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1. Introduction

This note is a sequel to [14]. We make a free use of notations and results thereof.
Our goal is to study the mirabolic character sheaves introduced in [3]. According
to Lusztig’s results, the unipotent character sheaves on GLN are numbered by the
set of partitions of N . For such a partition λ we denote by Fλ the corresponding
character sheaf. If the base field is k = Fq, the Frobenius trace function of a
character sheaf Fλ on a unipotent class of type µ is qn(µ)Kλ,µ(q−1) where Kλ,µ is
the Kostka–Foulkes polynomial, and n(µ) =

∑
i≥1(i− 1)µi (see [5]).

Let V = kN , so that GLN = GL(V ). For a pair (λ, µ) of partitions such
that |λ|+ |µ| = N the corresponding unipotent mirabolic character sheaf Fλ,µ on
GL(V )×V was constructed in [3]. On the other hand, the GLN -orbits in the prod-
uct of the unipotent cone and V are also numbered by the set of pairs (λ′, µ′) of
partitions such that |λ′|+ |µ′| = N (see [14]). In Theorem 2 we compute the Frobe-
nius trace function of a mirabolic character sheaf Fλ,µ on an orbit corresponding
to (λ′, µ′). The answer is given in terms of certain polynomials Π(λ′,µ′)(λ,µ), the
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mirabolic analogues of the Kostka–Foulkes polynomials introduced in [12]. More
generally, in 5.4 we compute the Frobenius trace functions (on any orbit) of a
wide class of Weil mirabolic character sheaves. These trace functions form a basis
in the space of GLN (Fq)-invariant functions on GLN (Fq)×FNq , and we conjecture
that the above class of sheaves exhausts all the irreducible Gm-equivariant Weil
mirabolic character sheaves. This would give a positive answer to a question of
G. Lusztig.

Recall that the Kostka–Foulkes polynomials are the matrix coefficients of
the transition matrix from the Hall–Littlewood basis to the Schur basis of the
ring Λ of symmetric functions. Similarly, the polynomials Π(λ′,µ′)(λ,µ) are the ma-
trix coefficients of the transition matrix from a certain mirabolic Hall–Littlewood
basis of Λ ⊗ Λ (introduced in [12]) to the Schur basis (see 4.2). Recall that Λ
is isomorphic to the Hall algebra [8] whose natural basis goes to the basis of
Hall–Littlewood polynomials. Similarly, Λ ⊗ Λ is naturally isomorphic to a cer-
tain mirabolic Hall bimodule over the Hall algebra, and then the natural basis of
this bimodule goes to the mirabolic Hall–Littlewood basis (see Section 4). The
structure constants of this basis, together with Green’s formula for the charac-
ters of GLN (Fq), enter the computation of the Frobenius traces of the previous
paragraph.

The Hall algebra is also closely related to the spherical Hecke algebra Hsph

of GLN (the convolution algebra of the affine Grassmannian of GLN ). Similarly,
the mirabolic Hall bimodule is closely related to a certain spherical mirabolic bi-
module over Hsph, defined in terms of convolution of the affine Grassmannian
and the mirabolic affine Grassmannian (see Section 3). The geometry of the
mirabolic affine Grassmannian is a particular case of the geometry of the mirabolic
affine flag variety studied in Section 2. Both geometries are (mildly) semiin-
finite.

Thus all the results of this note are consequences of a single guiding principle
which may be loosely stated as follows: the mirabolic substances form a bimodule
over the classical ones; this bimodule is usually free of rank one.

However, the affine mirabolic bimodule Raff over the affine Hecke algebra
Haff is not free (see Remark 1). Recall that Haff can be realized in the equivariant
K-homology of the Steinberg variety. It would be very interesting to find a similar
realization of Raff .

Finally, let us mention that the results of this note are very closely re-
lated to the results of [1], though our motivations are rather different. The au-
thors of [1] were primarily interested in the geometry of enhanced nilpotent cone.
They proved the parity vanishing of the IC stalks of the orbit closures in the en-
hanced nilpotent cone, and identified the generating functions of these stalks with
Shoji’s type-B Kostka polynomials. Since the Schubert varieties in the mirabolic
affine Grassmannian are equisingular to the orbit closures in the enhanced nilpo-
tent cone (see 3.7, 3.8), the appearance of Shoji’s polynomials in the spherical
mirabolic bimodule and in the mirabolic Hall bimodule is an immediate corollary
of [1].
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2. Mirabolic affine flags

2.1. Notations

We set F = k((t)) and O = k[[t]]. Furthermore, G = GL(V ), and GF = G(F),
GO = G(O). The affine Grassmannian is Gr = GF/GO. We fix a flag F• ∈ Fl(V )
and its stabilizer Borel subgroup B ⊂ G; it gives rise to an Iwahori subgroup
I ⊂ GO. The affine flag variety is Fl = GF/I. We set V = F⊗kV and V̊ = V−{0},
and P = V̊/k×.

It is well known that the GF-orbits in Fl×Fl are numbered by the affine Weyl
group Saff

N formed by all the permutations w of Z such that w(i+N) = w(i) +N
for any i ∈ Z (periodic permutations). Namely, for a basis {e1, . . . , eN} of V we set
ei+Nj := t−jei, i ∈ {1, . . . , N}, j ∈ Z; then the following pair (F 1

• , F
2
• ) of periodic

flags of O-sublattices in V lies in the orbit Ow ⊂ Fl× Fl:

F 1
k = 〈ek, ek−1, ek−2, . . .〉, F 2

k = 〈ew(k), ew(k−1), ew(k−2), . . .〉 (1)

(it is understood that ek, ek−1, ek−2, . . . is a topological basis of F 1
k ).

Following [14, Lemma 2], we define RBaff as the set of pairs (w, β) where
w ∈ Saff

N and β ⊂ Z are such that if i ∈ Z − β and j ∈ β, then either i > j or
w(i) > w(j); moreover, any i� 0 lies in β, and any j � 0 lies in Z− β.

2.2. GF-orbits in Fl× Fl×P
The following proposition is an affine version of [10, 2.11].

Proposition 1. There is a one-to-one correspondence between the set of GF-orbits
in Fl× Fl× V̊ (equivalently, in Fl× Fl×P) and RBaff .

Proof. The argument is entirely similar to the proof of Lemma 2 of [14]. It is left
to the reader. We only mention that a representative of an orbit corresponding to
(w, β) is given by (F 1

• , F
2
• , v) where (F 1

• , F
2
• ) are as in (1) and v =

∑
k∈β ek (note

that this infinite sum makes sense in V). �

2.3. The mirabolic bimodule over the affine Hecke algebra

Let k = Fq, a finite field with q elements. Then the affine Hecke algebra of G is the
endomorphism algebra of the induced module Haff := EndGF

(IndGF

I Z). It has the
standard basis {Tw | w ∈ Saff

N }, and the structure constants are polynomial in q,
so we may and will view Haff as the specialization under q 7→ q of a Z[q,q−1]-
algebra Haff . Clearly, Haff = EndGF

(IndGF

I Z) coincides with the convolution ring
of GF-invariant functions on Fl× Fl.

Haff acts by right and left convolution on the bimodule Raff of GF-invariant
functions on Fl×Fl× V̊. For w̃ ∈ RBaff let Tw̃ ∈ Raff stand for the characteristic
function of the corresponding orbit in Fl × Fl × V̊. Note that the involutions
(F 1
• , F

2
• ) ↔ (F 2

• , F
1
• ) and (F 1

• , F
2
• , v) ↔ (F 2

• , F
1
• , v) induce anti-automorphisms

of the algebra Haff and of the bimodule of GF-invariant functions on Fl × Fl
× V̊. These anti-automorphisms send Tw to Tw−1 and Tw̃ to Tw̃−1 where w̃−1 =
(w−1, w(β)) for w̃ = (w, β).
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We are going to describe the right action of Haff on the bimodule Raff in
the basis {Tw̃ | w̃ ∈ RBaff} (the formulas for the left action would then follow
via the above anti-automorphisms). To this end recall that Haff is generated by
Ts1 , . . . , TsN , T

±1
τ where Tsi is the characteristic function of the orbit formed by

the pairs (F 1
• , F

2
• ) such that F 1

j 6= F 2
j iff j = i (mod N); and τ(k) = k + 1,

k ∈ Z. Evidently, Tw̃T±1
τ = Tw̃[±1] where w̃[±1] is the shift of w̃ by ±1. The

following proposition is an affine version of Proposition 2 of [14], and the proof is
straightforward.

Proposition 2. Let w̃ = (w, β) ∈ RBaff and let s = si ∈ Saff
N , i ∈ {1, . . . , N}.

Define w̃s = (ws, s(β)) and w̃′ = (w, β 4 {i + 1}). Let σ = σ(w̃) and σ′ = σ(w̃s)
be given by the formula (6) of [14]. Then

Tw̃Ts =



Tw̃s if ws > w and i+ 1 6∈ σ′,
Tw̃s + T(w̃s)′ if ws > w and i+ 1 ∈ σ′,
Tw̃′ + Tw̃′s if ws < w and β ∩ ι = {i},
(q − 1)Tw̃ + qTw̃s if ws < w and i 6∈ σ,
(q − 2)Tw̃ + (q − 1)(Tw̃′ + Tw̃s) if ws < w and ι ⊂ σ,

(2)

where ι = {i, i+ 1}.

2.4. Modified bases

The formulas (2) being polynomial in q, we may (and will) view the Haff -bimodule
Raff as the specialization under q 7→ q of the Z[q,q−1]-bimodule Raff over the
Z[q,q−1]-algebra Haff . We consider a new variable v with v2 = q, and extend the
scalars to Z[v,v−1]: Haff := Z[v,v−1]⊗Z[q,q−1]Haff , Raff := Z[v,v−1]⊗Z[q,q−1]Raff .

Recall the basis {Hw := (−v)−`(w)Tw} of Haff (see e.g. [13]), and the Kazh-
dan–Lusztig basis {H̃w} (loc. cit.); in particular, H̃si = Hsi − v−1 for si (i =
1, . . . , N). For w̃ = (w, β) ∈ RBaff , we denote by `(w̃) the sum `(w) + `(β) where
`(w) is the standard length function on Saff

N and `(β) = ](β \{−N})−]({−N}\β).
We introduce a new basis {Hw̃ := (−v)−`(w̃)Tw̃} of Raff . In this basis the right
action of the Hecke algebra generators H̃si takes the form:

Proposition 3. Let w̃ = (w, β) ∈ RBaff and let s = si ∈ Saff
N , i ∈ {1, . . . , N}.

Define w̃s = (ws, s(β)) and w̃′ = (w, β 4 {i + 1}). Let σ = σ(w̃) and σ′ = σ(w̃s)
be given by the formula (6) of [14]. Then

Hw̃H̃s =



Hw̃s − v−1Hw̃ if ws > w and i+ 1 6∈ σ′,
Hw̃s − v−1H(w̃s)′ − v−1Hw̃ if ws > w and i+ 1 ∈ σ′,
Hw̃′ − v−1Hw̃ − v−1Hw̃′s if ws < w and β ∩ ι = {i},
Hw̃s − vHw̃ if ws < w and i 6∈ σ,
(v−1 − v)Hw̃

+ (1− v−2)(Hw̃′ +Hw̃s) if ws < w and ι ⊂ σ,

(3)

where ι = {i, i+ 1}.
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2.5. Generators

We consider the elements w̃i,j = (τ j , βi) ∈ RBaff such that w = τ j (shift by j),
and βi = {i, i−1, i−2, . . .} for any i, j ∈ Z. The following lemma is proved exactly
as Corollary 2 of [14].

Lemma 1. Raff is generated by {w̃i,j | i, j ∈ Z} as an Haff-bimodule.

Remark 1. Let PF ⊂ GF be the stabilizer of a vector v ∈ V̊. One can see easily
that Raff |q=q is isomorphic to EndPF

(IndGF

I Z) as a bimodule over Haff |q=q =
EndGF

(IndGF

I Z). Let Zaff ⊂ Haff stand for the center of Haff . Let Zaff
loc stand

for the field of fractions of Zaff . Let Haff
loc := Haff ⊗Zaff Zaff

loc. It is known that
Haff

loc ' MatN !(Q) ⊗Q Z
aff
loc. Let Raff

loc := Zaff
loc ⊗Zaff Raff ⊗Zaff Zaff

loc. Then it follows
from the main theorem of [2] that Raff

loc ' Zaff
loc ⊗Q MatN !(Q)⊗Q Z

aff
loc.

2.6. Geometric interpretation

It is well known that Haff is the Grothendieck ring (with respect to convolution) of
the derived constructible I-equivariant category of Tate Weil Ql-sheaves on Fl, and
multiplication by v corresponds to the twist by Ql(−1/2) (so that v has weight 1).
In particular, Hw is the class of the shriek extension of Ql[`(w)](`(w)/2) from the
corresponding orbit Flw, and H̃w is the selfdual class of the Goresky–MacPherson
extension of Ql[`(w)](`(w)/2) from this orbit. We will interpret Raff in a similar
vein, as the Grothendieck group of the derived constructible I-equivariant category
of Tate Weil Ql-sheaves on Fl× V̊.

To be more precise, we view V as an indscheme (of ind-infinite type), the
union of schemes (of infinite type) Vi := t−ik[[t]] ⊗ V , i ∈ Z. Here Vi is the
projective limit of the finite-dimensional affine spaces Vi/Vj , j < i. Note that I
acts on Vi linearly (over k), and it acts on any quotient Vi/Vj through a finite-
dimensional quotient group. Thus we have the derived constructible I-equivariant
category of Weil Ql-sheaves on Fl×Vi/Vj , to be denoted by DI(Fl×Vi/Vj). For
j′ < j we have the inverse image functor from DI(Fl×Vi/Vj) to DI(Fl×Vi/Vj′),
and we denote by DI(Fl× V̊i) the 2-limit of this system. Now for i′ > i we have
the direct image functor from DI(Fl × V̊i) to DI(Fl × V̊i′), and we denote by
DI(Fl× V̊) the 2-limit of this system.

Clearly, DI(Fl) acts by convolution both on the left and on the right on
DI(Fl× V̊).

The I-orbits in Fl × V̊ are numbered by RBaff ; for w̃ ∈ RBaff , the locally
closed embedding of the orbit Ωw̃ ↪→ Fl× V̊ is denoted by jw̃.

Proposition 4. The Goresky–MacPherson sheaf jw̃!∗Ql[`(w̃)](`(w̃)/2) is Tate for any
w̃ ∈ RBaff .

Proof. Repeats word for word the proof of Proposition 4 of [14]. For the base of
induction, we use the fact that the orbit closure Ω̄w̃i,j (see 2.5) is smooth. For the
induction step we use the Demazure type resolutions as in [14]. �
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2.7. The completed bimodule R̂aff

Let DTate
I (Fl) ⊂ DI(Fl) (resp. DTate

I (Fl × V̊) ⊂ DI(Fl × V̊)) stand for the full
subcategory of Tate sheaves. Then DTate

I (Fl) is closed under convolution, and its
K-ring is isomorphic to Haff . The proof of Proposition 4 implies that DTate

I (Fl×V̊)
is closed under both left and right convolution with DTate

I (Fl). It follows that
K(DTate

I (Fl × V̊)) forms an Haff -bimodule. This bimodule is isomorphic to a
completion R̂aff of Raff we presently describe.

Recall that for an O-sublattice F ⊂ V its virtual dimension is dim(F ) :=
dim(F/(F ∩(O⊗V )))−dim((O⊗V )/(F ∩(O⊗V ))). Recall that I is the stabilizer
of the flag F 1

• , where F 1
k = 〈ek, ek−1, ek−2, . . .〉. The connected components of

GF/I = Fl are numbered by Z: a flag F• lies in the component Fli where i =
dim(FN ). For the same reason, the connected components of Fl×V̊ are numbered
by Z: a pair (F•, v) lies in the connected component (Fl×V̊)i where i = dim(FN ).
We will write w̃ ∈ RBaff

i iff Ωw̃ ⊂ (Fl× V̊)i. Note that for any i, k ∈ Z there are
only finitely many w̃ ∈ RBaff such that w̃ ∈ RBaff

i and `(w̃) = k.
We define R̂aff to be the direct sum

⊕
i∈Z R̂aff

i where R̂aff
i is formed by all

the formal sums
∑
w̃∈RBaff

i
aw̃Hw̃ with aw̃ ∈ Z[v,v−1] and aw̃ = 0 for `(w̃) � 0.

So we have K(DTate
I (Fl × V̊)) ' R̂aff as an Haff -bimodule, and the isomorphism

takes the class [jw̃! Ql[`(w̃)](`(w̃)/2)] to Hw̃.

2.8. Bruhat order

Following Ehresmann and Magyar (see [9]) we will define a partial order w̃′′ ≤ w̃′
on a connected component RBaff

i . Let (F 1
• , F

′
•, v
′) (resp. F 1

• , F
′′
• , v

′′) be a triple
in the relative position w̃′ (resp. w̃′′). For any k, j ∈ Z we define rjk(w̃′) :=
dim(F 1

j ∩ F ′k). We also define δ(j, k, w̃′) to be 1 iff v′ ∈ F 1
j + F ′k, and 0 iff v′ 6∈

F 1
j + F ′k; we set r〈jk〉(w̃′) := rjk(w̃′) + δ(j, k, w̃′). Finally, we define w̃′′ ≤ w̃′ iff
rjk(w̃′′) ≥ rjk(w̃′), and r〈jk〉(w̃′′) ≥ r〈jk〉(w̃′) for all j, k ∈ Z.

The following proposition is proved similarly to the Rank Theorem 2.2 of [9].

Proposition 5. For w̃′, w̃′′ ∈ RBaff
i the orbit Ωw̃′′ lies in the orbit closure Ω̄w̃′ iff

w̃′′ ≤ w̃′.

2.9. Duality and the Kazhdan–Lusztig basis of R̂aff

Recall that the Grothendieck–Verdier duality on Fl induces an involution (de-
noted by h 7→ h) of Haff which takes v to v−1 and H̃w to H̃w. We will describe
the involution on R̂aff induced by the Grothendieck–Verdier duality on Fl × V̊.
Recall the elements w̃i,j introduced in 2.5. We set H̃w̃i,j :=

∑
k≤i(−v)k−iHw̃k,j .

This is the class of the selfdual (geometrically constant) IC-sheaf on the closure
of the orbit Ωw̃i,j . The following proposition is proved exactly as Proposition 5
of [14].
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Proposition 6. (a) There exists a unique involution r 7→ r on R̂aff such that
H̃w̃i,j

= H̃w̃i,j for any i, j ∈ Z, and hr = hr and rh = rh for any h ∈ Haff

and r ∈ R̂aff .
(b) The involution in (a) is induced by the Grothendieck–Verdier duality on

Fl× V̊.

The following proposition is proved exactly as Proposition 6 of [14].

Proposition 7. (a) For each w̃ ∈ RBaff there exists a unique element H̃w̃ ∈ R̂aff

such that H̃w̃ = H̃w̃ and H̃w̃ ∈ Hw̃ +
∑
ỹ<w̃ v−1Z[v−1]Hỹ.

(b) For each w̃ ∈ RBaff the element H̃w̃ is the class of the selfdual I-equivariant
IC-sheaf with support Ω̄w̃. In particular, for w̃ = w̃i,j, the element H̃w̃i,j is
consistent with the notation introduced before Proposition 6.

We conjecture that the sheaves j!∗Ql[`(w̃)](`(w̃)/2) are pointwise pure. The
parity vanishing of their stalks, and the positivity properties of the coefficients of
the transition matrix from {Hw̃} to {H̃w̃}, would then follow.

3. Mirabolic affine Grassmannian

3.1. GF-orbits in Gr×Gr×P
We consider the spherical counterpart of the objects of the previous section. First,
recall that the GF-orbits in Gr×Gr are numbered by the set Ssph

N formed by all
the nonincreasing N -tuples of integers ν = (ν1 ≥ . . . ≥ νN ). Namely, for such ν,
the following pair (L1, L2) of O-sublattices in V lies in the orbit Oν :

L1 = O〈e1, . . . , eN 〉, L2 = O〈t−ν1e1, . . . , t
−νN eN 〉. (4)

We define RBsph as Ssph
N ×Ssph

N . We have the addition map RBsph → Ssph
N :

(λ, µ) 7→ ν = λ+ µ where νi = λi + µi, i = 1, . . . , N .

Proposition 8. There is a one-to-one correspondence between the set of GF-orbits
in Gr×Gr× V̊ (equivalently, in Gr×Gr×P) and RBsph.

Proof. The argument is entirely similar to the proof of Proposition 1. We only
mention that a representative of an orbit O(λ,µ) corresponding to (λ, µ) with λ+µ

= ν is given by (L1, L2, v) where (L1, L2) are as in (4), and v =
∑N
i=1 t

−λiei. �

Proposition 9. There is a one-to-one correspondence between the set of GF-orbits
in Gr×Fl×V̊ (equivalently, in Gr×Fl×P) and the set of pairs of integer sequences
({b1, . . . , bN}, {c1, . . . , cN}) such that if bi− i/N < bj− j/N then ci ≤ cj. Namely,
a representative of the orbit corresponding to ({b1, . . . , bN}, {c1, . . . , cN}) is given
by (L,F, v) where L = O〈tb1+c1e1, . . . , t

bN+cN eN 〉, Fk = 〈ek, ek−1, ek−2, . . . 〉, v =∑N
i=1 t

biei. �
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3.2. The spherical mirabolic bimodule

Let k = Fq. Then the spherical affine Hecke algebra Hsph of G is the endomor-
phism algebra of the induced module EndGF

(IndGF

GO
Z). It coincides with the con-

volution ring of GF-invariant functions on Gr × Gr. It has the standard basis
{Uν | ν ∈ Ssph

N } of characteristic functions of GF-orbits in Gr × Gr, and the
structure constants are polynomial in q (Hall polynomials), so we may and will
view Hsph = EndGF

(IndGF

GO
Z) as a specialization of the Z[q,q−1]-algebra Hsph

under q 7→ q.
The algebra Hsph acts by right and left convolution on the bimodule Rsph

of GF-invariant functions on Gr ×Gr × V̊. For (λ, µ) ∈ RBsph let U(λ,µ) stand
for the characteristic function of the corresponding orbit in Gr × Gr × V̊. We
are going to describe the right and left action of Hsph on the bimodule in the
basis {U(λ,µ) | (λ, µ) ∈ RBsph}. To this end recall that Hsph is a commutative
algebra freely generated by U(1,0,...,0), U(1,1,0,...,0), . . . , U(1,1,...,1,0), and U±1 where
U±1 is the characteristic function of the orbit of (L1, t∓1L1). We will denote ν =
(1, . . . , 1, 0, . . . , 0) (with r 1’s and N − r 0’s) by (1r).

Note that the assignment φi,j : (L1, L2, v) 7→ (L1, t
−i−jL2, t

−iv) is a GF-
equivariant automorphism of Gr×Gr×V̊ sending an orbit O(λ,µ) to O(λ+iN ,µ+jN ).
We will denote the corresponding automorphism of the bimodule Rsph by φi,j
as well: φi,j(Uλ,µ) = U(λ+iN ,µ+jN ). Furthermore, an automorphism (L1, L2) 7→
(L2, L1) of Gr×Gr induces an (anti)automorphism % of the (commutative) algebra
Hsph, %(U±1) = U∓1, %(Uν) = Uν∗ where for ν = (ν1, . . . , νN ) we set ν∗ =
(−νN ,−νN−1, . . . ,−ν1). Similarly, the automorphism (L1, L2, v) 7→ (L2, L1, v) of
Gr × Gr × V̊ induces an antiautomorphism % of the bimodule Rsph such that
%(U(λ,µ)) = U(µ∗,λ∗), and %(hm) = %(m)%(h) for any h ∈ Hsph, m ∈ Rsph. Clearly,
U±1U(λ,µ) = U(λ±1N ,µ) and U(λ,µ)U

±1 = U(λ,µ±1N ).

3.3. Structure constants

In this subsection we will compute the structure constants G(λ,µ)
(1r)(λ′,µ′) such that

U(1r)U(λ′,µ′) =
∑

(λ,µ)∈RBsph G
(λ,µ)
(1r)(λ′,µ′)U(λ,µ) (see Proposition 10 below). Due to

the existence of the automorphisms φi,j of Rsph, it suffices to compute G(λ,µ)
(1r)(λ′,µ′)

for λ′, µ′ ∈ NN . In this case λ, µ necessarily lie in NN as well, that is, all the
four λ′, µ′, λ, µ are partitions (with N parts). We have λ = (λ1, . . . , λN ); we may
and will assume that λ1 > 0. We set n := |λ| + |µ|, and let D = kn. We fix a
nilpotent endomorphism u of D and a vector v ∈ D such that the type of GL(D)-
orbit of the pair (u, v) is (λ, µ) (see [14, Theorem 1]). By the definition of the
structure constants in the spherical mirabolic bimodule, G(λ,µ)

(1r)(λ′,µ′) is the number
of r-dimensional vector subspaces W ⊂ Ker(u) such that the type of the pair
(u|D/W , v (mod W )) is (λ′, µ′).

To formulate the answer we need to introduce certain auxiliary data in
Ker(u). First of all, uλ1−1v is a nonzero vector in Ker(u). We consider the pair
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of partitions (ν, θ) = Υ(λ, µ) (notations introduced before Corollary 1 of [14]), so
that ν = λ + µ is the Jordan type of u. We consider the dual partitions ν̃, θ̃. We
consider the following flag of subspaces of Ker(u):

F ν̃ν1 := Ker(u) ∩ Im(uν1−1) ⊂ F ν̃ν2 := Ker(u) ∩ Im(uν2−1) ⊂ · · ·
⊂ F ν̃2 := Ker(u) ∩ Im(uνν̃2−1) ⊂ F ν̃1 := Ker(u).

It is an (incomplete, in general) flag of intersections of Ker(u) with the images of
u, u2, u3, . . . . More precisely, for any k = 0, 1, . . . , ν1 we have

Fk := Ker(u) ∩ Im(uk) = F ν̃k+1 and dim(F ν̃k+1) = ν̃k+1.

There is a unique k0 such that uλ1−1v ∈ Fk0 but uλ1−1v 6∈ Fk0+1; namely, we
choose the maximal i such that λi = λ1, and then k0 = νi − 1.

Let Q ⊂ GL(Ker(u)) be the stabilizer of the flag F•, a parabolic subgroup of
GL(Ker(u)); and let Q′ ⊂ Q be the stabilizer of the vector uλ1−1v. Both Q and
Q′ have finitely many orbits in the Grassmannian Gr of r-dimensional subspaces
in Ker(u). The orbits of Q are numbered by the compositions ρ = (ρ1, . . . , ρν1)
such that |ρ| = r and 0 ≤ ρk ≤ ν̃k − ν̃k+1. Namely, W ∈ Gr lies in the orbit Oρ iff
dim(W ∩Fk) = ρk+1 + · · ·+ρν1 ; equivalently, dim(W +Fk) = ν̃k+1 +ρ1 + · · ·+ρk.
If we extend the flag F• to a complete flag in Ker(u), then the stabilizer of the
extended flag is a Borel subgroup B ⊂ Q. The orbit Oρ is a union of certain B-
orbits in Gr, that is, Schubert cells. So the cardinality of Oρ is a sum of powers
of q given by the well known formula for the dimension of the Schubert cells (see
e.g. Appendix to Chapter II of [8]). We will denote this cardinality by Pρ. Note
that the Jordan type of u|D/W for W ∈ Oρ is ν′ := ρ(ν) where ρ(ν) is defined
as the partition dual to ν̃′ = (ν̃′1, ν̃

′
2, . . .) where ν̃′k := ν̃k+1 + dim(W + Fk−1) −

dim(W + Fk) = ν̃k − ρk.
Now each Q-orbit Oρ in Gr splits as a union

⊔
0≤j≤ν1 Oρ,j of Q′-orbits.

Namely, W ∈ Oρ lies in Oρ,j iff uλ1−1v ∈W +Fj but uλ1−1v 6∈W +Fj+1 (so that
for some j, e.g. j < k0, Oρ,j may be empty). The type of (u|D/W , v (mod W )) for
W ∈ Oρ,j is (ν′, θ′) := (ρ, j)(ν, θ) where ν′ = ρ(ν) and θ′ is defined as the partition
dual to θ̃′ = (θ̃′1, θ̃

′
2, . . .) where θ̃′k := θ̃k+1 + dim(W +Fk−1 + kuλ1−1v)−dim(W +

Fk + kuλ1−1v). Finally, note that

dim(W + Fk−1 + kuλ1−1v)− dim(W + Fk + kuλ1−1v)

=

{
dim(W + Fk−1)− dim(W + Fk) = ν̃k − ν̃k+1 − ρk if j 6= k − 1,
dim(W + Fk−1)− dim(W + Fk)− 1 = ν̃k − ν̃k+1 − ρk − 1 if j = k − 1.

It remains to find the cardinality Pρ,j of Oρ,j . Let us denote uλ1−1v by v′ for
short. Then v′ ∈ Fk0 , v′ ∈W + Fj , v′ 6∈ Fk0+1, v′ 6∈W + Fj+1, thus

v′ ∈ A := {(W + Fj) ∩ Fk0} \ ({(W + Fj) ∩ Fk0+1} ∪ {(W + Fj+1) ∩ Fk0}).
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The cardinality of A equals

PA := qdim(W+Fj)∩Fk0 − qdim(W+Fj)∩Fk0+1

− qdim(W+Fj+1)∩Fk0 + qdim(W+Fj+1)∩Fk0+1 ,

while for any i > l we have

dim(W +Fi)∩Fl = dim(W +Fi) + dimFl−dim(W +Fl) = ν̃i+1 + ρl+1 + · · ·+ ρi.

Now we can count the set of pairs (W, v′) in a relative position (ρ, j) with respect
to F• in two ways. First all v′ in Fk0 \ Fk0+1 (qν̃k0+1 − qν̃k0+2 choices altogether),
and then for each v′ all W in Oρ,j (Pρ,j choices). Second, all W in Oρ (Pρ choices),
and then for each W all v′ in A (PA choices). We find

Pρ,j = Pρ · PA/(qν̃k0+1 − qν̃k0+2). (5)

Note that Pρ,j is a polynomial in q. We conclude that this polynomial computes
the desired structure constant

G
(λ,µ)
(1r)(λ′,µ′) = Pρ,j (6)

where (λ′, µ′) = Ξ(ν′, θ′) (notations introduced before Corollary 1 of [14]), and
(ν′, θ′) = (ρ, j)(ν, θ) where as before we have (ν, θ) = Υ(λ, µ).

Clearly, for any i, j ≥ 0 we have G(λ,µ)
(1r)(λ′,µ′) = G

(λ+iN ,µ+jN )

(1r)(λ′+iN ,µ′+jN )
. Hence for

any (λ, µ), (λ′, µ′) ∈ RBsph we can set

G
(λ,µ)
(1r)(λ′,µ′) := G

(λ+iN ,µ+jN )

(1r)(λ′+iN ,µ′+jN )
for any i, j � 0.

Also, we set
G

(λ,µ)
(λ′,µ′)(1r) := G

(µ∗−1N ,λ∗)

(1N−r)(µ′∗,λ′∗)
. (7)

Thus we have proved the following proposition (the second statement is equivalent
to the first one via the antiautomorphism %).

Proposition 10. Let (λ′, µ′) ∈ RBsph and 1 ≤ r ≤ N − 1. Then

U(1r)U(λ′,µ′) =
∑

(λ,µ)∈RBsph

G
(λ,µ)
(1r)(λ′,µ′)U(λ,µ),

U(λ′,µ′)U(1r) =
∑

(λ,µ)∈RBsph

G
(λ,µ)
(λ′,µ′)(1r)U(λ,µ).

(8)

3.4. Modified bases and generators

The formulas (8) being polynomial in q, we may and will view the Hsph-bimodule
Rsph of GF-invariant functions on Gr×Gr×V̊ as the specialization under q 7→ q of
a Z[q,q−1]-bimodule Rsph over the Z[q,q−1]-algebra Hsph. We extend the scalars
to Z[v,v−1]:

Hsph := Z[v,v−1]⊗Z[q,q−1] H
sph, Rsph := Z[v,v−1]⊗Z[q,q−1] R

sph.

Recall the selfdual basis Cλ of Hsph (see e.g. [5]). In particular, for 1 ≤ r ≤
N−1, C(1r) = (−v)−r(N−r)U(1r). For (λ, µ) ∈ RBsph with ν = λ+µ, we denote by
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`(λ, µ) the sum d(ν) + |λ| with |λ| := λ1 + · · ·+λN and d(ν) := |ν|(N − 1)− 2n(ν)
where n(ν) =

∑N
i=1(i− 1)νi.

We introduce a new basis {H(λ,µ) := (−v)−`(λ,µ)U(λ,µ)} of Rsph. We con-
sider the elements (iN , jN ) = ((i, . . . , i), (j, . . . , j)) ∈ RBsph for any i, j ∈ Z. The
following lemma is proved the same way as Lemma 1.

Lemma 2. Rsph is generated by {H(iN ,jN ) | i, j ∈ Z} as an Hsph-bimodule.

3.5. Geometric interpretation and the completed bimodule R̂sph

Following the pattern of Subsection 2.6 we define the category DGO
(Gr× V̊) on

which DGO
(Gr) acts by convolution (both on the left and on the right). Similarly

to Proposition 4, we have (in obvious notations):

Proposition 11. The Goresky–MacPherson sheaf j(λ,µ)
!∗ Ql[`(λ, µ)](`(λ, µ)/2) is Tate

for any (λ, µ) ∈ RBsph.

We also have the full subcategories of Tate sheaves DTate
GO

(Gr) ⊂ DGO
(Gr)

and DTate
GO

(Gr × V̊) ⊂ DGO
(Gr × V̊). Furthermore, DTate

GO
(Gr) is closed under

convolution, and DTate
GO

(Gr × V̊) is closed under both right and left convolution
with DTate

GO
(Gr). The K-ring K(DTate

GO
(Gr)) is isomorphic to Hsph, and this iso-

morphism sends the class of the selfdual Goresky–MacPherson sheaf on the orbit
closure Grλ to Cλ. The K-group K(DTate

GO
(Gr × V̊)) forms an Hsph-bimodule

isomorphic to a completion R̂sph of Rsph we presently describe.
The connected components of Gr × V̊ are numbered by Z: a pair (L, v)

lies in the connected component (Gr × V̊)i where i = dim(L). We will say that
(λ, µ) ∈ RBsph

i if the corresponding orbit lies in (Gr×V̊)i; equivalently,
∑N
j=1 λj+∑N

j=1 µj = i. Note that for any i, k ∈ Z there are only finitely many (λ, µ) ∈ RBsph

such that (λ, µ) ∈ RBsph
i and `(λ, µ) = k.

We define R̂sph to be the direct sum
⊕

i∈Z R̂
sph
i where R̂

sph
i is formed by all

the formal sums
∑

(λ,µ)∈RBsph
i

a(λ,µ)H(λ,µ) with a(λ,µ) ∈ Z[v,v−1] and a(λ,µ) = 0

for `(λ, µ) � 0. So we have K(DTate
GO

(Gr × V̊)) ' R̂sph as Hsph-bimodules, and
the isomorphism takes the class [j(λ,µ)

! Ql[`(λ, µ)](`(λ, µ)/2)] to H(λ,µ).

3.6. Bruhat order, duality and the Kazhdan–Lusztig basis

Following Achar and Henderson [1], we define a partial order (λ, µ) ≤ (λ′, µ′) on a
connected component RBsph

i : we say (λ, µ) ≤ (λ′, µ′) iff λ1 ≤ λ′1, λ1+µ1 ≤ λ′1+µ′1,
λ1 +µ1 +λ2 ≤ λ′1 +µ′1 +λ′2, λ1 +µ1 +λ2 +µ2 ≤ λ′1 +µ′1 +λ′2 +µ′2, . . . (in the end we
have

∑N
k=1 λk +

∑N
k=1 µk =

∑N
k=1 λ

′
k +

∑N
k=1 µ

′
k = i). The following proposition

is due to Achar and Henderson (Theorem 3.9 of [1]):

Proposition 12. For (λ, µ), (λ′, µ′) ∈ RBsph
i the GO-orbit Ω(λ,µ) ⊂ Gr× V̊ lies in

the orbit closure Ω̄(λ′,µ′) iff (λ, µ) ≤ (λ′, µ′).
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Now we will describe the involution on R̂sph induced by the Grothendieck–
Verdier duality on Gr× V̊. Recall the elements (iN , jN ) introduced in 3.4. We set
H̃(iN ,jN ) :=

∑
k≤0(−v)NkH((i−k)N ,(j+k)N ). This is the class of the selfdual (geo-

metrically constant) IC-sheaf on the closure of the orbit Ω(iN ,jN ). The following
propositions are proved exactly as Propositions 6 and 7:

Proposition 13. (a) There exists a unique involution r 7→ r on R̂sph such that
H̃(iN ,jN ) = H̃(iN ,jN ) for any i, j ∈ Z, and hr = hr and rh = rh for any
h ∈ Hsph and r ∈ R̂sph.

(b) The involution in (a) is induced by the Grothendieck–Verdier duality on
Gr× V̊.

Proposition 14. (a) For each (λ, µ) ∈ RBsph there exists a unique element
H̃(λ,µ) ∈ R̂sph such that H̃(λ,µ) = H̃(λ,µ) and H̃(λ,µ) ∈ H(λ,µ) +∑

(λ′,µ′)<(λ,µ) v
−1Z[v−1]H(λ′,µ′).

(b) For each (λ, µ) ∈ RBsph the element H̃(λ,µ) is the class of the selfdual GO-
equivariant IC-sheaf with support Ω̄(λ,µ). In particular, for (λ, µ) = (iN , jN ),
the element H̃(iN ,jN ) is consistent with the notation introduced before Propo-
sition 13.

We will write

H̃(λ,µ) =
∑

(λ′,µ′)≤(λ,µ)

Π(λ′,µ′),(λ,µ)H(λ′,µ′). (9)

The coefficients Π(λ′,µ′),(λ,µ) are polynomials in v−1. As we will see in Subsec-
tion 4.2 below, they coincide with a generalization of Kostka–Foulkes polynomials
introduced by Shoji in [12].

We define a sub-bimodule R̃sph ⊂ R̂sph generated (not topologically) by the
set {H̃(λ,µ) | (λ, µ) ∈ RBsph}. It turns out to be a free Hsph-bimodule of rank one:

Theorem 1. CλH̃(0N ,0N )Cµ = H̃(λ,µ).

The proof will be given in Subsection 3.9 after we introduce the necessary
ingredients in 3.7 and 3.8.

3.7. Lusztig’s construction

Following Lusztig (see [5, Section 2]) we will prove that the G-orbit closures
in N × V are equisingular to (certain open pieces of) the GO-orbit closures in
Gr× V̊. So we set E = V ⊕ · · · ⊕ V (N copies), and let t : E → E be de-
fined by t(v1, . . . , vN ) = (0, v1, . . . , vN−1). Let Y be the variety of all pairs (E′, e)
where E′ ⊂ E is an N -dimensional t-stable subspace, and e ∈ E′. Let Y0 be the
open subvariety of Y consisting of those pairs (E′, e) in which E′ is transversal to
V ⊕· · ·⊕V ⊕0. According to [5], Y0 is isomorphic to N×V , the isomorphism sending
(u, v) to (E′ = (uN−1w, uN−2w, . . . , uw,w)w∈V , e = (uN−1v, uN−2v, . . . , uv, v)).
Now E is naturally isomorphic to (t−Nk[[t]]/k[[t]]) ⊗ V (together with the ac-
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tion of t), and the assignment (E′, e) 7→ (L := E′ ⊕ k[[t]] ⊗ V, e) embeds Y into
Gr(N,0,...,0) ×V. We will denote the composite embedding N × V ↪→ Gr×V by
ψ : (u, v) 7→ (L(u, v), e(u, v)). There is an open subset W ⊂ k[[t]] ⊗ V with the
property that for any w ∈ W and any (u, v) ∈ (N × V )(λ,µ) (a G-orbit, see [14,
Theorem 1]), we have (L(u, v), e(u, v) + w) ∈ Ω(λ,µ) (the corresponding GO-orbit
in Gr× V̊). Moreover, the resulting embedding W× (N × V )(λ,µ) ↪→ Ω(λ,µ) is an
open embedding. Also, the embedding W× (N × V )(λ,µ) ↪→ Ω̄(λ,µ) of the orbit clo-

sures is open as well. Hence the Frobenius action on the IC stalks of (N × V )(λ,µ)

is encoded in the polynomials Π(λ′,µ′),(λ,µ) introduced after Proposition 14.

3.8. Mirković–Vybornov construction

The GO-orbits Ω(λ,µ) ⊂ Gr × V̊ considered in Subsection 3.7 are rather special:
all the components λk, µk are nonnegative integers, and

∑N
k=1 λk +

∑N
k=1 µk = N .

To relate the singularities of more general orbit closures Ω̄(λ′,µ′) to the singulari-
ties of orbits in the enhanced nilpotent cones (for different groups GLn, n 6= N)
we need a certain generalization of Lusztig’s construction, due to Mirković and
Vybornov [11].

To begin, note that the assignment φi,j : (L, v) 7→ (t−i−jL, t−iv) is a GO-
equivariant automorphism of Gr×V̊ sending Ω(λ,µ) to Ω(λ+iN ,µ+jN ). Thus we may
restrict ourselves to the study of orbits Ω(λ,µ) with λ, µ ∈ NN without restricting
generality. Geometrically, this means to study the pairs (L, v) such that L ⊃ L1 =
O〈e1, . . . , eN 〉 and L 3 v 6∈ L1.

Let n = rN for r ∈ N. We consider an n-dimensional k-vector space D
with a basis {ek,i | 1 ≤ k ≤ r, 1 ≤ i ≤ N} and a nilpotent endomorphism
x : ek,i 7→ ek−1,i, e1,i 7→ 0. The Mirković–Vybornov transversal slice is defined as
Tx := {x + f | f ∈ End(D), f l,jk,i = 0 if k 6= r}. Its intersection with the nilpotent
cone of End(D) is Tx ∩Nn.

Let L2 ∈ Gr be given as L2 = t−rL1. It lies in the orbit closure Gr(n,0,...,0),
and we will describe an open neighbourhood U of L2 in Gr(n,0,...,0) isomorphic to
Tx∩Nn. We choose a direct complement to L2 in V so that L2 := t−r−1k[t−1]⊗V .
Then U is formed by all the lattices whose projection along L2 is an isomorphism
onto L2. Any L ∈ U is of the form (1+g)L2 where g : L2 → L2 is a linear map with
kernel containing L1, i.e. g : L2/L1 → L2. Now we use the natural identification of
L2/L1 with D (so that the action of t corresponds to the action of x). Furthermore,
we identify t−rV with a subset of L2/L1 = D. Hence we may view g as a sum∑∞
k=1 t

−kgk where gk : D → t−rV are linear maps. Composing with t−rV ↪→ D
we may view gk as an endomorphism of D. Then L being a lattice is equivalent to
the condition that gk = g1(t+ g1)k−1 and t+ g1 is nilpotent. In other words, the
desired isomorphism Tx ∩Nn

∼→ U is of the form

Tx ∩Nn 3 x+ f 7→ L = L(x+ f) :=
(

1 +
∞∑
k=1

t−kf(t+ f)k−1
)
L2.
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Now we identify D with t−1V ⊕ · · · ⊕ t−rV ⊂ L2. Given a vector v ∈ D we
consider its image v ∈ L2 under the above embedding, and define e(x + f, v) ∈
L(x + f) as the preimage of v under the isomorphism L

∼→ L2 (projection along
L2). Thus we have constructed an embedding ψ : (Tx ∩ Nn) × D ↪→ Gr × V,
(x + f, v) 7→ (L(x + f), e(x + f, v)). Note that the Jordan type of any nilpotent
x+ f is given by a partition ν with the number of parts less than or equal to N .
There is an open subset W ⊂ k[[t]] ⊗ V with the property that for any w ∈ W

and any (x+ f, v) ∈ ((Tx ∩Nn)× V )(λ,µ) (the intersection with a GLn-orbit), we
have (L(x+ f), e(x+ f, v) +w) ∈ Ω(λ,µ) (the corresponding GO-orbit in Gr× V̊).
Moreover, the resulting embedding W × ((Tx ∩ Nn) × D)(λ,µ) ↪→ Ω(λ,µ) is an
open embedding. Also, the embedding W × ((Tx ∩Nn)× V )(λ,µ) ↪→ Ω̄(λ,µ) of the
intersection with the orbit closure is an open embedding as well.

We conclude that the orbit closures Ω̄(λ,µ) with
∑N
k=1 λk+

∑N
k=1 µk divisible

by N are equisingular to certain GLn-orbit closures in Nn×D for some n divisible
by N .

3.9. Semismallness of convolution

We are ready for the proof of Theorem 1. Let us denote the selfdual Goresky–
MacPherson sheaf on the orbit Grλ (whose class is Cλ) by ICλ for short. Then
the convolution power IC∗l(1,0,...,0) is isomorphic to

⊕
|λ|=lKλ ⊗ ICλ for certain

vector spaces Kλ (equal to the multiplicities of irreducible GLN -modules in V ⊗l).
We stress that Kλ is concentrated in degree 0, that is, the convolution morphism
is stratified semismall. Thus it suffices to prove

IC∗l(1,0,...,0) ∗ IC(0N ,0N ) ∗ IC∗m(1,0,...,0) '
⊕
|µ|=m
|λ|=l

Kµ ⊗Kλ ⊗ IC(λ,µ). (10)

Moreover, it suffices to prove (10) for m, l divisible by N . In fact, this would imply
that the convolution morphism Gr∗l(1,0,...,0) ∗ Ω̄(0N ,0N ) ∗Gr∗m(1,0,...,0) → Gr × V̊ is
stratified semismall for any m, l ≥ 0. Indeed, if the direct image of the constant IC-
sheaf under the above morphism involved some summands with nontrivial shifts in
the derived category, the further convolution with IC(1,0,...,0) could not possibly kill
the nontrivially shifted summands (due to selfduality and decomposition theorem),
and so they would persist for some larger m, l divisible by N .

Having established the semismallness for arbitrary m, l ≥ 0, we see that the
semisimple abelian category formed by direct sums of IC(λ,µ), (λ, µ) ∈ RBsph, is
a bimodule category over the tensor category formed by direct sums of ICλ, λ ∈
Ssph
N (equivalent by Satake isomorphism to Rep(GLN )). To specify such a bi-

module category it suffices to specify the left and right action of the generator
IC(1,0,...,0), and there is only one action satisfying (10) with m, l divisible by N : it
necessarily satisfies (10) for any m, l.

We set n = m+ l. The advantage of having n divisible by N is that according
to 3.8, the (open part of the) orbit closure is equisingular to a certain slice of the
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GLn-orbit closure in Nn×D. To describe the convolution diagram in terms of GLn
we need to recall a Springer type construction of [3, 5.4].

So Ỹn,m is the smooth variety of triples (u, F•, v) where F• is a complete flag
in the n-dimensional vector space D, and u is a nilpotent endomorphism of D such
that uFk ⊂ Fk−1, and v ∈ Fn−m. We have a proper morphism πn,m : Ỹn,m →
Nn ×D with the image Yn,m ⊂ Nn ×D formed by all the pairs (u, v) such that
dim〈v, uv, u2v, . . .〉 ≤ n−m. It follows from the proof of [3, Proposition 5.4.1] that
πn,m is a semismall resolution of singularities, and

(πn,m)∗IC(Ỹn,m) '
⊕
|µ|=m
|λ|=n−m

Lµ⊗Lλ⊗IC(λ,µ) (11)

where Lµ (resp. Lλ) is the irreducible representation of Sm (resp. Sn−m) corre-
sponding to the partition µ (resp. λ); furthermore, IC(λ,µ) is the IC-sheaf of the
GLn-orbit closure (Nn ×D)(λ,µ) (cf. Theorem 4.5 of [1]).

Recall the nilpotent element x ∈ Nm introduced in 3.8, and the slice Tx∩Nn.
We will denote π−1

n,m((Tx∩Nn)×D) by T Ỹn,m ⊂ Ỹn,m. Recall the open embedding
ϕ : W × ((Tx ∩ Nn) ×D) ↪→ Ω̄(n,0,...,0),(0N ) of 3.8. Let us denote the convolution
diagram Gr∗l(1,0,...,0) ∗ Ω̄(0N ,0N ) ∗Gr∗m(1,0,...,0) by Ω̃(l,0,...,0),(m,0,...,0) for short; let us
denote its morphism to Ω̄(n,0,...,0),(0N ) (with the image Ω̄(l,0,...,0),(m,0,...,0)) by $n,m.
Finally, let us denote the preimage under $n,m of ϕ(W × ((Tx ∩ Nn) × D)) by
T Ω̃(l,0,...,0),(m,0,...,0). The next lemma follows by comparison of definitions:

Lemma 3. We have a commutative diagram

W× T Ỹn,m
∼−−−−→ T Ω̃(l,0,...,0),(m,0,...,0)yid×πn,m $n,m

y
W× ((Tx ∩Nn)×D)

ϕ−−−−→ Ω̄(n,0,...,0),(0N )

Since Lλ = Kλ by Schur–Weyl duality, the proof of the theorem is finished. �

Remark 2. Due to Lusztig’s construction of 3.7, Theorem 1 implies Proposition 4.6
of [1].

4. Mirabolic Hall bimodule

4.1. Recollections

The field k is still Fq. The Hall algebra Hall = HallN of all finite k[[t]]-modules
which are direct sums of ≤ N indecomposable modules is defined as in [8, II.2].
It is a quotient algebra of the “universal” Hall algebra H(k[[t]]) of [8]. It has a
basis {uλ} where λ runs through the set +Ssph

N of partitions with ≤ N parts.
It is a free polynomial algebra with generators {u(1r) | 1 ≤ r ≤ N − 1}. The
structure constants Gλµν being polynomial in q, we may and will view Hall as
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the specialization under q 7→ q of a Z[q,q−1]-algebra Hall. Extending scalars to
Z[v,v−1] we obtain a Z[v,v−1]-algebra Ha``.

Let Λ = ΛN denote the ring of symmetric polynomials in the variables X =
(X1, . . . , XN ) over Z[v,v−1]. There is an isomorphism Ψ : Ha``

∼→ Λ sending u(1r)

to v−r(r−1)er (elementary symmetric polynomial), and uλ to v−2n(λ)Pλ(X,v−2)
([8, Chapter III]) where Pλ(X,v−2) is the Hall–Littlewood polynomial and n(λ) =∑N
i=1(i− 1)λi. Let us denote by +Hsph the subalgebra of Hsph spanned by {Uλ |

λ ∈ +Ssph
N }. Then we have a natural identification of +Hsph with Ha`` sending Uλ

to uλ, and Cλ to cλ. Furthermore, Ψ(cλ) = (−v)−(N−1)|λ|sλ (Schur polynomial).

4.2. The Mirabolic Hall bimodule

A finite k[[t]]-module which is a direct sum of ≤ N indecomposable modules is the
same as a k-vector space D with a nilpotent operator u with ≤ N Jordan blocks.
The isomorphism classes of pairs (u, v) (where v ∈ D) are numbered by the set
+RBsph of pairs of partitions (λ, µ) with ≤ N parts in λ and ≤ N parts in µ.
We define the structure constants G(λ,µ)

(λ′,µ′)ν and G
(λ,µ)
ν(λ′,µ′) as follows.1 G(λ,µ)

ν(λ′,µ′) is
the number of u-invariant subspaces D′′ ⊂ D such that the isomorphism type
of u|D′′ is given by ν, and the isomorphism type of (u|D/D′′ , v (mod D′′)) is
given by (λ′, µ′). Furthermore, G(λ,µ)

(λ′,µ′)ν is the number of u-invariant subspaces
D′ ⊂ D containing v such that the isomorphism type of (u|D′ , v) is given by
(λ′, µ′), and the isomorphism type of u|D/D′ is given by ν. Note that some similar
quantities were introduced in Proposition 5.8 of [1]: in notations there, we have
gλ;µ
θ;ν =

∑
λ′+µ′=θ G

(λ,µ)
(λ′,µ′)ν .

Lemma 4. For any +RBsph 3 (λ, µ), (λ′, µ′), 1 ≤ r ≤ N − 1, the structure con-
stants G(λ,µ)

(1r)(λ′,µ′) and G(λ,µ)
(λ′,µ′)(1r) are given by the formulas (6) and (7).

Proof. Was given in Subsection 3.3. �

We define the mirabolic Hall bimodule Mall over Hall to have a Z-basis
{u(λ,µ) | (λ, µ) ∈ +RBsph} and the structure constants

uνu(λ′,µ′) =
∑

(λ,µ)∈+RBsph

G
(λ,µ)
ν(λ′,µ′)u(λ,µ), u(λ′,µ′)uν =

∑
(λ,µ)∈+RBsph

G
(λ,µ)
(λ′,µ′)νu(λ,µ).

The structure constants G
(λ,µ)
(λ′,µ′)(1r) and G

(λ,µ)
(1r)(λ′,µ′) for the generators of Hall

being polynomial in q, we may and will view Mall as the specialization under
q 7→ q of a Z[q,q−1]-bimodule Mall over the Z[q,q−1]-algebra Hall. Extend-
ing scalars to Z[v,v−1] we obtain a Z[v,v−1]-bimodule Ma`` over the Z[v,v−1]-
algebra Ha``. Let us denote by +Rsph the +Hsph-subbimodule of Rsph spanned by

1The notation G
(λ,µ)
(λ′,µ′)(1r) and G

(λ,µ)
(1r)(λ′,µ′) introduced in Subsection 3.3 is just a particular case

of the present one for ν = (1r) as we will see in Lemma 4.
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{U(λ,µ) | (λ, µ) ∈ +RBsph}. Then we have a natural identification of +Rsph with
Ma`` sending U(λ,µ) to u(λ,µ). For (λ, µ) ∈ +RBsph we set

+C(λ,µ) :=
∑

+RBsph3(λ′,µ′)≤(λ,µ)

Π(λ′,µ′),(λ,µ)H(λ′,µ′)

(notation introduced after Proposition 14). We define c(λ,µ) ∈Ma`` as the element
corresponding to +C(λ,µ) under the above identification.

Theorem 1 has the following corollary:

Corollary 1. For any λ, µ ∈ +Ssph
N we have cλc(0N ,0N )cµ = c(λ,µ).

Hence there is a unique isomorphism Ψ : Ma``
∼→ Λ ⊗ Λ of Ha`` ' Λ-

bimodules sending c(λ,µ) to (−v)−(N−1)(|λ|+|µ|)sλ ⊗ sµ. We define

Λ⊗ Λ 3 P(λ,µ)(X,Y,v−1) := (−v)2n(λ)+2n(µ)+|µ|Ψ(u(λ,µ))

(mirabolic Hall–Littlewood polynomials).
Thus the polynomials Π(λ′,µ′),(λ,µ) are the matrix coefficients of the transition

matrix from the basis {P(λ,µ)(X,Y,v−1)} to the basis {sλ(X)sµ(Y )} of Λ ⊗ Λ.
It follows from Theorem 5.2 of [1] that the mirabolic Hall–Littlewood polynomial
P(λ,µ)(X,Y,v−1) coincides with Shoji’s Hall–Littlewood function P±(λ,µ)(X,Y,v

−1)
(see Section 2.5 and Theorem 2.8 of [12]).

5. Frobenius traces in mirabolic character sheaves

5.1. Unipotent mirabolic character sheaves

Recall the construction of certain mirabolic character sheaves in [3, 5.4]. So X̃n,m
is the smooth variety of triples (g, F•, v) where F• is a complete flag in an n-
dimensional vector space D, and v ∈ Fm, and g is an invertible linear trans-
formation of D preserving F•. We have a proper morphism πn,m : X̃n,m →
GLn × D with the image Xn,m ⊂ GLn × D formed by all the pairs (g, v) such
that dim〈v, gv, g2v, . . .〉 ≤ n−m. According to [3, Corollary 5.4.2], we have

(πn,m)∗IC(X̃n,m) '
⊕
|µ|=m
|λ|=n−m

Lµ⊗Lλ⊗Fλ,µ (12)

for certain irreducible perverse mirabolic character sheaves Fλ,µ on GLn ×D.
Following [AH], we set b(λ, µ) := 2n(λ)+2n(µ)+|µ|, so that b(λ′, µ′)−b(λ, µ)

equals the codimension of Ω(λ′,µ′) in Ω̄(λ,µ), and the codimension of (Nn×D)(λ′,µ′)

in (Nn ×D)(λ,µ).

Theorem 2. Let (u, v) ∈ (Nn × D)(λ′,µ′)(Fq). The trace of the Frobenius auto-
morphism of the stalk of Fλ,µ at (u, v) equals

√
qb(λ

′,µ′)−b(λ,µ)Π(λ′,µ′),(λ,µ)(
√
q)

(see (9)).
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Proof. We identify the nilpotent cone Nn and the variety of unipotent elements
of GLn by adding the identity matrix, so that we may view Nn ⊂ GLn. Then
Xn,m∩(Nn×D) = Yn,m, and π−1

n,m(Xn,m∩(Nn×D)) = Ỹn,m (notations of the proof
of Theorem 1). Comparing (12) with (11), we see that Fλ,µ|Nn×D ' IC(λ,µ). Hence
the trace of Frobenius in the stalk of Fλ,µ at (u, v) equals the trace of Frobenius
in the stalk of IC(λ,µ) at (u, v). The latter is equal to the matrix coefficient of
the transition matrix from the basis {j!Ql(Nn×D)(λ′,µ′)

[n2 − b(λ′, µ′)]} to the basis

{j!∗Ql(Nn×D)(λ,µ)
[n2 − b(λ, µ)]}. And the latter by construction, up to the factor

of
√
qb(λ

′,µ′)−b(λ,µ), is equal to Π(λ′,µ′),(λ,µ)(
√
q). �

5.2. Gm-equivariant mirabolic character sheaves

More generally, we recall the notion [4] of mirabolic character sheaves equivariant
with respect to the dilation action of Gm on D. Let B be the flag variety of GL(D),
let B̃ be the base affine space of GL(D), so that B̃ → B is a GL(D)-equivariant
H-torsor, where H is the abstract Cartan torus of GL(D). Let Y be the quotient
of B̃ × B̃ modulo the diagonal action of H; it is called the horocycle space of
GL(D). Clearly, Y is an H-torsor over B × B with respect to the right action
(x̃1, x̃2) · h := (x̃1 · h, x̃2). We consider the following diagram of GL(D)-varieties
and GL(D)×Gm-equivariant maps:

GL(D)×D pr←− GL(D)×B×D f→ Y×D.
In this diagram, the map pr is given by pr(g, x, v) := (g, v). To define the map f ,
we think of B as B̃/H, and for a representative x̃ ∈ B̃ of x ∈ B we set f(g, x, v) :=
(gx̃, x̃, gv). The group GL(D) acts diagonally on all the product spaces in the
above diagram, and acts on itself by conjugation. The group Gm acts by dilations
on D.

The functor CH from the constructible derived category of l-adic sheaves on
Y × D to the constructible derived category of l-adic sheaves on GL(D) × D is
defined as CH := pr∗ f ![−dim B]. Now let F be a GL(D) × Gm-equivariant, H-
monodromic perverse sheaf on Y × D. The irreducible perverse constituents of
CHF are called Gm-equivariant mirabolic character sheaves on GL(D) × D. We
define a Gm-equivariant mirabolic character sheaf as a direct sum of the above
constituents for various F as above. The semisimple abelian category of Gm-
equivariant mirabolic character sheaves will be denoted MC(GL(D)×D). Clearly,
this is a direct analogue of Lusztig’s definition of character sheaves. The semisimple
abelian category of character sheaves on GL(D) will be denoted C(GL(D)).

5.3. Left and right induction

Following Lusztig’s construction of induction of character sheaves, we define the
left and right action of Lusztig’s character sheaves on the mirabolic character
sheaves (for varying D). To this end it will be notationally more convenient to
consider MC(GL(D)×D) (resp. C(GL(D))) as a category of perverse sheaves on the
quotient stack GL(D)\(GL(D)×D) (resp. GL(D)\GL(D)). Let m ≤ n = dim(D),
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let V be an n − m-dimensional k-vector space, and let W be an m-dimensional
k-vector space. We have the following diagrams:

GL(D)\(GL(D)×D)
p← A

q→ GL(V )\GL(V )×GL(W )\(GL(W )×W ), (13)

GL(D)\(GL(D)×D) d← B
b→ GL(V )\(GL(V )× V )×GL(W )\GL(W ). (14)

Here A is the quotient stack of Ã by the action of GL(D), where

Ã := {(g ∈ GL(D), F ⊂ D, v ∈ D) | dimF = n−m and gF = F},
and p forgets F , while q sends (g, F, v) to (g|F ; (g|D/F , v (mod F ))) (under an
arbitrary identification V ' F , W ' D/F ). Note that p is proper, and q is
smooth of relative dimension n−m.

Furthermore, B is the quotient stack of B̃ by the action of GL(D), where

B̃ := {(g ∈ GL(D), F ⊂ D, v ∈ F ) | dimF = n−m and gF = F},
and d forgets F , while b sends (g, F, v) to ((g|F , v); g|D/F ) (under an arbitrary
identification V ' F , W ' D/F ). Note that d is proper, and b is smooth of
relative dimension 0.

Finally, for a character sheaf G ∈ C(GL(V )) and a mirabolic character sheaf
F ∈MC(GL(W )×W ) we define the left convolution G ∗ F := p!q

∗(G � F)[n−m].
Similarly, for a character sheaf G′ ∈ C(GL(W )) and a mirabolic character sheaf
F′ ∈MC(GL(V )× V ) we define the right convolution F′ ∗ G′ := d!b

∗(F′ � G′).
Note that the definition of convolution works in the extreme cases m = 0

or n − m = 0 as well: if dimV = 0, then GL(V ) is just the trivial group. The
following proposition is proved like Proposition 4.8.b) in [7].

Proposition 15. Both G ∗ F and F′ ∗ G′ are Gm-equivariant mirabolic character
sheaves on GL(D)×D.

We denote by Ql the unique Gm-equivariant mirabolic character sheaf on
GL(D)×D for dim(D) = 0.

Proposition 16. Let G ∈ C(GL(V )) and G′ ∈ C(GL(W )) be irreducible character
sheaves. Then G ∗Ql ∗ G′ is irreducible.

Proof. Let dim(D) = n, dim(W ) = m, dim(V ) = n−m. Recall the diagram (14),
and denote by r : GL(V )\(GL(V ) × V ) → GL(V )\GL(V ) the natural projection
(forgetting the vector v). Then

G ∗Ql ∗ G′ = d!b
∗(r∗G � G′[n−m]).

The sheaf b∗(r∗G � G′[n − m]) is irreducible perverse on B; more precisely, it is
the intermediate extension of a local system on an open part of B. The image
of the proper morphism d coincides with GL(D)\Xn,m (notations of 5.1), and
d : B → GL(D)\Xn,m is generically an isomorphism: F is reconstructed as F =
〈v, gv, g2v, . . .〉. Finally, the arguments absolutely similar to the proof of Proposi-
tion 4.5 of [6] prove that d is stratified small. This implies that d!b

∗(r∗G�G′[n−m])
is irreducible. �
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Conjecture 1. Any irreducible Gm-equivariant mirabolic character sheaf on
GL(D)×D is isomorphic to G∗Ql∗G′ for some G ∈ C(GL(V )) and G′ ∈ C(GL(W ))
where dim(V ) + dim(W ) = dim(D).

5.4. Mirabolic Green bimodule

Once again k = Fq. We will freely use the notation of Chapter IV of [8]. In partic-
ular, Φ is the set of Frobenius orbits in F×q , or equivalently, the set of irreducible
monic polynomials in Fq[t] with the exception of f = t. We consider the set of
isomorphism classes (D, g, v) where D is a k-vector space, v ∈ D, and g is an
invertible linear operator D → D. Similarly to [8, Section 2] we identify this set
with the set of finitely supported functions (λ,µ) : Φ→ P× P to the set of pairs
of partitions. Note that dim(D) = |(λ,µ)| :=

∑
f∈Φ deg(f)(|λ(f)| + |µ(f)|). Let

c(λ,µ) ⊂ GL(D)×D be the corresponding GL(D)-orbit, and let π(λ,µ) be its char-
acteristic function. Let MA be the Ql-vector space with the basis {π(λ,µ)}. It is
evidently isomorphic to

⊕
n≥0 Ql(GL(kn)× kn)GL(kn).

Recall the Green algebra A =
⊕

n≥0 An of class functions on the groups
GLn(Fq) (see [8, Section 3]; multiplication is given by parabolic induction) with
the basis {πµ} of characteristic functions of conjugacy classes. The construction
of 5.3 equips MA with the structure of an A-bimodule. It is easily seen to be a
free bimodule of rank 1 with a generator π(0,0) given by the zero function (taking
the value of zero bipartition on any f ∈ Φ). The structure constants are as follows
(the proof is similar to [8, (3.1)]).

πνπ(λ′,µ′) =
∑

(λ,µ)

g(λ,µ)
ν(λ′,µ′) π(λ,µ), π(λ′,µ′)πν =

∑
(λ,µ)

g(λ,µ)
(λ′,µ′)ν π(λ,µ), (15)

where
g(λ,µ)

ν(λ′,µ′) =
∏
f∈Φ

G
(λ(f),µ(f))
ν(f)(λ′(f),µ′(f))(q

deg(f)),

g(λ,µ)
(λ′,µ′)ν =

∏
f∈Φ

G
(λ(f),µ(f))
(λ′(f),µ′(f))ν(f)(q

deg(f)).
(16)

Now recall another basis {Sη} of A (see [8, Section 4], numbered by the
finitely supported functions from Θ to P. Here Θ is the set of Frobenius orbits on
the direct limit L of the character groups (F×qn)∨. This is the basis of irreducible
characters. According to Lusztig, for |η| = m, the function Sη is the Frobenius
trace function of an irreducible Weil character sheaf Sη on GLm. Due to Proposi-
tion 16, for |η|+ |η′| = n, the function Sη′π(0,0)Sη is the Frobenius trace function
of an irreducible Gm-equivariant Weil mirabolic character sheaf Sη′ ∗ Ql ∗ Sη on
GL(D)×D, dim(D) = n. We know that the set of functions {Sη′π(0,0)Sη} forms a
basis of the mirabolic Green bimodule MA. Hence, if Conjecture 1 holds true, then
the set of Frobenius trace functions of irreducible Gm-equivariant Weil mirabolic
character sheaves forms a basis of MA. This would be a positive answer to a
question of G. Lusztig.
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[11] I. Mirković and M. Vybornov. Quiver varieties and Beilinson–Drinfeld Grassman-
nians of type A. Preprint math/0712.4160.

[12] T. Shoji. Green functions attached to limit symbols. In: Representation Theory of
Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math. 40, Math. Soc.
Japan, Tokyo, 2004, 443–467.

[13] W. Soergel. Kazhdan–Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln.
Represent. Theory 1 (1997), 37–68.

[14] R. Travkin. Mirabolic Robinson–Shensted–Knuth correspondence. Selecta Math.
(N.S.) 14 (2009), 727–758.



628 M. Finkelberg, V. Ginzburg and R. Travkin Sel. math., New ser.

Michael Finkelberg
Mathematics Department, rm. 517
IMU, IITP and State University Higher School of Economy
20 Myasnitskaya st.
Moscow 101000, Russia
e-mail: fnklberg@gmail.com

Victor Ginzburg
Mathematics Department
University of Chicago
Chicago, IL 60637, USA
e-mail: ginzburg@math.uchicago.edu

Roman Travkin
Mathematics Department
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
e-mail: travkin@math.mit.edu

To access this journal online:
www.birkhauser.ch/sm


