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1. Introduction
In the middle nineties two American scientists – Steven Brams and Alan 
Taylor – suggested a fresh approach to widespread conflict situations.  
In these situations conflict consists of a family of separate disputable 
items (partial conflicts), and conflict resolution can be reduced to 
agreements about each of them. The main idea can be roughly presented 
as follows. Participants have their own values of importance of different 
items that form together a conflict. Because in most cases these values do 
not coincide completely, it is possible to achieve conflict resolution, such 
that both participants receive more than 50% of satisfaction measured in 
their own values.

1.1. Examples
The approach is carefully exposed in very comprehensive books [1, 2].  
In order to clarify the approach two examples taken from [2] are 
considered here. Many other examples of real and hypothetical conflicts 
illustrating wide applicability of the approach can be found in the above 
mentioned books as well as in book [3].
Example 1. Divorse arrangement. Ann and Ben are getting a divorce.

The items that Bob and Carol had to divide were as follows: 
A retirement account (pension), which, though substantial, will remain 
untouchable for several years; they are valuable for both but especially 
for Ann because Ben has more chance to make new account before 
his retirement. A four-bedroom house, located close to Ben’s job; 
therefore Ben values this house higher than Ann. Country cottage that 
can be used at any season, preferable by Ann who intends to live 
there. A portfolio of investments, which has lower monetary value 
than the pension but is all liquid assets.
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Other, consisting of two cars and relatively expensive yacht highly 

valued by Ben.  

In more detail the situation is described in [2]. Valuations of Ann and 

Ben of all the considered items are given in Table 1.  

                                                                                     Table 1 

Item Ann Ben 

Retirement account  50 40 

House 20 30 

Cottage 15 10 

Portfolio 10 10 

Other 5 10 

Total 100 100 

Giving to everyone entire items, it is possible to suggest the following 

division: 

For Ann: retirement account + other  = 50 + 5 = 55; 

For Ben: house + cottage + portfolio = 30 + 10 + 10 = 50. 

Thus, satisfaction with this division is not less than half for both 

participants. The exact notion of optimal or fair division, suggested by 

Brams and Taylor, will be considered further.  

Example 2. Mergers. Disagreements between businesses are common, 

especially when companies merge or are acquired. If each company cares 

more about different parts of an agreement, complex arrangements need 

to be worked out to satisfy both sides. One of the most elusive ingredients 

in the success of a merger is what deal makers euphemistically refer to as 

social issues – how power, position, and status will be allocated among 

the merging companies' executives. A failure to resolve these issues often 

leads to the destruction of shareholder wealth and the portrayal of top 

executives as petty corporate titans, unable to subordinate their selfish 

interests to the goal of promoting shareholder well-being. 

Social issues concern the more ineffable matters of status, role, and 

prestige in the merged company, as opposed to "hard" financial factors. 

Even if a merger is ultimately consummated, as in the case of Boeing and 

McDonnel Douglas, a failure to agree on the resolution of social issues 
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quickly wastes resources and the extremely valuable time of top 

corporate executives. The difficulty in forging cooperation between two 

management teams is perhaps inevitable, given the transformation that 

their relationship undergoes from the premerger to the post-merger 

period. After all, former adversaries, first in the marketplace and then at 

the negotiating table, are quite suddenly expected to work closely 

together and cooperate fully as their respective corporate entities attempt 

to meld into a single organization. 

The following social issues are typical for companies’ merger: 

the surviving company's name;  

the location of corporate headquarters;  

the split of the chairman and chief executive officer (CEO) 

positions; 

and, finally, which side will lay off some of its employees, 

particularly corporate executives, to eliminate overlapping 

operations or responsibilities (each company would prefer fewer of 

its own layoffs). 

Suppose that the merging companies' executives negotiate over these 

issues in good faith. Thus, we are concerned with truly intractable issues 

that can be won or lost by either side without undermining the merger's 

objectives. Assume that each side distributes its 100 points across the 

issues, as follows:  

                                                                      Table 2 

Conflict items Firm A Firm B 

1. Name 10 25 

2. Headquarters 20 35 

3. President assignment 15 20 

4. CEO assignment 25 10 

5. Laying off  30 10 

Total 100 100 

It is easy to see that in this hypothetical case each side can receive more 

than a half. For instance, 

For firm A: item 4 + item 5 = 25 + 30 = 55; 
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For firm B: item 1 + item 2 + item 3 = 25 + 35 + 20 = 80. 

However, this arrangement does not seem too fair: firm B receives (in its 

own values) significantly more than firm A receives (in its own values). 

A fair conflict resolution in this case is considered further in the article.  

 

1.2. Notion of fair division 

The considered in section 1.1 conflict situations, despite all the 

differences between them, clear demonstrate two key features, inherent to 

such kind of conflicts:  

a) conflict consists of several items (goods, issues, etc); 

b) participants have their own values of importance of every item.  

These features form the basis of the above mentioned approach to conflict 

resolution. The task of conflict resolution is reduced to fair division – 

namely, to fair division of items importance among conflict participants 

correspondingly to their own evaluations. The fairness of division means 

the fulfillment of certain formal conditions:  

1. Proportionality. Every one of participants thinks he or she 

received a portion that has a size or value of at least 50% in his or 

her own valuation. 

2. Equitability. Each participant thinks that the portion he or she 

receives is worth the same, in terms of his or her valuation, as the 

portion that the other participant receives in terms of that 

participant's valuation.  

3. Efficiency. A division is efficient (Pareto-optimal) if there is no 

other division that is strictly better for at least one participant and 

as good for another. 

1.3. Adjusted-winner procedure  
The authors of book [1] suggested surprisingly simple algorithm of fair 

division named the adjusted-winner (AW) procedure. The initial data 

consist of two sets of natural numbers: a1, …, aN  and b1, …, bN  that are 

valuations of participant A and B  

 =   = 100. 

Let us reorder all the items so that 

a1 ⁄ b1  ≥ a2 ⁄ b2  ≥  ...  ≥ aN ⁄ bN.                               (1) 

The AW procedure of fair division can be presented as follows.  
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Algorithm 1 (AW procedure). 

1. If a1 > , then participant A receives x-th share of item 1, or xa1, 

while participant B receives (1–x)-th share of item 1 and all the other 

items 2, …, N, or (1–x)b1+ , where 

x = 100 ⁄ (a1 + b1); 

the algorithm is completed. 

2. If   ≤ bN, then participant A receives all the items 1, …, N–1 

and x-th share of item N, or  + xaN, while participant B receives 

(1–x)-th share of item N, or (1–x)bN, where  

x = 1 – 100 ⁄ (aN + bN); 

the algorithm is completed. 

3. Starting with 1, increase i up to some value r satisfying conditions  

 ≤  ,                                     (2a) 

 > .                                   (2b) 

4. If there is the equality in (2a), then participant A receives items 1, 2, 

…, r–1, or , while participant B receives items r, r+1, …, N, or 

; the algorithm is completed. 

5. If there is the inequality in (2a), then participant A receives items 1, 2, 

…, r–1 and x-th share of item r, or  + xar, while participant B 

receives (1–x)-th share of item r and items r+1, …, N, or (1–x)br+ 

, where 

x = (  –  ) ⁄ (ar + br); 

the algorithm is completed. 

Theorem 4.1 from book [1] states that a division constructed by this 

algorithm is a fair division, i.e. it possesses properties of proportionality, 

equitability and efficiency for arbitrary valuations a1, …, aN  and b1, …, 

bN. 

Example 1 (continuation). Let us reorder items from Table 1 so that 

they satisfy condition (1): 

                                                                                     Table 3 

Item Ann Ben 

1. Cottage 15 10 

2. Retirement account  50 40 

3. Portfolio 10 10 
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4. House 20 30 

5. Other 5 10 

Total 100 100 

Following algorithm 1, find a number r, satisfying (2). From Table 3 we 

have 

 = 15,   = 90,  = 65,   = 50, 

that means that r = 2 satisfies (2). In correspondence with step 5 of AW 

procedure, Ann receives cottage (15), and (5/6) of retirement account, 

while Ben receives portfolio (10), house (30), other (10),) and (1/6) of 

retirement account. Thus, everyone has 56.67% in terms of their own 

valuations, which is essentially more than a half (50%). Proportionality, 

equitability and efficiency of this division immediately follow from the 

above mentioned theorem. Note, that this fair division gives more for 

both participants than the division, considered at the beginning of this 

example.  

 

1.4. Notion of divisibility 

In [1], an item (good, issue) is called divisible, if it can be divided at any 

point along a continuum without destroying its value, and indivisible, if it 

cannot be divided without destroying its value. Of course, the notion of 

divisibility is an informal notion that must be discussed before division 

itself. Despite the significant (and sometimes crucial) importance of 

divisibility in many practical division problems, the analysis of this 

notion is beyond the scope of this work. However, one of the most 

attractive features of AW procedure consists in the following. This 

procedure guarantees that not more than one item must be divided; every 

other item is given to one of the participants entirely. This allows in many 

cases to avoid items division that is often difficult and informal task.  

Because in AW procedure only one item (whose number is determined by 

algorithm 1) can be divided, this procedure gives a fair (i.e. proportional, 

equitable and efficient) division in all the cases, where this selected item 

is divisible independently of divisibility of all the other items.  

Further we will consider the data about divisibility of items as initial data 

that cannot be discussed at the framework of this investigation. Of course, 

possibility (or impossibility) to divide some items can affect results of 
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division, sometimes essentially. The next example gives a simple 

illustration of the notion of divisibility. 

Example 2 (continuation). Let us reorder items from Table 2 so that 

they satisfy condition (1): 

                                                                                     Table 4 

Conflict items Firm A Firm B 

1. Laying off  30 10 

2. CEO assignment 25 10 

3. President assignment 15 20 

4. Headquarters 20 35 

5. Name 10 25 

Total 100 100 

Here, as everywhere in this material, values given by participants mean 

only relative importance of the corresponding items; they do not have any 

positive or negative sense. 

It is natural to consider only the first item as a divisible one, while the 

other items cannot be divided (at least, arbitrary). Division possibilities in 

this case are carefully analyzed in [2]. Let us start with AW procedure 

without care about divisibility. The procedure gives items 1 and 2 to firm 

A, items 4 and 5 to firm B, and requires the division of item 3, i.e. 

president assignment, in proportion 5:2 between participants. Everyone 

receives 65,71% in terms of their own valuations. 

In this case it is not difficult simply to consider all the possibilities and 

find a fair division satisfying the following condition: only the first item 

(laying off) can be divided. Firm A receives item 2 (25%), item 4 (20%), 

and (3 ⁄4) of item 1 (22,5%), while firm B receives item 4 (35%), item 5 

(25%) and (1⁄4) of item 1 (2,5%). Both have 62,5%; it is naturally that 

taking into account indivisibility of some items can decrease the common 

gains; here we have 62,5% instead of 65,71%. 
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1.5. Informal statement of problem 

Example 3. Let us consider a hypothetical division problem with two 

divisible and three indivisible items: 
                                                  Table 5 

Items A B 

1 10 30 

2 10 20 

3 35 18 

4 30 20 

5 15 12 

Total 100 100 

Items 1 and 2 are divisible; items 3, 4 and 5 are indivisible. 

Let us consider two different divisions. The 1
st
 division: participant A 

receives indivisible item 3 (35%), indivisible item 5 (15%) and (2⁄3) of 

divisible item 2 (6,67%), while participant B receives indivisible item 4 

(20%), divisible item 1 (30%) and (1⁄3) of divisible item 2 (6,67%); 

therefore each participant has 56,67%. The 2
nd

 division: participant A 

receives indivisible item 3 (35%) and indivisible item 4 (30%), while 

participant B receives indivisible item 5 (12%), divisible item 1 (30%) 

and divisible item 2 (20%); therefore, A has 65% and B has 62%. This 

means that the 1
st
 division is not a fair division because it is not efficient 

(65 >56,67 and 62 >56,67). 

Example 3 will be formally analyzed further but it is clear that no fair 

division exists in the considered case. The first division looks fair, 

because it gives the same gain to both participants (and no other division 

gives greater equal gains). The second division looks fair, because it 

gives more to each participant (and cannot be improved for both of them: 

if one receives more, the other receives less).  

The fact of the absence of fair (in the above mentioned sense) divisions in 

some situations, of course, is not a new one. However, the problem of fair 

division in cases where both types of items – divisible and indivisible – 
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are present simultaneously up to now has not been formally stated and 

studied. In this connection the following problems arise: 

 introduce reasonable formal modifications of the notion of fair 

division, adequate to both types of items; 

 elaborate a computationally efficient (non-enumerative) method for 

finding division fair in the introduced senses; 

 formulate and prove necessary and sufficient conditions of 

existence of proportional, equitable and fair divisions in terms of 

items evaluation by participants. 

The article is devoted to solving these problems. 

 

2. Basic notions, definitions, and statements  
Let us start with more detailed notions. Assume there are L divisible and 

M indivisible items. Denote value of divisible and indivisible items for 

participant A by , …, ,  , …,   and for participant B by  , …, 

,  , …, .  The sums of all the values are the same for each 

participant. It is not required that they are equal to 100. Instead of 100 it 

is possible to consider any natural number (denoted by H): 

 +  =  +  = H.                 (3) 

Cases L = 0 (no divisible items) and M = 0 (no indivisible items) are not 

excluded. The triple of numbers S = L, M, H  will be called the 

signature of a division problem.  

Thus, any division problem can be formally described by a triple a, b, S  

of three objects: a = a
d
, a

w
, b = b

d
, b

w
, S = L, M, H , where  

a
d
 = ( , …, ), a

w
 = ( , …, ), b

d
 = ( , …, ), b

w
 = ( , …, ), 

S is the signature of the problem. 

Furthermore, any division in a problem with signature S is presented as a 

couple x, σ , where x = (x1, …, xL), xi are real numbers such that 

0 ≤ xj ≤ 1 (i = 1, …, L), 

and σ = (σ1, …,  σM), 

σi {0, 1} (i = 1, …, M). 

In these terms participant A receives (xi)-th part and participant B 

receives (1–xi)-th part of divisible item i (i = 1, …, L); indivisible item i is 
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given to participant A, if σi = 1, and to participant B, if σi = 0  (i = 1, …, 

M). 

Let us consider an arbitrary division problem a, b, S . Assume x, σ  is a 

division in this problem.  

Assume 

(x) = ,                                     (4a) 

(x) = ,                                (4b) 

(σ) = ,                                    (5a) 

(σ) = ,                              (5b)   

GA(x, σ) = (x) + (σ),                               (6a)                                                         

GB(x, σ) = (x) + (σ).                               (6b) 

Thus, G(x, σ) = (GA(x, σ), (GB(x, σ)) is the pair of gains received by 

participants as a result of division x, σ . Pair G
d
(x) = ( (x), (x)) is the 

pair of gains of distribution x of divisible items only, and pair G
w
(σ) = 

( (σ), (σ)) is the pair of gains of distribution σ of indivisible items 

only. 

From the above notations it is clear that for any division x, σ  

G(x, σ) = G
d
(x) + G

w
(σ)                                   (7) 

(the sum in (7) is the vector sum). 

 

2.1. Properties of divisions 

The properties of divisions mentioned in section 1.2 are expressed in 

these terms as follows. 

Efficiency of division x, σ  means that for any other division y, τ  at 

least one of the following inequalities:  

GA(x, σ) > GA(y, τ), 

GB(x, σ) > GB(y, τ) 

is true (none division gives more for one and at least the same for the 

other). 

Proportionality of a division x, σ  means that 

GA(x, σ) ≥ H ⁄ 2, 

GB(x, σ) ≥ H ⁄ 2 
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(everyone receives at least half in his or her own values. 

Equitability of a division x, σ  means that both participants receive the 

same (in their own values):                                                                                                                         

GA(x, σ) = GB(x, σ).                                      (8) 

Remember that a division x, σ  was named a fair division, if it possesses 

properties of efficiency, proportionality and equitability. Here the simple 

interconnections between these properties are considered. 

Assume  

U(S) be the set of all the division problems with a given signature S (the 

set of all the triples a, b, S ); 

E(S) be the set of all such problems that have efficient divisions, 

P(S) be the set of all such problems that have proportional divisions, 

Q(S) be the set of all such problems that have equitable divisions, 

F(S) be the set of all such problems that have fair divisions. 

Let us start with the following simple 

Statement 1. The connections between the considered sets is described 

by the following inclusions: 

F(S)  Q(S) P(S) E(S) = U(S).                          (9) 

Proof. Let us go from right to left in (9).  

1. Assume x, σ  is an arbitrary division in an arbitrary problem a, b, S  

with a given signature S. Assume that in S L > 0 (at least one divisible 

item exists). If x, σ  is efficient itself that means that the considered 

problem belongs to E(S) by definition. Otherwise, denote by K(x, σ) the 

set of all the divisions that dominate x, σ  or give the same gains. 

Because there is a finite set of different Boolean vectors τ, the set K(x, σ) 

is the union of a finite number of subsets Kτ(x, σ) consisting of divisions 

with the same indivisible part τ. It is clear that all these sets Kτ(x, σ) are 

compact ones; hence, the corresponding sets of pairs (GA, GB) are 

compact, too, (see formulae (4) – (6)). This implies that the set R(x, σ) of 

all the gains, corresponding to division from K(x, σ), is a compact one. 

Therefore there is at least one division y, τ , such that the corresponding 

pair (GA(y, τ), GB(y, τ)) maximizes GA + GB over set R(x, σ). Division y, 

τ  is an efficient division. If it is wrong that means that there is a division 

z, υ , dominating y, τ ; hence, it dominates x, σ . Then by the construc- 
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tion it must belong to K(x, σ), but by the definition of y, τ  it is 

impossible. The contradiction proves the assertion in case L > 0. In case L 

= 0 all the considered sets are finite ones and the assertion is true. 

2. The inclusion P(S) E(S) is proved analogously the previous one: any 

proportional division is efficient itself or it is dominated by an efficient 

division (this is proved exactly as in the previous part 1); the latest is 

proportional because every participant gains more or the same.  

3. In order to prove the inclusion Q(S) P(S), let us introduce the useful 

notion of complement division. For any division x, σ  let us define the 

division ,x  (called the complement division) such that  

x i = 1– xi (i = 1, …, L), 

i = 1– σi (i = 1, …, M). 

Formulas (3) and (4) – (6) imply that  

GA( ,x ) = H – GA(x, σ), 

GB( ,x ) = H – GB(x, σ); 

because GA(x, σ) = GB(x, σ), at least one of two equitable divisions x, σ  

and ,x  is proportional that implies the required inclusion. 

4. The inclusion F(S)  Q(S) is true, because by definition of fair 

division it is equitable.  

The statement 1 is proved. 

Above mentioned theorem 4.1 from book [1] can be formulated as 

follows. 

Statement 2. For division problems such that in their signatures M = 0 

(i.e. any item is divisible) all the inclusions in (9) are equalities. 

It is clear that even one indivisible item disturbs this beautiful picture. At 

the same time, fear divisions can exist even in the case L = 0 (i.e. any 

item is indivisible).  

Let us introduce notions concerning an arbitrary division problem a, b, 

S  itself (not its specific divisions). Denote  

Ad (a, b, S) = ,                                  (10) 

where the union is taken over all the distributions x of L divisible items 

only; 

Aw(a, b, S) = , 
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where the union is taken over all the distributions σ of M indivisible items 

only; 

A(a, b, S) = , 

where the union is taken over all the divisions x, σ  in problems with a 

given signature S. 

The three defined sets – Ad (a, b, S), Aw (a, b, S), A(a, b, S) – are sets of 

points in plane. 

From the above notations and formula (7) it is clear that  

A(a, b, S) = Ad (a, b, S) + Aw (a, b, S).                       (11)  

Finally, denote by (a, b, S),   and A
P
(a, b, S) Pareto-optimal 

parts of Ad (a, b, S), Aw(a, b, S) and A(a, b, S), correspondingly. 

Introduced notions immediately imply 

Statement 3. Assume a division x, σ  is efficient, i.e. G(x, σ)  A
P
(a, b, 

S). Then G
d
(x)  (a, b, S) and G

w
(σ) . 

This statement means that for any efficient divisions x, σ  its 

«projections» x and σ are efficient in the corresponding «projections» Ad 

(a, b, S) and Aw (a, b, S) of set A(a, b, S). Set A(a, b, S) can be named 

«attainability set» of the considered division problem a, b, S .  

In order to illustrate the introduced notions, consider the following 

example (see section 1.5). 

Example 3. Continuation. 1.The initial data for this case is given in 

Table 5. The two first rows in this table describe divisible items that are 

rewritten in Table 6: 

                                             Table 6 

Items A B 

1 10 30 

2 10 20 

Total 20 50 

 

Set Ad (a, b, S) of all the points, corresponding to all the possible 

distributions of these divisible items, is the set of all points presented as 
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(10x+10y, 30(1–x)+20(1–y)),                             (12) 

where  

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.                                    (13) 

In (12), (13) x and y are the parts of divisible items 1 and 2, received by 

participant A. 

Moving pair (x, y) along the way (0,0)→(0,1)→(1,1)→(1,0)→(0,0) and 

calculating corresponding points by formula (12), we find the 

quadrilateral shown in Fig.1. It coincides with Ad (a, b, S). Its Pareto-

optimal part (a, b, S) is shown in the figure. 

2. The three last rows in this table 5 describe indivisible items that are 

rewritten in Table 7. There are 8 possibilities of distributions of three 

indivisible items between two participants that can be presented by 8 

Boolean vectors σ = (σ1, σ2, σ3). Using formulae (5) we find that set Aw(a, 

b, S) in the considered case consists of 8 points    

(35σ1 + 30σ2 + 15σ3, 18(1–σ1) + 20(1–σ2) + 12(1–σ3)), 

where (σ1, σ2, σ3) are all the Boolean vectors with 3 components. 

Substituting (σ1, σ2, σ3) consecutively with their values from (0,0,0) till 

(1,1,1) easily find 8 points in the plane: 

Aw(a,b,S) = {(0,50),(15,38),(30,30),(45,18),(35,32),(50,20),(65,12),(80,0)}.   (14) 

Among 8 points (14) there are two dominated: (30, 30) is dominated by 

(35, 32), and (45, 18) is dominated by (50, 20). Therefore,  

consists of 6 points:  

 = {(0, 50), (15, 38), (35, 32), (50, 20), (65, 12), (80, 0)}. 

3. The attainability set A(a, b, S) in the considered example is easily 

constructed using (11) and explicit presentation of sets Ad  (a, b, S) and 

Aw(a, b, S), given in Fig.1 and 2. This set A(a, b, S) is marked grey in 

Fig.3. The Pareto-optimal part A
P
(a, b, S) of the attainability set A(a, b, S) 

is shown in Fig.4. 

By virtue of statement 3, it is enough to add to each point belonging to 

the finite set  , shown in Fig.2, the set (a, b, S), shown in 

Fig.1 (adding here means coordinate adding of two-dimension vectors). 

In Fig.4 the different parts of Pareto-optimal border A
P
(a, b, S) of the 

attainability set A(a, b, S) are marked bold; a white circle at the end of a 

part means that the corresponding point belongs to the part; the absence 
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of a circle means that the corresponding end does not belong to A
P
(a, b, 

S). The point marked by a black square presents an equitable division 

with maximal possible gains 56,67. This division is not a fair one, 

because it is not efficient: the point (65, 62) dominates the marked 

equitable division as well as any other equitable division (65>56,67 and 

62>56,67). Therefore, in the considered problem there are no fair 

divisions at all. Note that the properties of divisions are determined by 

geometry of Pareto set A
P
(a, b, S) 

                                   Table 7 

Items A B 

3 35 18 

4 30 20 

5 15 12 

Total 80 50 

 

2.2. General structure of Ad (a, b, S) 

In Example 3 (see Fig.1) set Ad  (a, b, S) is a center-symmetrical convex 

polygon, whose all the edges have negative slope. The same is true for 

arbitrary division problem a, b, S . Let us consider the structure of Ad (a, 

b, S) in general case in more detail.  

Assume 

s1 = ,                                         (15a) 

s2 =                                           (15b) 

(index d is omitted for simplicity). To construct the set, assume that 

values are ordered as in (1): 

a1 ⁄ b1  ≥ a2 ⁄ b2  ≥  ...  ≥ aL ⁄ bL.                           (16) 

It is clear that set Ad (a, b, S) is a convex polygon.  

Let us consider the unit cube in L-dimension space. Any point x = (x1, …, 

xL) belonging to this cube determines point f(x) belonging to polygon 

Ad(a, b, S): 

f(x) = ( ,  ) 

(see formulae (4)) and any point of the polygon coincides with f(x) for 

some x. Let us consider all the vertices of  the unit cube starting with 
(0,0,…,0)  till (1,1,…,1). The images of these vertices cover completely 
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all the vertices of polygon Ad(a, b, S). The vertex (0,0,…,0) corresponds 

to the left point (0, s2). Consider the edges connecting vertex (0,0,…,0) to 

the L adjacent vertices of unit cub: (1,0,…,0), (0,1,…,0), …, (0,0,…,1). 

Corresponding segments on the plane have the common left end (0, s2) 

and slopes bi ⁄ai  (i = 1, …, L). Order (16) means that the minimal possible 

slope has the segment connecting point (0, s2) to the point (a1, s2–b1), 

because its inverse value a1 ⁄ b1 is the maximal. That means that this 

segment is a part of border of Ad (a, b, S). Considering the next vertex 

(a1, s2–b1), analogously find the next border point (a1 + a2, s2–b1–b2), and 

so on, up to the last point (s1, 0) (see (15)). Thus, set (a, b, S) is the 

broken line whose k-th point is: 

( , ) (k = 1, …, L); 

The 0-th point is (0, s1). The geometrical illustration is given in Fig.5. 

The same reasoning implies that the low border of the polygon consists of 

the same segments in reverse order. Therefore, point (s1/2, s2/2) is the 

center of symmetry of the polygon.  

In the case M = 0 there are only L divisible items, and the reasoning of 

this section gives another proof of statement 2 (theorem 4.1 from [1]). 

Indeed, in this case s1 = s2 = H, and intersection of line x = y with broken 

line (a, b, S) determines the same fair division. 

 
Fig.5 
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The established structure of set Ad (a, b, S) implies several important 

corollaries (formulated further as statements): 

Statement 4. Assume x, σ  is an arbitrary efficient division. Then not 

more than one item must be divided; every other item is given to one of 

the participants entirely.  

Proof. We have (see (7)) G(x, σ) = G
d
(x) + G

w
(σ) and by virtue of 

statement 3 G
d
(x)  (a, b, S). That means that point G(x, σ) belongs to 

broken line G
w
(σ) + (a, b, S). Every vertex on this line presents 

distribution of all the divisible items as whole (see the previous 

construction), and any point inside a segment between two vertices 

presents division of the item, corresponding to this segment. 

Statement 5. Assume x, σ  is a maximal equitable division (i.e. an 

equitable division with maximal possible common gain). Then not more 

than one item must be divided; every other item is given to one of the 

participants entirely. 

Proof. Because x, σ  is an equitable division, point G(x, σ) must belong 

to line x = y. Consider intersection of line x = y with any polygon G
w
(σ) + 

Ad (a, b, S). If point G(x, σ) does not belong to G
w
(σ) + (a, b, S), then 

both coordinates of G(x, σ) can be increased, i.e. x, σ  is not a maximal 

equitable division. Therefore, it belongs to broken line G
w
(σ) + (a, b, 

S) that implies the assertion by the same reasoning as at the end of the 

previous prove. 

 

3. Modifications of notion of fair division 

Now we introduce the essential notions of this work – modifications of 

notion of fair division. In the division problem from Example 3 it is 

impossible to provide efficiency and equitability simultaneously – we can 

receive the equitable division that is not efficient or the efficient division 

that is not equitable (see points in Fig.4). It is not a pathologic exception: 

it really happens in several examples given further in section 6. 

These examples led us to the following formal definitions. 

A division x, σ  in problem a, b, S  is profitably fairy if it is 

 proportional; 

 efficient; 

 maximizes expression min{GA(x, σ), GB(x, σ)}over the set of all 

the divisions x, σ .  
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A division x, σ  in problem a, b, S  is uniformly fairy if it is 

 proportional; 

 efficient;  

 minimizes expression |GA(x, σ) – GB(x, σ)| over the set of all such 

divisions x, σ .  

A division x, σ  in problem a, b, S  is equitably fairy if it is 

 proportional; 

 equitable; 

 maximizes common gain G over all such divisions x, σ .  

Thus, profitably fair divisions maximize minimal profits of participants 

but do not care about equality; uniformly fair divisions try to make profits 

as equal (uniform) as possible, yet under efficiency restriction; finally, 

equitably fairy divisions provide equality of profits but do not care about 

efficiency. 

There is an evident connection between these different kinds of fairness; 

let us formulate it as an assertion. 

Statement 6. Any division is fair if and only if it is profitably, uniformly, 

and equitably fair.  

Let us consider a polygon, denoted by A(σ):  

A(σ) = G
w
(σ) + Ad, 

where σ is an arbitrary distribution of indivisible items (see (5)), polygon 

Ad  is described in section 2.2. Remember that the union of all these 

polygons (over all Boolean vectors σ) forms the attainability set A(a, b, 

S). 

Statement 7. If polygon A(σ) is completely below (above) line x = y, then 

its left (right) vertex maximizes expression  

min{GA(x, σ), GB(x, σ)} 

and minimizes expression 

|GA(x, σ) – GB(x, σ)| 

over the polygon. 

Proof. It is enough to consider any line with a negative slope, because 

slopes of all the edges of the polygon are negative. For the second 

expression the geometric illustration of this evident fact is given in Fig.6. 

For the first expression it is evident because minimal y-coordinate of B is 

less than of A.  
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Fig.6 

Statement 8. If line x = y intersects polygon A(σ), then in intersection of 

this line and Pareto border of the polygon A(σ) the same expressions 

reach maximal and minimal values over the polygon, so that the value of 

the second expression is equal to 0, and GA(x, σ) = GB(x, σ)} 

This statement immediately follows from the previous definitions and 

constructions.  

Modified definitions of fair divisions together with Statements 4 and 5 

imply  

Statement 9.  Any profitably, any uniformly, and any equitably fair 

division has the property: not more than one item must be divided; every 

other item is given to one of the participants entirely. 

It is clear that fair divisions also have the same property. 

 

4. Algorithms 

Statements 6 – 8 allow elaborating of computationally efficient algorithm 

of finding profitably, uniformly, and equitably fair divisions. All of them 
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are found by this algorithm. Before describe the algorithm, let us consider 

the following useful procedure. 

4.1. Constructing   

Definition (5) means that set Aw(a, b, S) consists of all points with 

coordinates 

( ,    ), 

where σ = (σ1, …,  σM) is an arbitrary Boolean vector with M components 

(index w is omitted for simplicity).  

Assume Ax be the projection of set Aw(a, b, S) to x-axis. In Example 3 Ax 

consists of 8 numbers: Ax = {0, 15, 30, 35, 45, 50, 65, 80} (see (14)). By 

definition of projection for any x  Ax  there is at least one number y such 

that  

(x, y)  Aw(a, b, S).                                      (17) 

Denote the maximal y satisfying (17) by y(x) and define set A as follows: 

A = {(x, y(x)) | x  Ax }. 

By the definition of A it is clear that  

  A  Aw(a, b, S) 

and 

 = A
P
; 

it means that the considered problem is reduced to construction of A
P
. 

Note, that in Example 3 the second inclusion is equality.  

In order to select the Pareto set A
P
 from A it is enough simply to start with 

maximal number from Ax and go left, eliminating all the pairs in which y-

components does not exceed the previous one. Therefore, the considered 

problem is reduced to the problem of finding A. 

Assume 

s1 = , 

s2 =  

and consider the following family of optimization problem relatively 

Boolean variables σ1, …,  σM : 

 → max                                  (18) 

subject to  
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 = k  (k = s1,  s1–1, s1–2, …, 1, 0).                 (19) 

By the construction, for all k that do not belong to Ax, equation (19) is 

incompatible. For k = 0 equation (19) is compatible: the corresponding 

value of goal function (18) is s2. 

Assume  

τi = 1 – σi (i = 1, 2, …, M) 

and substitute in (18), (19) σi with 1 – τi (i = 1, 2, …, M). We receive the 

equivalent family of optimization problem relatively Boolean variables τ1, 

…, τM : 

 → max                                     (20) 

subject to  

 = k  (k = 0, 1, …, s1).                            (21) 

Thus, the considered in this section problem of  construction is 

reduced to the solution of the family of optimization problems (20), (21). 

If for some k a solution exists, it gives a point of A corresponding to the 

following items distribution: participant A (B) receives item i, if τi = 0 (τi 

= 1).  

Consider now family (20), (21) of optimization problems. The problems 

differ from well-known knapsack problem only in the following: instead 

of weight restrictions (≤) there are equalities (=) in conditions (21). 

However, they can be solved (analogously knapsack problem) by 

dynamic programming. Let us consider the situation in more detail. 

Denote the optimization problem 

 → max 

subject to  

 = k 

by Z(k, p), and the optimal value of its goal function by F(k, p). Then 

Bellman equation for the problem is:  

F(k, p) = max{F(k, p–1),F(k–ap, p–1) + bp} (k = 0,1, …, s1; p = 2, …, M); 

if the maximal value here is F(k, p–1), that means that in the optimal 

solution τp = 0; otherwise, in the optimal solution τp = 1.  

Finally, initial value are determined by formula 
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F(k, 1) =    (k = 0,1, …, s1). 

The solution of optimization problem Z(k, p) for p = M corresponds to the 

solution of the initial problem (20), (21). If the goal function for some k is 

equal to – , then for this k equation (21) is incompatible. 

Thus, in this section the efficient and relatively simple algorithm of 

 construction is described. In more detail: by the construction, 

the algorithm is efficient relatively number H – the third component of 

the signature of the problem. Note, that the number of undominated 

points does not exceed H. 

 

4.2. Checking dominance 

In order to find profitably, uniformly, and equitably fair divisions it is 

necessary to know about arbitrary point (x, y) belonging to attainability 

set A(a, b, S), whether it corresponds to an efficient division, i.e. whether 

it belongs to Pareto-optimal part A
P
(a, b, S) of attainability set A(a, b, S). 

Statement 3 immediately implies that A
P
(a, b, S) is a subset of the 

following set: 

A
P
(a, b, S) ,                                   (22) 

where  

Zi = Wi + (a, b, S)  (i = 1, …, w).                        (23) 

In (23) points Wi (i = 1, …, w) form set  of different 

undominated pairs of gains from distribution of indivisible items only; 

they are found by the algorithm from section 4.1. 

Remember that (a, b, S) is a broken line with L edges, which is an 

upper part of border of a convex polygon Ad (a, b, S) (see section 2.2 and 

Fig.5). By the construction of Zi all their graphs are received as shifts of 

the same graph (a, b, S) by vectors Wi .  

Inclusion (22) implies that a point (x, y) is undominated into A(a, b, S) if 

and only if it does not dominated by any point belonging to . 

Therefore, it is enough to check, whether point (x, y) is dominated by a 

point belonging to one of known broken lines Wi + (a, b, S) (i = 1, …, 

w). Hence, the problem is reduced to checking dominance for every 

broken line (23) separately. The last problem finally is reduced to the 
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analogous problem for every of L edges forming one line; and the 

solution of this problem is evident.  

It is clear that the bulk of all these operations is computationally efficient 

(relatively parameters w and L).    

 

4.3. Constructing equitable fair division 

In this section an algorithm for construction of an equitable fair division 

is suggested. Division x, σ  is an equitable fair division if it is a solution 

of optimization problem 

 +   → max                           (24) 

subject to 

 +   =  +  . (25) 

Equality (25) for gains follows immediately from (8), taking into account 

(4) – (6). 

Statement 9 allows reducing the considered problem to the analogous 

problem with exactly one indivisible item. In more detail: let us consider 

the problem with the same values of participants and additional 

condition: only item k (among divisible in the initial problem items 1, 2, 

…, L) is divisible; all the other items are indivisible. That means that in 

equality (25) variable xi {0,1} (i=1, …, M; i≠k). Denote this problem by 

Z(k). Using introduced in section 2 notion of signature, the signature of 

Z(k) is 1, L+M–1, H  (instead of initial signature S = L, M, H ).  

Denote the value of goal function (24) in problem Z(k) by F(k). Assume 

F(k*) = ; 

then the corresponding to this number k* division x, σ  is an equitable 

fair division in the considered initial division problem a, b, S . 

Thus, the problem of construction of an equitable fair division is reduced 

to the same problem in situations where only one item is divisible.  

4.3.1. Case of one divisible item. In order to simplify notations, in this 

section a division problem is described by a couple a, b , where a = (a0, 

a1,  …, aN), b = ( b0, b1,  …, bN ) are values of participants; item 0 is only 

divisible item; all the other items are indivisible. Any division is 

presented by a couple x, σ , where  

0 ≤ x ≤ 1;                                             (26) 
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σ = (σ1, …, σN) is a Boolean vector. In these notations optimization 

problem (24), (25) is written as 

xa0 +   → max                                (27) 

subject to 

xa0 +   = (1– x)b0 + .               (28) 

Condition (28) can be rewritten equivalently as 

 –  = (1– x)b0 – xa0.                 (29) 

Let us consider the double inequality 

–a0 ≤   –  ≤ b0.                   (30) 

Statement 10. Couple x, σ  satisfies conditions (26), (28) if and only if 

Boolean vector σ satisfies double inequality (30). 

Proof. 1. For x = 0 (1– x)b0 – xa0 = b0, for x = 1 (1– x)b0 – xa0 = –a0, 

which implies that for any x [0,1] right-hand side of (29) belongs to 

segment [–a0, b0]. Therefore, for any couple x, σ  satisfying (26), (28) 

vector σ satisfies double inequality (30). 

2. Assume Boolean vector σ satisfies double inequality (30). Let 

z =  – .                          (31) 

By virtue of (30)  

–a0 ≤ z ≤ b0.                                           (32) 

Define a number x from the equality 

z = (1– x)b0 – xa0,                                       (33) 

implying 

x = ;                                            (34) 

from (34) and right inequality in (32) we have 0 ≤ x, and from (34) and 

left inequality in (32) we have x ≤ 1; together they coincide with (26). 

Equality (28) follows from substitution in (31) z with right-hand side of 

(33) and rearrangement of the expression. Statement is proved. 

Assume 

ci = ai + bi (i = 1, …, N),                                  (35) 
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Statement 11. Division problem a, b  (with one divisible item) has an 

equitable division if and only if the following systems of two linear 

inequalities relatively Boolean variables σ1, …, σN  

H – (a0 + b0) ≤  ≤ H.                            (36) 

is compatible. 

Proof. By virtue of statement 10 equitability of a division is equivalent to 

existence of solutions of double inequality (30). Rewrite (30) as  

–a0 ≤    –    ≤ b0. 

Adding to every part , we receive 

–a0 +   ≤    ≤ b0 +  .           (37) 

Right-hand side of (37) is the sum of all the values of  participant B, and, 

hence, is equal to H. Left-hand side of (36) is equal to –a0 + (H – b0) = H 

– (a0 + b0). Taking into account (35), finally write (37) as (36). 

By the reverse way (36) can be rewritten as (30). By virtue of statement 

10 double inequality (30) is equivalent to equitability of a division. The 

statement is proved. 

Statement 12. An equitable division x, σ  is a solution of optimization 

problem (27) subjected to (26), (28) if and only if Boolean vector σ is a 

solution of optimization problem 

N

i

ii
i

ab

baab

1
00

00
 + 

00

0

ab

Ha
→ max                         (38) 

subject to (36). 

Proof. It is enough to express x through σ from (28), substitute x with this 

expression in goal function (27) and rearrange the formula. 

Now we can multiply goal function (38) by (b0 + a0), subtract Ha0, and 

finally receive 

Statement 13. The considered problem of construction of equitable 

division in a problem with one divisible item is reduced to optimization 

problem relatively Boolean variables σ1, …, σN  

 max                                        (39) 

subject to (36), where di = b0ai  –  a0bi  (i = 1, 2, …, N) are integer 

numbers. 
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Problem (39), (36) is replaced by the family of problems with the same 

goal function (39) and condition 

 = k  (k = H–(a0 + b0), H–(a0 + b0)+1, …, H);         (40) 

they are solved as problems (20), (21) in section 4.1 (by dynamic 

programming).  

Thus, the reasoning in this section shows that an equitable fair division in 

general case can be found by the suggested computationally efficient 

method. Pay attention that solving problem (39), (40) we automatically 

check compatibility of condition (40) for every k = H–(a0 + b0), H–(a0 + 

b0)+1, …, H; the incompatibility for all k means that the considered 

division problem does not have equitably fair divisions. 

 

4.4. Essential algorithm 

The essential algorithm of finding profitably, uniformly, and equitably 

fair divisions is based on Statements 7 and 8 and the algorithms from 

section 4.1, 4.2 and 4.3. 

The main steps of the essential algorithm briefly are described as follows. 

Step 1. Assume sg = 1. Construct an equitably fair division x, σ  by the 

algorithm from section 4.3. If no equitably fair division exists, assume sg 

= 0 and go to Step 3. Otherwise, assume e = GA(x, σ) and go to Step 2. 

Step 2. Check dominancy of point (e, e) (where e is found in step 1) by 

the algorithm, described in section 4.2. If this point (e, e) is undominated, 

then division x, σ  is simultaneously profitably, uniformly and equitably 

fair division. The algorithm stops. 

Step 3. Construct set  = {W1, W2, …, Ww} by algorithm from 

section 4.1. 

Step 4. Construct set (23) of broken lines Zi = Wi + (a, b, S)  (i = 1, …, 

w). 

Step 5. Assume P = , U =  (initial assignments for current sets of 

profitably and uniformly fair divisions).  

Step 6. For i = 1, …, w do the following: 

Step 6.1. If Zi is completely below line x = y, denote the division 

corresponding to its left vertex by z, τ  and go to Step 6.3. 

Otherwise, go to Step 6.2. 
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Step 6.2. If Zi is completely above line x = y, denote the division 

corresponding to its right vertex by z, τ  and go to Step 6.3. 

Otherwise, continue the cycle in Step 6. 

Step 6.3. Assume P = P { z, τ }, U = U { z, τ }; continue the 

cycle in Step 6.  

Step 7. Assume Q = P  U. 

Step 8. Eliminate from Q all the divisions z, τ , such that GA(z, τ) or 

GB(z, τ) is less then H ⁄ 2.  

If Q is empty, then profitably fair divisions, uniformly fair divisions, and 

equitably fair divisions in the considered problem do not exist. The 

algorithm stops. Otherwise, go to Step 9. 

(Comment: if Q is empty, let us consider two cases: sg = 0 and sg = 1 

(see Step 1). In the case sg = 0 no equitably fair division exists; in the 

case sg = 1 the equitably fair division x, σ , found in Step 1, is the 

efficient division, but in this case the algorithm had to stop in Step 2).   

Step 9. Denote by X the set of all the points (GA(z, τ), GB(z, τ)), where z, 

τ   Q; denote by X
P
 Pareto-optimal part of X and by Q

P
 the set all the 

divisions, whose gains (GA(z, τ), GB(z, τ)) belong to X
P
; 

denote by q the cardinality of X
P
. 

Step 10. For i = 1, …, q do the following: 

Step 10.1. Checking dominance of i-th point (xi, yi) from X
P
 by 

algorithm from section 4.2.  

Step 10.2. If (xi, yi) is dominated, then assume X
P
 = X

P
 {(xi, yi)}; 

continue. 

Step 11. Maximize the expression min{x, y} over set of points X
P
. The 

corresponding division is a profitably fair one. 

Step 12. Minimizes the expression |x – y| over set of points X
P
. The 

corresponding division is a uniformly fair one. 

Step 13. The algorithm stops, because profitably, uniformly and equitably 

fair divisions are found (correspondingly, in Steps 11, 12 and 1).  

 

5. Existence conditions in division problems 

In this section the last of the mentioned at the end of section 1.5 problems 

is considered. Namely, though the diagnostic is included into essential 

algorithm described in section 4.4, the existence or absence of some 

properties can be established easier, without full completion of all the 
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operations. We establish necessary and sufficient conditions of existence 

of proportional and equitable fair divisions in terms of items evaluation 

by participants. 

Consider an arbitrary problem a, b, S , where S = L, M, H . That means 

that there are L divisible items, M indivisible items and sums of 

participants’ values are equal to H. Assume  

S1 = , S2 = , T1 = , T2 = .         (41) 

Let us associate with any problem a, b, S  the following systems of 

linear inequality relatively Boolean variables σ1, …, σM: 

                                     (42) 

 

                                     (43) 

 

                          (44) 

where 

ci =  (i = 1,…,M).                              (45) 

Statement 14. Problem a, b, S P(S) (i.e. proportional divisions exist) 

if and only if at least one of inequalities systems (42), (43), (45) is 

compatible.  

Proof. Assume  

T1(σ)  = , T2(σ)  = , T(σ) = (T1(σ), T2(σ)).     (46) 

Let us consider set A(σ) = T(σ) + Ad (a, b, S) (see formula (10)). A(σ) is a 

shifted polygon Ad(a, b, S). By definition, proportional division exist if 

and only if polygon A(σ) intersects set P of the plane, defined as follows:  

P = {(x, y) | x ≥ H ⁄ 2, y ≥ H ⁄ 2} 

at least for one Boolean vector σ. 

It can happen in one of the three cases: 

1) left vertex of A(σ) (point (T1(σ), T2(σ) + S2) belongs to P; 

2) right vertex of A(σ) (point (T1(σ) + S1, T2(σ)) belongs to P; 
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3) vertices defined in 1) and 2) do not belong to P, but at least one point 

of A(σ) belongs to P. 

In the 1
st
 case we have inequalities (see (41) and (46)): 

 ≥ H ⁄ 2,                                    (47a) 

 +  ≥ H ⁄ 2.                      (47b) 

Rearranging left-hand side of (47b), we have 

 +  =  –  +  =  

+  – = H –  ≥ H ⁄ 2 that implies 

 ≤ H ⁄ 2.                                    (47c) 

(47a) and (47c) together coincide with system (43). 

Analogously, in the 2
nd

 case we receive system (42). 

In the 3
rd

 case simple geometrical reasoning shows that the segment 

connecting points (T1(σ) + S1, T2(σ)) and (T1(σ), T2(σ) + S2) must intersect 

the rayon x = y. In the intersection point we receive that for some λ  

[0,1] 

 + (1– ) S1 =  + λ S2. 

Expressing λ from this equation and taking into account inequalities  λ ≥ 

0, λ ≤ 1, after rearranging receive system (44). 

Statement 15. Problem a, b, S Q(S) (i.e. an equitable division exists) 

if and only if inequalities system (44) is compatible.  

Proof. See the 3
rd

 case in the previous proof. 

To be useful, statements 14 and 15 must be completed with some 

efficient algorithms of compatibility checking for systems (42), (43) and 

(44). In order to find them consider the following optimization problems 

relatively Boolean variables σ1, …, σN: 
N

i
iib

1

→ max                                       (48a) 

subject to  
N

i
iia

1

≤ H /2;                                       (48b) 
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N

i
iia

1

→ max                                       (49a) 

subject to  
N

i
iib

1

≤ H /2;                                       (49b) 

N

i
iiс

1

→ max                                       (50a) 

subject to  
N

i
iic

1

≤ H.                                         (50b) 

The following statement is evident. 

Statement 16.  

System (42) is compatible if and only if the maximal value in problem 

(48) is not less than H /2. 

System (43) is compatible if and only if the maximal value in problem 

(49) is not less than H /2. 

System (44) is compatible if and only if the maximal value in problem 

(50) is not less than  H – (S1 + S2). 

Thus, statements  14 – 16 reduce checking existence of proportional and 

equitable division problem to optimization problems relatively Boolean 

variables σ1, …, σN . Namely: 

Problem (48) is a knapsack problem with item weights b1, …, bN , item 

values a1, …, aN and weight restriction H /2.  

Problem (49) is a knapsack problem with item weights a1, …, aN , item 

values b1, …, bN and weight restriction H /2.  

Problem (50) is a simplest knapsack problem, where values c1, …, cN 

coincide with weights and weight restriction is H. 

All the above mentioned knapsack problems can be efficiently solved by 

dynamic programming (see detail in section 4.1).  

 

6. Examples 

In this section we give some relatively simple examples that illustrate the 

results of sections 5 and 6. 
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Example 4. Let us consider the following division problem with one 

divisible and four indivisible items (divisible items here and in next 

examples are at the beginning): 

                             Table 8 

A B 

1 1 
45 30 
30 25 
15 22 
9 22 

100 100 

For this problem:  

system (42) is  

  5022222530

   509  153045

4321

4321
                     (51)  

system (43) is 

  5022222530

   509  153045

4321

4321
                     (52) 

c1 = 45+30 = 75, c2 = 30+25 = 55, c3 = 15+22 = 37, c3 = 9+22 = 31; 

system (44) is  

 9813  375575

10013  375575

4321

4321
                     (53)                         

In order to check compatibility of these three systems, consider the set of 

all the 16 Boolean vectors (σ1,σ2,σ3,σ4) and calculate the corresponding 

value of three expressions: 

V1 = 45σ1+30σ2+15σ3+9σ4, 

V2 = 30σ1+25σ2+22σ3+22σ4, 

V3 = 75σ1+55σ2+37σ3+31σ4 (V3 = V1+V2). 

Results of these simple calculations are presented in Table 9: 
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Тable 9 

σ1 σ2 σ3 σ4 V1 V2 V3 
0 0 0 0 0 0 0 
0 0 0 1 9 22 31 
0 0 1 0 15 22 37 
0 0 1 1 24 44 68 
0 1 0 0 30 25 55 
0 1 0 1 39 47 86 
0 1 1 0 45 47 92 
0 1 1 1 54 69 123 

 

 

σ1 σ2 σ3 σ4 V1 V2 V3 
1 0 0 0 45 30 75 
1 0 0 1 54 52 102 
1 0 1 0 60 52 112 
1 0 1 1 69 74 143 
1 1 0 0 75 55 130 
1 1 0 1 84 77 161 
1 1 1 0 90 77 167 
1 1 1 1 99 99 198 

 

The compatibility of system (51) means that in some row of the table V1 ≤ 

50, V2 ≥ 50; the compatibility of system (52) means that in some row of 

the table V1 ≥ 50, V2 ≤ 50; the compatibility of system (53) means that in 

some row of the table 98 ≤ V3 ≤ 100. None of rows satisfies these 

conditions. Thus, in the considered case proportional division does not 

exist, that can be written in the form 

P(S) E(S)                                           (54) 

at least for S = 1, 4, 100 . 

Example 5. Let us consider the following division problem with one 

divisible and four indivisible items: 
                             Table 10 

A B 

3 3 
45 17 
30 20 
20 22 
2 38 

100 100 

In this case formulas (6) for gains are written as follows: 

GA(x, σ) = xa0 + 
N

i
iia

1

= 3x+45σ1+30σ2+20σ3+2σ4,            (55) 

GB(x, σ) = (1–x)b0 + 
N

i
ii b

1

)1( = – xb0 = 3(1–x) +17(1–σ1) +20(1–

σ2)+22(1–σ3)+ 38 (1–σ4).                                                                       (56) 
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From (55) and (56) immediately 

GA(x, σ) = 3x + V1, 

GB(x, σ) = 3(1–x) + V2, 

GA(x, σ) – GB(x, σ) = (6x–3) + (V1 – V2), 

where  

V1 = 45σ1+30σ2+20σ3+2σ4, V2 = 17(1–σ1) +20(1–σ2)+22(1–σ3)+ 38 (1–σ4). 

Because 0 ≤ x ≤ 1, it is clear that existence of an equitable division 

implies that for some Boolean vector σ 

|V1 – V2 | ≤ 3. 

Assume V3 = 62σ1+50σ2+42σ3+40σ4; system (44) in the considered case 

becomes  

94 ≤ V3 ≤ 100. 

Let us consider the set of all the 16 Boolean vectors (σ1,σ2,σ3,σ4) and 

calculate the corresponding value of V1, V2 and V3: 

Тable 11 

σ1 σ2 σ3 σ4 V1 V2 V3 
0 0 0 0 0 97 0 
0 0 0 1 2 59 40 
0 0 1 0 20 75 42 
0 0 1 1 22 37 82 
0 1 0 0 30 77 50 
0 1 0 1 32 39 90 
0 1 1 0 50 55 92 
0 1 1 1 52 17 132 

 

 

σ1 σ2 σ3 σ4 V1 V2 V3 
1 0 0 0 45 80 62 
1 0 0 1 47 42 102 
1 0 1 0 65 58 104 
1 0 1 1 67 20 144 
1 1 0 0 75 60 112 
1 1 0 1 77 22 152 
1 1 1 0 95 38 154 
1 1 1 1 97 0 184 

 

The compatibility of system (44) means that in some row of the table 94 

≤ V3 ≤ 100. None of rows satisfies this condition. Thus, by statement 11 

in the considered case an equitable division does not exist. Indeed, for 

any row |V1 – V2 | > 3, and this difference cannot be compensate be one 

divisible item with value 3 for both participants. At the same time in 

several rows of the table (namely, 0110, 1010, 1100) V1 ≥ 50, V2 ≥ 50 that 

means that proportional divisions exist. This example implies inclusion 

Q(S) P(S)                                           (57) 

at least for S = 1, 4, 100 . 
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Example 6. Let us consider the following division problem with one 

divisible and four indivisible items: 
                            Тable 12 

A B 

5 5 
40 49 
10 1 
20 25 
25 20 

100 100 

In this case system we easily find equitable divisions  

{1, 2}, {0, 3, 4} and {0, 3, 4}, {1, 2}. 

In both cases each participant receives exactly 50; one of these divisions 

is a complement division for another. But this division is not efficient 

because division corresponding σ = (0,1,1,1): division {2, 3, 4} for A and 

{0, 1} for B gives more for both participants: (55, 54). Thus, this example 

implies inclusion 

F(S) Q(S)                                           (58) 

at least for S = 1, 4, 100 . 

Summing inclusion (54), (57) and (58), we have 

F(S) Q(S) P(S) E(S) = U(S), 

in opposite to the case in which all items are divisible, where all the 

inclusions are equalities (see statement 2).  

Note, that the same inclusion is true for the problem from Example 3 with 

the other signature S = 2, 3, 100 . 

Example 7*. Let us consider the following division problem with one 

divisible and four indivisible items: 
                              Тable 13 

A B 

17 17 

42 45 

37 34 

2 2 

2 2 

100 100 

*This example was suggested by SU – HSE student Alexander Shalenny 
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For this problem:  

system (42) is  

    50223445

   502 23742

4321

4321

                    

(59) 

 system (43) is 

    50223445

   502 23742

4321

4321
                    (60)                                  

c1 = 42+45 = 87, c2 = 37+34 = 71, c3 = 2 + 2 = 4, c4 = 2+2 = 41; 

system (44) is  

  664 47187

1004 47187

4321

4321
                      (61)  

In order to check compatibility of these three systems, consider the set of 

all the 16 Boolean vectors (σ1,σ2,σ3, σ4) and calculate the corresponding 

value of three expressions: 

V1 = 42σ1+37σ2+2σ3+2σ4, 

V2 = 45σ1+34σ2+2σ3+2σ4, 

V3 = 87σ1+71σ2+4σ3+4σ4 (V3 = V1+V2). 

Results of these simple calculations are presented in Table14: 

                                           Тable 14 

σ1 σ2 σ3 σ4 V1 V2 V3 
0 0 0 0 0 0 0 
0 0 0 1 2 2 4 
0 0 1 0 2 2 4 
0 0 1 1 4 4 8 
0 1 0 0 37 34 71 
0 1 0 1 39 36 75 
0 1 1 0 39 36 75 
0 1 1 1 41 38 79 

 

 

σ1 σ2 σ3 σ4 V1 V2 V3 
1 0 0 0 42 45 87 
1 0 0 1 44 47 91 
1 0 1 0 44 47 91 
1 0 1 1 46 49 95 
1 1 0 0 79 79 158 
1 1 0 1 81 81 162 
1 1 1 0 81 81 162 
1 1 1 1 83 83 166 

 

The compatibility of system (59) means that in some row of the table V1 ≤ 

50, V2 ≥ 50; the compatibility of system (60) means that in some row of 

the table V1 ≥ 50, V2 ≤ 50; the compatibility of system (61) means that in 
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some row of the table 66 ≤ V3 ≤ 100. None of rows satisfies first two 

conditions, though there are 8 rows satisfying (61). Thus, in the 

considered case equitably fair division exists: for instance, participant A 

receives item 3 (37%) and 14,5 of item 1 (14,5%), while participant B 

receives items 2, 4, 5 (49%) and 2,5 of item 1 (2,5%). Thus, everyone 

receives 51,5%;  no division gives more for both. Therefore, this is a fair 

division (it is simultaneously profitably, uniformly and equitably fair). 

Example 8. Let us consider the following division problem with three 

indivisible items: 

                             Тable 15 

A B 

51 40 
45 50 
4 10 

100 100 

In this problem point (GA(σ), (GB(σ)) is the pair of gains received by 

participants as a result of division  σ, where 

GA(σ) = 51σ1+45σ2+4σ3, 

GB(σ) = 40(1–σ1)+50(1–σ2)+10(1–σ3). 

Let us calculate gains GA(σ), GB(σ) and expressions  

min{GA(σ), GB(σ)},                                       (62) 

|GA(σ) – GB(σ)|                                         (63) 

for all 8 Boolean vectors (σ1,σ2,σ3) (see statement 7 and steps 11, 12 of 

the essential algorithm). The results of calculation are presented in Тable 

16: 

                                                                                             Тable 16 

σ1 σ2 σ3 GA(σ) GB(σ) min{GA(σ), B(σ)} |GA(σ) – GB(σ)| 

0 0 0 0 100 0 100 
0 0 1 4 90 4 86 
0 1 0 45 50 45 5 
0 1 1 49 40 40 9 
1 0 0 51 60 51 9 
1 0 1 55 50 50 5 
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1 1 0 96 10 10 86 
1 1 1 100 0 0 100 

Table 16 clear demonstrates that criteria (62) and (63) defining profitable 

and uniform fairness lead to different divisions. There are only two rows 

(5
th
 and 6

th
) presenting proportional divisions. One of them maximizes 

(62) while the other minimizes (63) over the set of all the efficient 

divisions.   

 

7. Manipulation in the divisible case 

Usually, presentation of false data – false importance values in this case –  

in order to receive more is called manipulation. The well known 

manipulation problem is considered in the following game form. 

1. Players independently choose arbitrary integer coefficients a1, …, aN 

and b1, …, bN  that are considered as their values of items.  

2. A fair division x, σ  is constructed based on the presented values a = 

(a1, …, aN) and b = (b1, …, bN). 

3. The gain of player A is equal to value of division x, σ  from the point 

of view of his true valuations , …,   (analogously for player B). 

Formally 

GA(a, b) =  + ,                         (64a) 

GB(a, b) =  + ,             (64b) 

where x, σ  is a fair division corresponding to the presented values a and 

b (not to the true values a
t
 and b

t
). 

Thus, the game of two persons with finite number of strategies is defined. 

Remember, that strategy a* of player A is a guarantying strategy, if the 

minimal gain of this strategy is the maximal one, or 

 ≥   

(analogously for player B:                                                                             

 ≥  ). 

If guarantying strategy a* differs from true strategy a
t
, that means that 

manipulation (i.e. presentation of strategy a* instead true strategy a
t
) is 

profitable for player A; otherwise, manipulation can decrease the gain of 

the player (the same for player B). 
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Statement 17. In the considered case a* = a
t
, b* = b

t
, i.e. manipulation 

can decrease the gains. 

Proof. Suppose that a* ≠ a
t
. If player B chooses strategy a

t
 of player A, 

then player B receives more than a half in values a
t
 (see Statement 2). 

Hence, player A receives less than a half in his own values a
t
 (see (64)). 

At the same time, if player A chooses his true strategy a
t
, then he receives 

at least half in his own values a
t
  independently of any choice of B. 

Therefore, strategy a
t
, is the guarantying strategy of A (analogously for 

B). 

 

8. Conclusion 

In the connection with the presented material two typical questions arise: 

 How to modified the results to the case of N participants, where N 

> 2? 

 How to cope with manipulation in general case? 

These questions, as well as some others, are out of scope of this material. 

However, the author intends to continue investigation in this wide 

domain. Particularly, it seems of expedient to consider division problems 

in which some groups of items may be of special interest for participants, 

so that value of a group significantly exceeds the sum of values of its 

separate items (package deals). 

The author is grateful to his colleagues F.T. Aleskerov and D.A. Shwarts 

for their support and attention to this work. 
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