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Abstract

We present an upper bound of the number of solutions (x, y) of a polynomial equation
P (x, y) = 0 over a field Fp, in the case, where x ∈ g1G, y ∈ g2G, g1G, g2G are cosets by some
subgroup G of a multiplicative group F∗

p. Some applications of this bound to hyperelliptic
curves and additive energies are obtained.

1 Introduction

We study an algebraic equation

P (x, y) = 0 (1)

over a field Fp (or its algebraic closure Fp), where p is a prime number. Suppose that P ∈ Fp[x, y]
is an irreducible polynomial of two variables x and y. Let G be a subgroup of F∗p (multiplicative
group of Fp).

We estimate the number of solutions (x, y) of the equation (1) which are belong to a subgroup
G, (x ∈ G and y ∈ G) or a product of some cosets (x, y) ∈ g1G× g2G, where g1, g2 ∈ F∗p.

The first result of such a kind belongs to the A. Garcia and J.F. Voloch [1]. Their result was
improved by D.R. Heath-Brown and S.V. Konyagin [2]. They proved using Stepanov method
(see [2],[5]) that for any subgroup G ⊂ F∗p, such that |G| < (p − 1)/((p − 1)1/4 + 1) and an
arbitrary nonzero µ the number of solutions of linear equation

y = x+ µ (2)

such that (x, y) ∈ G×G, does not exceed 4|G|2/3. In the other words they have studied such a
problem for linear equations (1). The case of such systems is studied in [6],[4].

Suppose that the polynomial (1) can be rewritten in the form

P (x, y) = yn + fn−1(x)yn−1 + . . .+ f1(x)y + f0(x). (3)

The main result of the paper is Theorem 2. It gives us an upper bound of a number of
solutions (x, y) ∈ g1G× g2G of an equation (1),(3).

Theorem 1. Let P (x, y) be a polynomial of the form (1),(3), and degx P (x, y) = m,
degy P (x, y) = n, P (0, 0) 6= 0, m + n < p, G is a subgroup of F∗p, 100(mn)3/2 < |G| < 1

3p
3/4,

g1, g2 ∈ F∗p, then the cardinality of the set

M1 = {(x, y) | P (x, y) = 0, x ∈ g1G, y ∈ g2G} (4)

does not exceed 16mn(m+ n)|G|2/3.

∗The research was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project
N 14-50-00150).
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For any number x ∈ Fp, there is a set of n numbers y1, . . . , yn ∈ Fp, which can be the same,
such that P (x, yi) = 0, i = 1, . . . , n. We will call such roots y1, . . . , yn roots of an equation (1)
corresponding to x.

The second result gives us an upper bound for a number of x ∈ G such that all corresponding
roots y1, . . . , yn belong to G. We obtain the following theorem.

Theorem 2. Let P (x, y) be a polynomial of the form (1),(3), and degy P (x, y) = n,

deg f0(x) = m, f0(0) 6= 0, G be a subgroup of F∗p, 64m3 < |G| < 1
3p

3/4, g0, h ∈ F∗p, m + n < p,
then the cardinality of the set

M2 = {x|x ∈ g0G, y1 . . . yn ∈ hG, y1, . . . , yn – roots of (1) corresponding to x} (5)

does not exceed 3m2|G|2/3 (if m > 2) and 6|G|2/3 (if m = 1).

Corollary 1. In the conditions of Theorem 2 consider a set

M ′2 = {x|x ∈ g0G, y1 ∈ g1G, . . . , yn ∈ gnG, y1, . . . , yn – roots of (1) corresponding to x}, (6)

where g0, g1, . . . , gn ∈ F∗p. The cardinality of the set M ′2 does not exceed 3m2|G|2/3 (if m > 2)

and 6|G|2/3 (if m = 1).

Corollary 2. Consider an equation

y = f(x), f ∈ Fp[x], deg f = m, f(0) 6= 0, (7)

such that the polynomial P (x, y) = y−f(x) satisfy to conditions of Theorem 2. Then the number
of solutions (x, y) of (7) such that (x, y) ∈ g1G× g2G, g1, g2 ∈ F∗p does not exceed of 3m2|G|2/3

(if m > 2) and 4|G|2/3 (if m = 1).

The numbers of points of an elliptic and a hyperelliptic curves have the great interest for
applications. Consider a curve

y2 = f(x), f ∈ Fp[x], deg f = m, f(0) 6= 0. (8)

Corollary 3. The number of solutions (x, y) of an equation (8) such that (x, y) ∈ g1G ×
g2G, g1, g2 ∈ F∗p does not exceed 6m2|G|2/3, if m > 2 and a polynomial P (x, y) = y−f(x) satisfy
to conditions of Theorem 2.

Proof. We obtain by Theorem 2 that the number of solutions (x, ỹ) of the equation P (x, ỹ) =
f(x)−ỹ (7) , such that (x, ỹ) ∈ g1G×g2

2G, does not exceed 3m2|G|2/3. Consequently, the number
of pairs (x, y2) does not exceed 6m2|G|2/3, because there exists at least two numbers y ∈ Fp
such that y2 = ỹ. 2

Corollary 4. If conditions of Theorem 1 hold, then the number of solutions (x, y, z, w) of
an equation

P (x, y) = P (z, w)

such that x, y, z, y ∈ G, does not exceed 17mn(m+ n)|G|8/3.

Proof. Let us fix two variables, for example, z and w. Then Theorem 1 gives us that the
number of solutions (x, y) of the equation P (x, y) = P (z, w) does not exceed 16mn(m+ n)|G|

2
3

if P (0, 0) − P (z, w) 6= 0. The condition P (0, 0) − P (z, w) 6= 0 can be not satisfied only for
n|G| pairs (z, w) ∈ G × G. Note that for each fixed z and t the number of solutions does not
exceed 16mn(m + n)|G|2/3 if P (0, 0) − P (z, w) 6= 0. So obtain that the number of solutions of
polynomial equation

P (x, y) = P (z, t)

does not exceed 16mn(m+ n)|G||G||G|2/3 + n2|G|2 6 17mn(m+ n)|G|8/3. 2
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2 Proof of Theorem 2

We would like to estimate a cardinality of the set M2 (see (6)). Vieta’s theorem gives us that

y1 . . . yn = f0(x),

where y1, . . . , yn are roots of the equation (1) of variable y with a given x. A set M2 can be
defined as following

M2 = {x | x ∈ g0G, f0(x) ∈ hG}.

The cardinality |M2| is equal to a number of solutions (x, y) of an equation y = f0(x), such that
x ∈ g0G, y ∈ hG. We obtain that Corollary 3 is equivalent to Theorem 2.

It is easy to see that if h = g1 . . . gn then M ′2 ⊆M2. We will estimate the cardinality of M ′2.
It gives us a proof of Corollary 1.

2.1 Stepanov method

Now we present a Stepanov method scheme. Let G be a subgroup of F∗p of the order t = |G|
(t | (p− 1)). It is easy to see that

G = {s
p−1
t | s ∈ F∗p} = {s | st = 1, s ∈ F∗p}.

Any coset can be defined as a set such that

gG = {s | st = h, s ∈ F∗p},

where h = gt.
Consider a polynomial Φ ∈ Fp[X,Y, Z] such that

degX Φ < A, degY Φ < B, degZ Φ < C,

or in the other words

Φ(X,Y, Z) =
∑
a,b,c

λa,b,cX
aY bZc, a ∈ [A], b ∈ [B], c ∈ [C],

where [N ] = {0, 1, . . . , N − 1}. Take the following polynomial

Ψ(X) = Φ(X,Xt, (y1 . . . yn)t),

Vieta’s theorem and (3),(9) gives us that (y1 . . . yn) = f0(x) where f0(x) ∈ Fp[x] is a polynomial
of degree 6 m. We estimate the number of x such that all corresponding roots y1 ∈ g1G, . . . , yn ∈
gnG. Consequently, the product (y1 . . . yn) belongs to hG too (h = g1 . . . gn).

We will choose constants A, B and C such that

deg Ψ(X) 6 (A− 1) + (B − 1)t+m(C − 1)t < p. (9)

Now we find the coefficients λa,b,c such that, firstly, the polynomial Ψ is not identically zero,
and, secondly, Ψ has a root of an order at least D at every point of the set M2 (except 0 and
roots of a polynomial f0(x) = 0, may be).

Then we obtain the following estimate

|M2| 6
deg Ψ(x)

D
<
A+Bt+mCt

D
. (10)
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Thus we have to find λa,b,c such that

dk

dXk
Ψ(X)|X=x = 0, ∀k < D, ∀x ∈M2 \ {0, µ | f0(µ) = 0}. (11)

and such that

Ψ(X) 6≡ 0. (12)

Let us show that if

AD +m
D2

2
< ABC (13)

then there exist coefficients λa,b,c such that (11) and (12) are satisfied.
Note that if x 6= 0, f0(x) 6= 0 and D < p then the condition (11) is equivalent to the following

∀k < D, ∀x ∈M2 \ {0, µ | f(µ) = 0} dk

dXk
Ψ(X)|X=x = 0.

If x ∈ Ω then we have

xt = gt0, f t0(x) = ht, (14)

where gt0 and ht are constants, which do not depend on the elements x ∈ g0G and f0(x) ∈ hG.
We obtain from (14) that

xkfk0 (x)
dk

dxk
xaxbtf ct0 (x) = xbtf ct0 (x) · Pa,b,c(x)|x∈M2 = gt0h

tPa,b,c(x),

where Pa,b,c(x) is a polynomial and degPk(x) < A+ km. Consequently, we have

xkfk0 (x)
dk

dxk
Ψ(x)|x∈Ω =

∑
λa,b,cPa,b,c(x) = Pk(x),

where Pk(x) is a polynomial and degPk(x) < A + km. It is easy to see that the coefficients of
polynomials Pk(x) are homogeneous linear forms of coefficients λa,b,c and the condition

Pk(x) ≡ 0

can be represent as a system of A + km homogeneous linear algebraic equations of variables
λa,b,c. The system of such a form has a nonzero solution if the number of equations the less than
the number of variables. This condition is the condition (13).

Now we obtain the estimate

|M2| 6
deg Ψ(x)

D
+m+ 1 <

A+ tB + tmC

D
.

The proof Theorem 2 will be completed if we define the constants A,B,C and D, which satisfy
(13) and prove (12). The next part is devoted to the proof of condition (12).
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2.2 Linear independence of products

We would like to prove the condition (12). We will prove a sufficient condition for (12). Let us
prove the following lemma.

Lemma 1. The set of functions

xaxbtf ct(x), a ∈ [A], b ∈ [B], c ∈ [C]

is linear independent if f(0) 6= 0 and

t > AB. (15)

Proof. Let us consider an algebraic closure Fp of Fp. We can extend derivative from the field
Fp to its algebraic closure Fp. The polynomial f(x) has a form

f(x) = (x− α1) . . . (x− αm), α1, . . . , αm ∈ Fp.

Suppose there is a combination ∑
a,b,c

Ca,b,cx
axbtf ct(x) ≡ 0 (16)

with nonzero coefficients Ca,b,c. Let cmin = mina,b,c{c | Ca,b,c 6= 0}, then a combination (16) can
be represented in the form

f cmin(x)

 ∑
a,b;c>cmin+1

Ca,b,cx
axbtf (c−cmin)t(x) +

∑
a,b

Ca,b,cminx
axbt

 ≡ 0.

We obtain that (x − α1)t |
∑

a,bCa,b,cminx
axbt, but the polynomial

∑
a,bCa,b,cminx

axbt can not

be divided by (x− α1)t if t > AB (see Lemma 6 of [2]). 2

2.3 End of the proof of Theorem 2

Let us suppose that 64m3 < t < 1
3p

3/4 and m > 2. Take the following constants:

A = mC2, B = mC, C =

[
t1/3

m

]
, D = C2

which are satisfy the condition (9)

(A− 1) + t(B − 1) + tm(C − 1) < p. (17)

Obviously, the condition (17) has a form

mC2 +m2Ct 6
t2/3

m
+ 2t4/3 < p. (18)

The condition (13):

AD +m
D2

2
= mC4 +

m

2
C4 < m2C4 = ABC
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hold if m > 2. The condition (15)

t > t/m > m2

[
t1/3

m

]3

>= m2C3 = AB

holds too. Consequently, the Stepanov method can be applied. Now let us obtain the estimate

|M2| < m+1+
mC2 + 2mCt

C2
= m+1+

mC + 2mt

C
< m+1+

t1/3 + 2mt[
t1/3

m

] < 3m2t2/3 = 3m2|G|2/3.

Consider the case m = 1. Suppose that 64 < t < 1
3p

3/4. Take the following constants:

A = C2, B = C, C =
[
t1/3
]
, D =

1

2
C2

which satisfy the condition (9):[
t1/3
]2
− 1 + t

([
t1/3
]
− 1
)

+ t
([
t1/3
]
− 1
)
< t2/3 + t4/3 + t4/3 < 3t4/3 < p.

The condition (13)

AD +m
D2

2
=

1

2
C4 +

1

8
C4 < C4 = ABC

hold. The condition (15)

t >
[
t1/3
]3

= C3 = AB

hold too. Now let us obtain the estimate

|M2| < 2 +
C2 + 2Ct

1
2C

2
= 2 + 2

C + 2t

C
< 2 + 2

t1/3 + 2t[
t1/3
] < 6t2/3 = 6|G|2/3.

Theorem 2 is proved. 2

3 Proof of Theorem 1

3.1 Stepanov method with polynomials of two variables

Consider a polynomial Φ ∈ Fp[X,Y, Z] such that

degX Φ < A, degY Φ < B, degZ Φ < C,

or in the other words

Φ(X,Y, Z) =
∑
a,b,c

λa,b,cX
aY bZc, a ∈ [A], b ∈ [B], c ∈ [C],

where [N ] = {0, 1, . . . , N − 1}. Take the following polynomial

Ψ(x, y) = Φ(x, xt, yt), (19)

such that it satisfy to the following conditions:
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1) all roots (x, y), such that x ∈ g1G, y ∈ g2G, of an equation (1) are zeros of system{
Ψ(x, y) = 0

P (x, y) = 0
(20)

of an order at least D.
2) the greatest common divisor of polynomials Ψ(x, y) and P (x, y) is equal to 1.
Then the generalized Bézout’s theorem gives us an upper bound of the number N of roots

(x, y) such that x ∈ g1G, y ∈ g2G:

N 6
deg Ψ(x, y) · degP (x, y)

D
6

(m+ n) deg Ψ(x, y)

D
. (21)

Lemma 2. Let Q(x, y) be a polynomial and

degxQ(x, y) 6 µ, degy Q(x, y) 6 ν

and P (x, y) such that
degx P (x, y) 6 m, degy P (x, y) 6 n,

then the condition
P (x, y) | Q(x, y)

can be given by n((ν − n+ 2)m+ µ) 6 (µ+ ν + 1)mn homogeneous linear algebraic equations.

Proof. Consider a polynomial

P (x, y) = fn(x)yn + . . .+ f1(x)y + f0(x), deg fi(x) 6 m

and a polynomial

Q0(x, y) = Q(x, y)fn(x) = g0,ν(x)yν + . . .+ g0,1(x)y + g0,0(x).

Let construct polynomials Qi(x, y) = gi,ν−i(x)yν−i + . . .+ gi,1(x)y+ gi,0(x), i = 1, . . . , ν − n+ 1
such that

Qi(x, y) = Qi−1(x, y)− gi−1,ν−i+1(x)

fn(x)
P (x, y).

It is easy to see that degy Qi(x, y) < degy Qi−1(x, y),
gi−1,ν−i+1(x)

fn(x) — is a polynomial, because

fn(x) | gi−1,ν−i+1(x) and deg gi,j(x) 6 µ+ (i+ 1)m.
Consequently, P (x, y) | Q(x, y) if and only if Qν−n+1(x, y) ≡ 0. The polynomial Qν−n+1(x, y)

has n((µ + (ν − n + 2)m) coefficients which are homogeneous linear forms of coefficients of
polynomial Q(x, y). We have n((ν − n+ 2)m+ µ) homogeneous linear algebraic equations. 2

Lemma 3. Let

Ψ(x, y) =
∑
a,b,c

λa,b,cx
axbtyct, a ∈ [A], b ∈ [B], c ∈ [C],

be a polynomial with AB 6 t, and coefficients λa,b,c do not vanish simultaneously, P (x, y) be
an irreducible polynomial, P (0, 0) 6= 0, then there are x and y, such that P (x, y) = 0 and
Ψ(x, y) 6= 0.
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Proof. Let cmin = mina,b,c:λa,b,c 6=0 c. Consider a polynomial Ψ in the form

Ψ(x, y) = ycmint

 ∑
a,b,c:c>cmin

λa,b,cx
axbty(c−cmin)t +

∑
a,b

λa,b,cminx
axbt

 , a ∈ [A], b ∈ [B], c ∈ [C],

Let us suppose that for any x and y, such that P (x, y) = 0, Ψ(x, y) vanish. Then for any x ∈ Fp
and y1, . . . , yn ∈ Fp such P (x, yi) = 0, i = 1, . . . , n the following holds

(y1 . . . yn) | Ψ(x, 0)

(Bézout’s theorem). It is easy to see that the polynomial ψ(y) = Ψ(x, xt, yt) depends only on
yt and we have the following

(y1 . . . yn)t | Ψ(x, 0).

The term (y1 . . . yn)t is a symmetric polynomial of variables y1 . . . yn, it can be expressed as a
polynomial of x by means coefficients of polynomial P ′(y) = P (x, y). In the other words

(y1 . . . yn)t = (P (x, 0))t.

Then we have the following
(P (x, 0))t | Ψ(x, 0).

It can not be true if P (x, 0) has at least one nonzero root and the number of members of
polynomial Ψ(x, 0) does not exceed t (t > AB). 2

3.2 Derivatives and differential operators

We have a condition P (x, y) = 0. Let us consider the following formal derivatives dk

dxk
y.

Consider the polynomials qk(x, y) and rk(x, y), k ∈ N defined by induction

q1(x, y) = − ∂

∂x
P (x, y), r1(x, y) =

∂

∂y
P (x, y),

and

qk+1(x, y) =
∂qk
∂x

(
∂P

∂y

)2

− ∂qk
∂y

∂P

∂x

∂P

∂y
− (2k − 1)qk(x, y)

∂2P

∂x∂y

∂P

∂y
+ (2k − 1)qk(x, y)

∂2P

∂y2

∂P

∂x
,

rk+1(x, y) = rk(x, y)

(
∂P

∂y

)2

=

(
∂P

∂y

)2k+1

, k = N.

Actually, formal derivatives have the following expressions dk

dxk
y = qk(x,y)

rk(x,y) , k ∈ N.

These derivatives coincide to the derivatives of algebraic function y(x) defined by an equation
P (x, y) = 0. Actually,

d

dx
y =

q1(x, y)

r1(x, y)
= −

∂
∂xP (x, y)
∂
∂yP (x, y)

,

dk+1

dxk+1
y =

qk+1(x, y)

rk+1(x, y)
=

∂qk
∂x

(
∂P
∂y

)2
− ∂qk

∂y
∂P
∂x

∂P
∂y − (2k − 1)qk(x, y) ∂

2P
∂x∂y

∂P
∂y + (2k − 1)qk(x, y)∂

2P
∂y2

∂P
∂x

rk(x, y)
(
∂P
∂y

)2 .

We obtain the following lemma.
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Lemma 4. Degrees of polynomials qk(x, y) and rk(x, y) satisfy to the following estimates

degx qk(x, y) 6 (2k − 1)m− k, degy qk(x, y) 6 (2k − 1)n− k + 1,

degx rk(x, y) 6 (2k − 1)m, degy rk(x, y) 6 (2k − 1)(n− 1), k ∈ N.

Proof. It is easy to see that degx q1(x, y) 6 m− 1, degy q1(x, y) 6 n and

degx qk(x, y) 6 degx qk−1(x, y)+2m−1 6 (2k−1)m−k, degy qk(x, y) 6 degy qk−1(x, y)+2n−1 6 (2k−1)n−k+1.

For the polynomial rk(x, y) the statement is obvious. 2

Let us define differential operators

Dk =

(
∂P

∂y

)2k−1

xkyk
dk

dxk
, k = N.

It is easy to see that we have the following relations

Dkx
axbtyct = Rk,a,b,c(x, y)xaxbtyct,

DkΨ(x, y)|x,y∈G = Rk(x, y)|x,y∈G
and the following Lemma 5 holds.

Lemma 5.

degxRk,a,b,c(x, y) 6 2(2k − 1)m 6 4km degy Rk,a,b,c(x, y) 6 2(2k − 1)(2n− 1) + 1 6 4kn

degxRk(x, y) 6 A+ 4km degy Rk(x, y) 6 4kn.

3.3 End of the proof of Theorem 1

Let us suppose that P (x, y) is an irreducible polynomial. Give the following parameters

A = B2, C = B, B = [t1/3]

D =

[
B2

4mn

]
.

Consider a polynomial (19) and a system (20). The condition

DkΨ(x, y) = 0 if P (x, y) = 0 and (x, y) ∈ g1G× g2G, k = 0, . . . , D − 1 (22)

can be calculated by means of Lemmas 5 and 2. The condition (22) is equivalent to the set of

D−1∑
k=0

(4km+ 4kn+A+ 1) = (A+ 1)Dmn+ 2mn(m+ n)D(D − 1) 6 ADmn+ 2mn(m+ n)D2

homogeneous linear algebraic equations of variables λa,b,c . This system has a nonzero solution
if

2D2mn(m+ n) +DmnA < ABC. (23)
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The inequality (23) has a form

2D2mn(m+ n) +DmnA <
1

4
B4 +

1

4
B4 < B4 = ABC.

The conditions of Lemma 3 hold
t > AB = [t1/3]3,

and the conditions

deg Ψ(x, y) < A+Bt+ Ct < p, degP (x, y) < m+ n < p

is hold too.

N 6
(m+ n)(B2 + 2Bt)[

B2

4mn

] 6 16mn(m+ n)t2/3,

because t > 100(mn)3/2 and, consequently,
[
B2

4mn

]
> B2

4mn − 1 > 3
4
B2

4mn .

Consider the case of reducible polynomial P (x, y). Represent a polynomial P (x, y) as a
product of irreducible polynomials Pi(x, y):

P (x, y) =

s∏
i=1

Pi(x, y).

Then degx Pi(x, y) = mi, degy Pi(x, y) = ni, and m =
∑s

i=1mi, n =
∑s

i=1 ni. The set M1 ⊆∑s
i=1M1,i, where

M1,i = {(x, y) | Pi(x, y) = 0, x ∈ g1G, y ∈ g2G}.

Consequently, we have the estimate

|M1| 6
s∑
i=1

16mini(mi + ni)|G|2/3 6 16mn(m+ n)|G|2/3.

Theorem 1 is proved. 2

4 Conclusion

The authors are grateful to Sergey Konyagin, Ilya Shkredov and Ivan Yakovlev for their attention
and useful comments. The authors are particularly grateful to Igor Shparlinski for statement of
the problem, which is considered in the paper.
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