S2 is a
canonical product with the zeros znk+lk in (tnk+lk , tnk+lk+1), k ∈ N. Next we construct h. We will
construct it as h = T̃0T1S2 where T̃0 is a perturbation of the function T0 such that

h(z)

A(z)
=


n

cn|an|

z − tn
, (5.14)


n

c2
n = ∞,


tn≠0

c2
n

t2
n

< ∞. (5.15)

Condition (5.14) means that

S(z)

A(z)
·

T̃0(z)

T0(z)
=


n

T̃0(tn)

T0(tn)
·

a2
n

z − tn
,

and cn = |an|T̃0(tn)/T0(tn). Let us show that all these conditions may be satisfied.
Assume that |sk − tnk | > |sk − tnk+1|. Then we shift the zero sk of T0 in the following way:

s̃k = tnk+1 − k|sk − tnk+1|ρk .

(Analogously, if |sk − tnk | ≤ |sk − tnk+1|, we put

s̃k = tnk − k|sk − tnk |ρk;
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in what follows we consider only the first situation.) Let T̃0 be the canonical product with the
zeros s̃k .

By hypothesis (1.4) we may choose ρk ∈ (1, 2) such that

dist(s̃k, {tn}n≠nk+1) & |tnk |
−N (5.16)

for some N > 0, s̃k ∈ (tnk+1/2, tnk+1) and zero sets of T̃0 and T1S2 do not intersect. An easy
estimate of the infinite products shows that with such choice of zeros for T̃0 we have T̃0(x)

T0(x)

 ≍

 x − s̃k

x − sk

 , x ∈


tnk + tnk−1

2
,

tnk + tnk+1

2


.

Then we obtain

|cnk+1| ≍

 T̃0(tnk+1)

T (tnk+1)

 · |ank+1| ≍

 tnk+1 − s̃k

tnk+1 − sk

 · k−1
≍ 1,

whence the first series in (5.15) diverges. Moreover, it is easy to see that T̃0(tn)

T0(tn)

 & 1, tn ∈


tnk−1 ,

tnk

2


∪ [tnk+1, tnk+1 ],

while  T̃0(tn)

T0(tn)

 &
dist(s̃k, {tn}n≠nk+1)

tn
, tn ∈


tnk

2
, tnk


.

Thus, by (5.16), we have

|tn|
−N−1 .

 T̃0(tn)

T0(tn)

 . k, nk−1 ≤ n ≤ nk, (5.17)

and
 T̃0(tn)

T0(tn)

 ≍ 1 for n ≤ 0. Hence,

t−N−1
n |an| . |cn| . |an|k . 1, nk−1 ≤ n ≤ nk,

|cn| ≍ |an|, n ≤ 0,
(5.18)

and, thus, the second condition in (5.15) is satisfied (note that k = o(tnk ), k → ∞).
Moreover, |T̃0(iy)/T0(iy)| ≍ 1, and so both terms in (5.14) tend to zero along iR. We

conclude that the interpolation formula holds.
Next we introduce a de Branges space H(E). Put µn = c2

n and µ =


n µnδtn . By (5.15),
(1 + t2)−1dµ(t) < ∞, and we can define a meromorphic inner function Θ by the formula

1 − Θ(z)

1 + Θ(z)
=

1
i

 
1

t − z
−

t

t2 + 1


dµ(t), z ∈ C+.

Then Θ = E∗/E for some entire function E in the Hermite–Biehler class. We may assume that
E does not vanish on R. Moreover, since the zero set of E + E∗ coincides with {tn}, we may
choose E so that E + E∗

= 2A. Now, if we choose the signs of an so that sign an = sign cn ,
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formula (5.14) becomes

h(z)

A(z)
=


n

an|cn|

z − tn
=


n

anµ
1/2
n

z − tn
.

Hence, h ∈ H(E).
We have h = T̃0T1S2. Put G2 = T̃0T1. Then h = G2S2, and it remains to construct G1 such

that G is the generating function of a complete and minimal system of reproducing kernels in
H(E) and such that (5.13) is satisfied.

We will construct G1 as a small perturbation of S2 as we did above. We need to satisfy
G ∉ H(E), G ∈ H(E) + zH(E) and (5.13) which is rewritten as

S(z)

A(z)
·

G1(z)

S2(z)
= i


n

G1(tn)

S2(tn)
·

h(tn)

E(tn)
·

anµ
1/2
n

z − tn
. (5.19)

Note that in any de Branges space we have i A′(tn) = E(tn)ϕ′(tn) = E(tn)µ−1
n . Then (5.19)

simplifies to

S(z)

A(z)
·

G1(z)

S2(z)
=


n

G1(tn)

S2(tn)
·

h(tn)

A′(tn)|cn|
·

an

z − tn
.

The residues, obviously, coincide.
Applying the above construction to S2 in place of T0 (i.e., shifting the zeros znk+lk ) we

construct G1 (again we may assume that G1 has no common zeros with T̃0T1) so thatG1(tn)

S2(tn)

 . k, lk + nk ≤ n ≤ nk+1 + lk+1 (5.20)

and G1(tnk+lk+1)

S2(tnk+lk+1)

 · |ank+lk+1| ≍ 1.

Note that |h(tn)| = |A′(tn)| · |an| · µ
1/2
n = |E(tn)| · |an| · |cn|

−1. ThenG(tn)

E(tn)

 =

G1(tn)

S2(tn)

 · |an| · |cn|
−1.

Hence, in particular,G(tnk+lk+1)

E(tnk+lk+1)

 ≍ |cnk+lk+1|
−1,

whence, ∥G/E∥
2
L2(µ)

=


n |G(tn)|2|E(tn)|−2
|cn|

2
= ∞. Thus, G ∉ H(E). However, by

(5.20),
tn≠0

|G(tn)|2c2
n

t2
n |E(tn)|2

.

tn≠0

a2
n

t2
n

G1(tn)

S2(tn)

2 < ∞,

whence G(z)
(z−λ)E(z) ∈ L2(µ) for the zeros λ of G. Also |G1(iy)/S2(iy)| ≍ 1, soG(iy)

A(iy)

 ≍

 S(iy)

A(iy)

 ≍ |y|
−1, |y| → ∞, (5.21)
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and by [8, Theorem 26], G ∈ H(E) + zH(E). Estimate (5.21) also yields the interpolation
formula (5.19).

It remains to show that G is the generating function of a complete and minimal system of
kernels such that its biorthogonal is also complete.

To prove the first statement, we use that, by the construction, S/G = T0S2/(T̃0G1) is a
Smirnov class function both in the upper and the lower half-planes, while A/S is a Herglotz
function and, thus, also a Smirnov class function. Hence, if G H ∈ H(E), then an application
of Krein’s theorem (Section 5.1) yields that H is of zero exponential type. Then it follows from
(5.21) that H is a polynomial, which contradicts the fact that G ∉ H(E).

Finally, by (5.18), |cn| & |tn|
−N−1

|an|, thus µn & |tn|
−M and also


n µn = ∞. Then, by

[3, Theorem 1.2], the system biorthogonal to {Kλ : G(λ) = 0} is also complete. This completes
the construction of the example (and, thus, the proof of Theorem 1.6).
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