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Abstract

We present an upper bound of the number of solutions (z,y) of a polynomial equation
P(z,y) = 0 over a field Fy, in the case, where z € ¢1G, y € g2G, g1G, g2G are cosets by some
subgroup G of a multiplicative group Fy. Some applications of this bound to hyperelliptic
curves and additive energies are obtained.

1 Introduction

We study an algebraic equation
P(xz,y) =0 (1)

over a field F,, (or its algebraic closure F,), where p is a prime number. Suppose that P € Fy[z, ]
is an irreducible polynomial of two variables z and y. Let G be a subgroup of F, (multiplicative
group of F)).

We estimate the number of solutions (z,y) of the equation (1) which are belong to a subgroup
G, (v € G and y € G) or a product of some cosets (z,y) € g1G X g2G, where g1, g2 € F},.

The first result of such a kind belongs to the A. Garcia and J.F. Voloch [1]. Their result was
improved by D.R. Heath-Brown and S.V. Konyagin [2]. They proved using Stepanov method
(see [2],[5]) that for any subgroup G C Fy, such that |G| < (p —1)/((p — Y4 +1) and an
arbitrary nonzero p the number of solutions of linear equation

y=z+p (2)

such that (z,y) € G x G, does not exceed 4|G|?/3. In the other words they have studied such a
problem for linear equations (1). The case of such systems is studied in [6],[4].
Suppose that the polynomial (1) can be rewritten in the form

P(x,y) =y" + fac1(@)y" '+ ...+ Ail@)y + fola). (3)

The main result of the paper is Theorem 2. It gives us an upper bound of a number of
solutions (x,y) € g1G X g2G of an equation (1),(3).

Theorem 1. Let P(x,y) be a polynomial of the form (1),(3), and deg, P(x,y) = m,
deg, P(r,y) = n, P(0,0) # 0, m+n < p, G is a subgroup of Fy, 100(mn)3? < |G| < %p3/4,
gi,92 € IF';, then the cardinality of the set

My ={(z,y) | P(z,y) =0, x € ¢1G, y € g2G} (4)

does not exceed 16mn(m + n)|G|*/3.
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For any number z € F, there is a set of n numbers y1, ..., 4, € F,, which can be the same,
such that P(x,y;) = 0,7 =1,...,n. We will call such roots yi,...,y, roots of an equation (1)
corresponding to .

The second result gives us an upper bound for a number of x € G such that all corresponding
roots yi, ..., yn belong to G. We obtain the following theorem.

Theorem 2. Let P(x,y) be a polynomial of the form (1),(3), and deg, P(x,y) = n,
deg fo(z) = m, fo(0) # 0, G be a subgroup of F}, 64m3 < |G| < %p3/4, go,h € Fj, m +n < p,
then the cardinality of the set

My = {z|x € oG, y1...Yn € hG, y1,...,yn — 100ts of (1) corresponding to x} (5)
does not exceed 3m?|G|>/® (if m > 2) and 6|G|*/? (if m =1).

Corollary 1. In the conditions of Theorem 2 consider a set
M} = {z|r € oG, 11 € ¢1G, ..., yn € guG, Y1,...,Yn — T00ts of (1) corresponding to x}, (6)

where go, g1, - - -, gn € Fy. The cardinality of the set My does not exceed 3m?|GI*3 (if m > 2)
and 6|G)?/3 (if m=1).

Corollary 2. Consider an equation

y=1[f(z),  [feFplz], degf=m, [f(0)#0, (7)

such that the polynomial P(x,y) = y— f(x) satisfy to conditions of Theorem 2. Then the number
of solutions (z,y) of (7) such that (z,y) € ¢1G x g2G, g1,92 € F,, does not exceed of 3m?2|G|*/3
(if m > 2) and 4G*/? (if m =1).

The numbers of points of an elliptic and a hyperelliptic curves have the great interest for
applications. Consider a curve

y'=flx),  feBfa], degf=m, [(0)#0. (8)

Corollary 3. The number of solutions (z,y) of an equation (8) such that (x,y) € g1G X
92G, g1, 92 € T}, does not exceed 6m2|G|*2, if m > 2 and a polynomial P(z,y) = y— f(x) satisfy
to conditions of Theorem 2.

Proof. We obtain by Theorem 2 that the number of solutions (z, §) of the equation P(x, ) =
f(x)—73 (7) , such that (z,7) € g1G x g2G, does not exceed 3m?|G|¥®. Consequently, the number
of pairs (z,y?) does not exceed 6m?|G|?/3, because there exists at least two numbers y € F,
such that y? = 7. O

Corollary 4. If conditions of Theorem 1 hold, then the number of solutions (z,y,z,w) of
an equation
P(z,y) = P(z,w)

such that z,y,z,y € G, does not exceed 17Tmn(m + n)|G|3/3.

Proof. Let us fix two variables, for example, z and w. Then Theorem 1 gives us that the
number of solutions (x,y) of the equation P(z,y) = P(z,w) does not exceed 16mn(m + n)|G|§
if P(0,0) — P(z,w) # 0. The condition P(0,0) — P(z,w) # 0 can be not satisfied only for
n|G| pairs (z,w) € G x G. Note that for each fixed z and ¢ the number of solutions does not
exceed 16mn(m + n)|G|*/3 if P(0,0) — P(z,w) # 0. So obtain that the number of solutions of
polynomial equation

P(z,y) = P(z,1)

does not exceed 16mn(m + n)|G||G||G[*? 4+ n?|G|> < 1Tmn(m + n)|G|¥/3. O



2 Proof of Theorem 2

We would like to estimate a cardinality of the set Ms (see (6)). Vieta’s theorem gives us that

y1---yn = fo(),

where y1,...,y, are roots of the equation (1) of variable y with a given xz. A set My can be
defined as following
My ={z |z € goG, fo(x)e hG}.

The cardinality |Ms| is equal to a number of solutions (z,y) of an equation y = fy(x), such that
x € goG, y € hG. We obtain that Corollary 3 is equivalent to Theorem 2.

It is easy to see that if h = g1 ... g, then M} C M. We will estimate the cardinality of MJ.
It gives us a proof of Corollary 1.

2.1 Stepanov method

Now we present a Stepanov method scheme. Let G be a subgroup of F; of the order ¢ = |G|
(t| (p—1)). It is easy to see that

G={s"" [s€F}={s|s' =1, s € F}.
Any coset can be defined as a set such that
gG ={s|s' =h, s eF;},

where h = ¢*.
Consider a polynomial ¢ € F,[X,Y, Z] such that

degxy ® < A, degy @< B, deg, P < C,
or in the other words
O(X,Y,Z2) =D AapXV'Z°,  ac[d], be[B], celC),
a,b,c
where [N] ={0,1,..., N — 1}. Take the following polynomial
‘II(X) = (I)(Xv Xt> (yl s yn)t)>

Vieta’s theorem and (3),(9) gives us that (y1...yn) = fo(z) where fo(x) € Fp[z] is a polynomial
of degree < m. We estimate the number of x such that all corresponding roots y; € ¢1G, ..., yn €
gnG. Consequently, the product (y; ...y,) belongs to hG too (h = g1 ...gn).

We will choose constants A, B and C such that

degU(X)<(A-1)+(B-1)t+m(C—-1)t <p. 9)

Now we find the coefficients A, . such that, firstly, the polynomial ¥ is not identically zero,
and, secondly, ¥ has a root of an order at least D at every point of the set My (except 0 and
roots of a polynomial fy(z) = 0, may be).

Then we obtain the following estimate

o deg ¥ (z) - A+Bt+mCt'
D D

(10)



Thus we have to find Agp . such that
Bl
dxk
and such that

‘I/(X)|X::c =0, Vk<D, Vxre M \ {O,u | fg(,u) = 0}. (11)

U(X) #0. (12)

Let us show that if

D2
AD +m— < ABC (13)

then there exist coefficients A, p . such that (11) and (12) are satisfied.
Note that if z # 0, fo(z) # 0 and D < p then the condition (11) is equivalent to the following

dk

Vk <D, VzeMa\{0,p] f(p) =0} Ik

U(X)|x=z =0.
If z € Q then we have

ah = gf)a fé(x) = hta (14)

where g and h' are constants, which do not depend on the elements z € goG and fo(z) € hG.
We obtain from (14) that

dk a c c
xkfg(x)wx xbtfot(x) = xbtfot(x) : Pa,b7c(x)|x€M2 = géhtpa,b,c(x)v

where P, .(x) is a polynomial and deg Py(x) < A + km. Consequently, we have

dk

ﬂckf(?(iﬁ)w‘l’(x)\weﬂ =Y Aapelape(r) = Pi(@),
where Py(z) is a polynomial and deg Py(x) < A + km. It is easy to see that the coefficients of
polynomials Pj(x) are homogeneous linear forms of coefficients A, 4 . and the condition

can be represent as a system of A + km homogeneous linear algebraic equations of variables
Aap,c- The system of such a form has a nonzero solution if the number of equations the less than
the number of variables. This condition is the condition (13).

Now we obtain the estimate

deg ¥ A+tB+tmC
| < dee¥@) Ly AFIBrmC

D D

The proof Theorem 2 will be completed if we define the constants A, B, C and D, which satisfy
(13) and prove (12). The next part is devoted to the proof of condition (12).



2.2 Linear independence of products

We would like to prove the condition (12). We will prove a sufficient condition for (12). Let us
prove the following lemma.

Lemma 1. The set of functions
2z f (z), aclA], be[B], celC]
is linear independent if f(0) # 0 and
t> AB. (15)

Proof. Let us consider an algebraic closure F, of F,,. We can extend derivative from the field
FF, to its algebraic closure Fp. The polynomial f(x) has a form

fl@)=(zr—a1)...(x — ap), Aty € Fp.
Suppose there is a combination

Z Copera? f(x) =0 (16)

with nonzero coefficients Cy 4 .. Let ¢in = mingp c{c | Cqp 7# 0}, then a combination (16) can
be represented in the form

prn@) | S Cunra e ) + 3 Cope e | 20
a,b;c=cmin+1 a,b

We obtain that (z —a1)* | 35, Cabep, 242%, but the polynomial > ab Cobiep, 242 can not
be divided by (z — 1)t if t > AB (see Lemma 6 of [2]). O

2.3 End of the proof of Theorem 2

Let us suppose that 64m3 < t < %p?’/ 4 and m > 2. Take the following constants:

/3
A=mC? B=mC, C=|—]|, D=C?
m
which are satisfy the condition (9)
(A=1)+t(B—=1)+tm(C—1) < p. (17)
Obviously, the condition (17) has a form
£2/3
mC? + m2Ct < - 1+ 243 < p. (18)

The condition (13):

D2
AD +m7- = mC* + %04 < m2C* = ABC
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hold if m > 2. The condition (15)
17377
t>t/m>m?|—| >=m?C®= AB
m

holds too. Consequently, the Stepanov method can be applied. Now let us obtain the estimate

C? + 2mCt C + 2mt /3 4 2mt
M2 < m_i_l_*_u — m+1+u < m+1+¢ < 3m2t2/3 = 3m2 G 2/3'
c? C {&]
m

Consider the case m = 1. Suppose that 64 < t < %p:g/ 4. Take the following constants:

102

A=C% B=cC, cz[tl/ﬂ, D=3

which satisfy the condition (9):
[tl/?’r 1t ([0 1) e ([R] < 1) < 2 <3 <,

The condition (13)
2

D 1 1

hold. The condition (15)
3
t> [tl/?’] = (%= AB

hold too. Now let us obtain the estimate

242 2 /3 4 2t
C” 201 2+2ﬂ <oyl T g 6|G|*/3.

|M2‘ <2+ 7%02 = C [tl/g]

Theorem 2 is proved. O

3 Proof of Theorem 1

3.1 Stepanov method with polynomials of two variables

Consider a polynomial ® € IF,[X,Y, Z] such that
degxy ® < A, degy @< B, deg, P <C,
or in the other words

O(X,Y,Z) =) AapXV'Z°,  ac[d], be[B], ce[C]

a,b,c
where [N] ={0,1,..., N — 1}. Take the following polynomial
V(w,y) = ®(z,2",y"), (19)

such that it satisfy to the following conditions:



1) all roots (z,y), such that x € g1G,y € g2G, of an equation (1) are zeros of system

U(z,y) =0
{ Ple,y) =0 20

of an order at least D.

2) the greatest common divisor of polynomials ¥ (z,y) and P(x,y) is equal to 1.

Then the generalized Bézout’s theorem gives us an upper bound of the number N of roots
(z,y) such that = € g1G, y € goG:

N <
D D

. (21)
Lemma 2. Let Q(z,y) be a polynomial and

deg, Q(z,y) < p, deg, Q(z,y) <v

and P(x,y) such that
deg, P(z,y) <m, deg, P(x,y) <n,

then the condition

P(z,y) | Q(x,y)

can be given by n((v —n +2)m + pu) < (p+ v + 1)mn homogeneous linear algebraic equations.

Proof. Consider a polynomial

P(z,y) = fa(@)y" + ...+ filz)y + fo(x),  degfi(x) <m

and a polynomial

Qo(z,y) = Q(z,y) fu(z) = gop(x)y” + ... + g0,1(2)y + go,0(z).

Let construct polynomials Q;(z,y) = giv—i()y" "+ ...+ gi1(z)y+ gio(z),i=1,...,v —n+1
such that

(T, y) = Qi—1( _ Gimtw—in1(¥) .
Qz( 7y) Qz—l( ,y) fn(x) P( ?y)'

i—1v—it1(x)

It is easy to see that deg, Qi(z,y) < deg, Qi-1(z,y), QW — is a polynomial, because
fn(@) | gim1p—it1(z) and deg gij(z) < p+ (i + 1)m.

Consequently, P(z,y) | Q(x,y) if and only if Q,—y+1(x,y) = 0. The polynomial Q,—,+1(z,y)
has n((u + (v — n + 2)m) coefficients which are homogeneous linear forms of coefficients of
polynomial Q(x,y). We have n((v — n + 2)m + u) homogeneous linear algebraic equations. O

Lemma 3. Let

U(z,y) = Z Aaperably, ac[d], be[B], celC],

a,b,c

be a polynomial with AB < t, and coefficients Aqp . do not vanish simultaneously, P(x,y) be
an irreducible polynomial, P(0,0) # 0, then there are x and y, such that P(x,y) = 0 and

U(z,y) # 0.



Proof. Let cpin = ming p . Aa,bc#0 C- Consider a polynomial ¥ in the form

U (x,y) =yt Z Aa,bﬁxal'bty(c_cmmﬁ + Z >\a,b,cminxaxbt . a€[ALbe[B], celC],
ab

a,b,c:c>Cmin

Let us suppose that for any x and y, such that P(z,y) = 0, ¥(x,y) vanish. Then for any « € I,
and y1,...,yn € F, such P(z,y;) =0,4i=1,...,n the following holds

(yl . yn) ’ \Ij(xa 0)

(Bézout’s theorem). It is easy to see that the polynomial ¥ (y) = ¥(z, !, y') depends only on
y' and we have the following

(y1...yn)" | ¥(z,0).

The term (y; ...y,)" is a symmetric polynomial of variables y; ...y, it can be expressed as a
polynomial of by means coefficients of polynomial P'(y) = P(z,y). In the other words

(yl .- 'yn)t = (P(xv 0))t

Then we have the following
(P(x,0))" | ¥(z,0).

It can not be true if P(z,0) has at least one nonzero root and the number of members of
polynomial ¥(x,0) does not exceed t (t > AB). O

3.2 Derivatives and differential operators

We have a condition P(z,y) = 0. Let us consider the following formal derivatives %kky.
Consider the polynomials gi(z,y) and ri(z,y), k € N defined by induction

0 0
ql(CE?y) = ——P(x,y), Tl(x7y) = %P(xay)a

Ox
and
_ gy (OP\®  9q, OPOP 8?P 9P 8>P OP
) = 5 (50) = GEGEED — = Doy B+ k= Daslen) 5 o

oP\? _ (oP\**!
o) =nten) (50) = (55) 0 kem

Actually, formal derivatives have the following expressions Cj‘i—kky = %, k e N.

These derivatives coincide to the derivatives of algebraic function y(z) defined by an equation
P(z,y) = 0. Actually,

%y_ rl(a;,y) - _(%P x,y ’
2
9 oP Oqi OP P 92P 9P 9?P 9P
dr y = Qk‘-i-l('rvy) i % (@) o %%Ty - (2k - 1)Qk(x7y)axay7y + (Qk - 1)Qk($7y)W%
dxk+17 z,y) 2
kt1(7,y) (@, y) (%1;)

We obtain the following lemma.



Lemma 4. Degrees of polynomials qi(x,y) and ri(x,y) satisfy to the following estimates
deg, qr(z,y) < (2k —1)m — k,  deg, gr(z,y) < (2k —1)n —k + 1,
deg, rr(z,y) < (2k —1)m, deg,rg(w,y) < (2k—-1)(n—1), keN
Proof. 1t is easy to see that deg, q1(z,y) < m — 1, deg, q1(x,y) < n and
dog, g1 (2, ) < degy gi1(2, y)+2m—1 < (h—D)m—k, deg, (i, y) < deg, g1 (,y)+2n—1 < (2k—L)n—k+

For the polynomial r(x,y) the statement is obvious. O
Let us define differential operators

op\ %1 dk
‘ (8y> Y b
It is easy to see that we have the following relations
a, bt ct

Dk{L‘aZUbtth — Rk,a,b,c(m7y)x Ty,

Dp¥(z,Y)zyec = Bi(,Y)|zyec
and the following Lemma 5 holds.

Lemma 5.
deg, Riapc(,y) <22k —1)m < 4km deg, Rrapc(,y) <22k —1)(2n — 1) +1 < 4kn
deg, Ri(x,y) < A+ 4km deg, Ry(z,y) < 4kn.
3.3 End of the proof of Theorem 1
Let us suppose that P(z,y) is an irreducible polynomial. Give the following parameters
A=B? C=B, B=[t'
2
p=[ 2]
Consider a polynomial (19) and a system (20). The condition
Dy¥(z,y) =0 if P(z,y) =0 and (z,y) € 1G X ¢2G, k=0,...,D —1 (22)

can be calculated by means of Lemmas 5 and 2. The condition (22) is equivalent to the set of

S

(4km + 4kn 4+ A+ 1) = (A + 1)Dmn + 2mn(m + n)D(D — 1) < ADmn + 2mn(m + n)D?
0

B
Il

homogeneous linear algebraic equations of variables A, . . This system has a nonzero solution
if

2D*mn(m +n) + DmnA < ABC. (23)



The inequality (23) has a form

1 1
2D*mn(m +n) + DmnA < ZB4 + 134 < B* = ABC.

The conditions of Lemma 3 hold
t> AB = [t'/3]3,

and the conditions

deg¥(z,y) < A+ Bt+ Ct < p, deg P(z,y) <m+n<p

is hold too. )
B 2Bt
Ed
because t > 100(mn)3/? and, consequently, [%} > Affn —-1> %%.

Consider the case of reducible polynomial P(x,y). Represent a polynomial P(x,y) as a
product of irreducible polynomials P;(x,y):

S

=1

Then deg, Pi(z,y) = m;, deg, Pi(x,y) = n;, and m = Yoo ymi,n= > n;. Theset M; C
>oiy My, where
Mi; ={(z,y) | Pi(z,y) =0, v € 1G, y € g2G}.

Consequently, we have the estimate
S
M| <) 16mn(m; +1)| G < 16mn(m + n)|GIP/2.
i=1

Theorem 1 is proved. O

4 Conclusion

The authors are grateful to Sergey Konyagin, Ilya Shkredov and Ivan Yakovlev for their attention
and useful comments. The authors are particularly grateful to Igor Shparlinski for statement of
the problem, which is considered in the paper.
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