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1. Introduction

In the middle nineties two American scientists — Steven Brams and Alan
Taylor — suggested a fresh approach to widespread conflict situations.
In these situations conflict consists of a family of separate disputable
items (partial conflicts), and conflict resolution can be reduced to
agreements about each of them. The main idea can be roughly presented
as follows. Participants have their own values of importance of different
items that form together a conflict. Because in most cases these values do
not coincide completely, it is possible to achieve conflict resolution, such
that both participants receive more than 50% of satisfaction measured in
their own values.

1.1. Examples

The approach is carefully exposed in very comprehensive books [1, 2].

In order to clarify the approach two examples taken from [2] are

considered here. Many other examples of real and hypothetical conflicts

illustrating wide applicability of the approach can be found in the above

mentioned books as well as in book [3].

Example 1. Divorse arrangement. Ann and Ben are getting a divorce.
The items that Bob and Carol had to divide were as follows:
A retirement account (pension), which, though substantial, will remain
untouchable for several years; they are valuable for both but especially
for Ann because Ben has more chance to make new account before
his retirement. A four-bedroom house, located close to Ben’s job;
therefore Ben values this house higher than Ann. Country cottage that
can be used at any season, preferable by Ann who intends to live
there. A portfolio of investments, which has lower monetary value
than the pension but is all liquid assets.



Other, consisting of two cars and relatively expensive yacht highly
valued by Ben.
In more detail the situation is described in [2]. Valuations of Ann and
Ben of all the considered items are given in Table 1.

Table 1
Item Ann Ben
Retirement account 50 40
House 20 30
Cottage 15 10
Portfolio 10 10
Other 5 10
Total 100 100

Giving to everyone entire items, it is possible to suggest the following
division:

For Ann: retirement account + other =50 + 5 = 55;

For Ben: house + cottage + portfolio =30 + 10 + 10 = 50.

Thus, satisfaction with this division is not less than half for both
participants. The exact notion of optimal or fair division, suggested by
Brams and Taylor, will be considered further.

Example 2. Mergers. Disagreements between businesses are common,
especially when companies merge or are acquired. If each company cares
more about different parts of an agreement, complex arrangements need
to be worked out to satisfy both sides. One of the most elusive ingredients
in the success of a merger is what deal makers euphemistically refer to as
social issues — how power, position, and status will be allocated among
the merging companies' executives. A failure to resolve these issues often
leads to the destruction of shareholder wealth and the portrayal of top
executives as petty corporate titans, unable to subordinate their selfish
interests to the goal of promoting shareholder well-being.

Social issues concern the more ineffable matters of status, role, and
prestige in the merged company, as opposed to "hard" financial factors.
Even if a merger is ultimately consummated, as in the case of Boeing and
McDonnel Douglas, a failure to agree on the resolution of social issues
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quickly wastes resources and the extremely valuable time of top
corporate executives. The difficulty in forging cooperation between two
management teams is perhaps inevitable, given the transformation that
their relationship undergoes from the premerger to the post-merger
period. After all, former adversaries, first in the marketplace and then at
the negotiating table, are quite suddenly expected to work closely
together and cooperate fully as their respective corporate entities attempt
to meld into a single organization.
The following social issues are typical for companies’ merger:
the surviving company's name;
the location of corporate headquarters;
the split of the chairman and chief executive officer (CEO)
positions;
and, finally, which side will lay off some of its employees,
particularly corporate executives, to eliminate overlapping
operations or responsibilities (each company would prefer fewer of
its own layoffs).
Suppose that the merging companies' executives negotiate over these
issues in good faith. Thus, we are concerned with truly intractable issues
that can be won or lost by either side without undermining the merger's
objectives. Assume that each side distributes its 100 points across the
issues, as follows:

Table 2

Conflict items Firm A Firm B
1. Name 10 25
2. Headquarters 20 35
3. President assignment 15 20
4. CEO assignment 25 10
5. Laying off 30 10
Total 100 100

It is easy to see that in this hypothetical case each side can receive more
than a half. For instance,
For firm A: item 4 + item 5 = 25 + 30 = 55;
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For firm B: item 1 + item 2 + item 3 =25 + 35 + 20 = 80.

However, this arrangement does not seem too fair: firm B receives (in its
own values) significantly more than firm A receives (in its own values).
A fair conflict resolution in this case is considered further in the article.

1.2. Notion of fair division

The considered in section 1.1 conflict situations, despite all the
differences between them, clear demonstrate two key features, inherent to
such kind of conflicts:

a) conflict consists of several items (goods, issues, etc);

b) participants have their own values of importance of every item.
These features form the basis of the above mentioned approach to conflict
resolution. The task of conflict resolution is reduced to fair division —
namely, to fair division of items importance among conflict participants
correspondingly to their own evaluations. The fairness of division means
the fulfillment of certain formal conditions:

1. Proportionality. Every one of participants thinks he or she

received a portion that has a size or value of at least 50% in his or

her own valuation.

2. Equitability. Each participant thinks that the portion he or she

receives is worth the same, in terms of his or her valuation, as the

portion that the other participant receives in terms of that
participant's valuation.

3. Efficiency. A division is efficient (Pareto-optimal) if there is no

other division that is strictly better for at least one participant and

as good for another.

1.3. Adjusted-winner procedure
The authors of book [1] suggested surprisingly simple algorithm of fair
division named the adjusted-winner (AW) procedure. The initial data
consist of two sets of natural numbers: ay, ..., ay and by, ..., by that are
valuations of participant A and B
ic1a; = XLy by = 100.

Let us reorder all the items so that

a/by >ay/b, > ... >ay/by. (1)
The AW procedure of fair division can be presented as follows.



Algorithm 1 (AW procedure).
1. If a,> YN, b;, then participant A receives x-th share of item 1, or xa,,
while participant B receives (1-x)-th share of item 1 and all the other
items 2, ..., N, or (1-x)b+ YN, b;, where
X= 100/(a1+ b]_),
the algorithm is completed.
2. If ¥ ¥ 1a; < by, then participant A receives all the items 1, ..., N-1
and x-th share of item N, or ?’:‘11 a; + xay, while participant B receives
(1-x)-th share of item N, or (1—x)by, where
x=1-100/(ay+ by);

the algorithm is completed.
3. Starting with 1, increase i up to some value r satisfying conditions

ISiai< X, by, (22)

i@ > X b (2b)
4. If there is the equality in (2a), then participant A receives items 1, 2,
..., r=1, or L‘f a;, while participant B receives items r, r+1, ..., N, or
ZIiV:r b;; the algorithm is completed.
5. If there is the inequality in (2a), then participant A receives items 1, 2,
..., r=1 and x-th share of item r, or ¥/} a; + xa,, while participant B
receives (1-x)-th share of item r and items r+1, ..., N, or (1-x)b+
Xilr+1bi, where

X= (Zivzr bi - er_ll ai)/(ar+ br);

the algorithm is completed.
Theorem 4.1 from book [1] states that a division constructed by this
algorithm is a fair division, i.e. it possesses properties of proportionality,
equitability and efficiency for arbitrary valuations a; ..., ay and by, ..
bN-
Example 1 (continuation). Let us reorder items from Table 1 so that
they satisfy condition (1):

*

Table 3
Item Ann Ben
1. Cottage 15 10
2. Retirement account 50 40
3. Portfolio 10 10




4. House 20 30
5. Other 5 10
Total 100 100

Following algorithm 1, find a number r, satisfying (2). From Table 3 we
have

Zi1:1 a; = 15, Z?:z b; =90, 212:1 a; =65, Zi5=3 b; =50,

that means that r = 2 satisfies (2). In correspondence with step 5 of AW
procedure, Ann receives cottage (15), and (5/6) of retirement account,
while Ben receives portfolio (10), house (30), other (10),) and (1/6) of
retirement account. Thus, everyone has 56.67% in terms of their own
valuations, which is essentially more than a half (50%). Proportionality,
equitability and efficiency of this division immediately follow from the
above mentioned theorem. Note, that this fair division gives more for
both participants than the division, considered at the beginning of this
example.

1.4. Notion of divisibility

In [1], an item (good, issue) is called divisible, if it can be divided at any
point along a continuum without destroying its value, and indivisible, if it
cannot be divided without destroying its value. Of course, the notion of
divisibility is an informal notion that must be discussed before division
itself. Despite the significant (and sometimes crucial) importance of
divisibility in many practical division problems, the analysis of this
notion is beyond the scope of this work. However, one of the most
attractive features of AW procedure consists in the following. This
procedure guarantees that not more than one item must be divided; every
other item is given to one of the participants entirely. This allows in many
cases to avoid items division that is often difficult and informal task.
Because in AW procedure only one item (whose number is determined by
algorithm 1) can be divided, this procedure gives a fair (i.e. proportional,
equitable and efficient) division in all the cases, where this selected item
is divisible independently of divisibility of all the other items.

Further we will consider the data about divisibility of items as initial data
that cannot be discussed at the framework of this investigation. Of course,
possibility (or impossibility) to divide some items can affect results of



division, sometimes essentially. The next example gives a simple
illustration of the notion of divisibility.

Example 2 (continuation). Let us reorder items from Table 2 so that
they satisfy condition (1):

Table 4
Conflict items Firm A Firm B
1. Laying off 30 10
2. CEO assignment 25 10
3. President assignment 15 20
4. Headquarters 20 35
5. Name 10 25
Total 100 100

Here, as everywhere in this material, values given by participants mean
only relative importance of the corresponding items; they do not have any
positive or negative sense.

It is natural to consider only the first item as a divisible one, while the
other items cannot be divided (at least, arbitrary). Division possibilities in
this case are carefully analyzed in [2]. Let us start with AW procedure
without care about divisibility. The procedure gives items 1 and 2 to firm
A, items 4 and 5 to firm B, and requires the division of item 3, i.e.
president assignment, in proportion 5:2 between participants. Everyone
receives 65,71% in terms of their own valuations.

In this case it is not difficult simply to consider all the possibilities and
find a fair division satisfying the following condition: only the first item
(laying off) can be divided. Firm A receives item 2 (25%), item 4 (20%),
and (3 /4) of item 1 (22,5%), while firm B receives item 4 (35%), item 5
(25%) and (14) of item 1 (2,5%). Both have 62,5%; it is naturally that
taking into account indivisibility of some items can decrease the common
gains; here we have 62,5% instead of 65,71%.



1.5. Informal statement of problem
Example 3. Let us consider a hypothetical division problem with two
divisible and three indivisible items:

Table 5

Items A B

1 10 30

2 10 20

3 35 18

4 30 20

5 15 12
Total 100 100

Items 1 and 2 are divisible; items 3, 4 and 5 are indivisible.

Let us consider two different divisions. The 1* division: participant A
receives indivisible item 3 (35%), indivisible item 5 (15%) and (273) of
divisible item 2 (6,67%), while participant B receives indivisible item 4
(20%), divisible item 1 (30%) and (1/3) of divisible item 2 (6,67%);
therefore each participant has 56,67%. The 2™ division: participant A
receives indivisible item 3 (35%) and indivisible item 4 (30%), while
participant B receives indivisible item 5 (12%), divisible item 1 (30%)
and divisible item 2 (20%); therefore, A has 65% and B has 62%. This
means that the 1% division is not a fair division because it is not efficient
(65 >56,67 and 62 >56,67).

Example 3 will be formally analyzed further but it is clear that no fair
division exists in the considered case. The first division looks fair,
because it gives the same gain to both participants (and no other division
gives greater equal gains). The second division looks fair, because it
gives more to each participant (and cannot be improved for both of them:
if one receives more, the other receives less).

The fact of the absence of fair (in the above mentioned sense) divisions in
some situations, of course, is not a new one. However, the problem of fair
division in cases where both types of items — divisible and indivisible —

10



are present simultaneously up to now has not been formally stated and
studied. In this connection the following problems arise:

e introduce reasonable formal modifications of the notion of fair
division, adequate to both types of items;

o elaborate a computationally efficient (non-enumerative) method for
finding division fair in the introduced senses;

o formulate and prove necessary and sufficient conditions of
existence of proportional, equitable and fair divisions in terms of
items evaluation by participants.

The article is devoted to solving these problems.

2. Basic notions, definitions, and statements

Let us start with more detailed notions. Assume there are L divisible and
M indivisible items. Denote value of divisible and indivisible items for
participant A by a¢, ..., af, a¥, ..., a}; and for participant B by b¢, ...,
bd, b¥, ..., bY. The sums of all the values are the same for each
participant. It is not required that they are equal to 100. Instead of 100 it
is possible to consider any natural number (denoted by H):

fmal + 3 af =Y b + XL, b = H. 3)

Cases L = 0 (no divisible items) and M = 0 (no indivisible items) are not
excluded. The triple of numbers S = (L, M, H) will be called the
signature of a division problem.
Thus, any division problem can be formally described by a triple (a, b, S)
of three objects: a = (a%, a"), b = (b, b"), S = (L, M, H), where
a'=(af, ..., af),a" = (¥, ..., ajp), b’ = (b, ..., o), b" = (BY, ..., bjy),
S is the signature of the problem.
Furthermore, any division in a problem with signature S is presented as a
couple {x, o), where X = (X4, ..., X.), X; are real numbers such that

0<x<1(i=1,..,L),
and o= (o4, ..., om),

gief{0,1}(i=1,...,M).
In these terms participant A receives (x)-th part and participant B
receives (1-x;)-th part of divisible itemi (i =1, ..., L); indivisible item i is
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given to participant A, if g; = 1, and to participant B, if 6; =0 (i=1, ...,
M).

Let us consider an arbitrary division problem (a, b, S). Assume (X, o) is a
division in this problem.

Assume
GR() = Ty afx;, (4a)
GE(X) = Tf=q b (1 = x)), (4b)
GX(0) =i, al oy, (52)
GY'(0) = ZiL1 b’ (1 — a), (5b)
Ga(x, 0) = GE(x) + GX (o), (6a)
Ge(x, 0) = G§(X) + G¥ (0). (6b)

Thus, G(X, 0) = (Ga(X, o), (Gg(X, 0)) is the pair of gains received by
participants as a result of division (x, o). Pair GY(x) = (G£(x), GE(x)) is the
pair of gains of distribution x of divisible items only, and pair G"(¢) =
(GX (0), GE (0)) is the pair of gains of distribution ¢ of indivisible items
only.
Fro>r/n the above notations it is clear that for any division (x, o)

G(x, 0) = G*(x) + G"(0) ()
(the sum in (7) is the vector sum).

2.1. Properties of divisions
The properties of divisions mentioned in section 1.2 are expressed in
these terms as follows.

Efficiency of division {x, o) means that for any other division ¢y, 7) at
least one of the following inequalities:
Ga(X, 0) > Gal(y, 1),
Ga(x, o) > Ge(y, 1)
is true (none division gives more for one and at least the same for the
other).
Proportionality of a division {x, ) means that
GalX, 0)>H/2,
Gg(x,0)>H/2
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(everyone receives at least half in his or her own values.

Equitability of a division (x, o) means that both participants receive the
same (in their own values):

Ga(x, 0) = Gg(X, 0). 8
Remember that a division (X, ) was named a fair division, if it possesses
properties of efficiency, proportionality and equitability. Here the simple
interconnections between these properties are considered.
Assume
U(S) be the set of all the division problems with a given signature S (the
set of all the triples {(a, b, S));
E(S) be the set of all such problems that have efficient divisions,
P(S) be the set of all such problems that have proportional divisions,
Q(S) be the set of all such problems that have equitable divisions,
F(S) be the set of all such problems that have fair divisions.
Let us start with the following simple

Statement 1. The connections between the considered sets is described
by the following inclusions:
F(S) < Q(S) = P(S)cE(S) = U(S). )

Proof. Let us go from right to left in (9).

1. Assume (X, o) is an arbitrary division in an arbitrary problem (a, b, S)
with a given signature S. Assume that in S L > 0 (at least one divisible
item exists). If (x, o) is efficient itself that means that the considered
problem belongs to E(S) by definition. Otherwise, denote by K(Xx, o) the
set of all the divisions that dominate (X, o) or give the same gains.
Because there is a finite set of different Boolean vectors z, the set K(X, o)
is the union of a finite number of subsets K,(X, ) consisting of divisions
with the same indivisible part 7. It is clear that all these sets K (x, o) are
compact ones; hence, the corresponding sets of pairs (Ga, Gg) are
compact, too, (see formulae (4) — (6)). This implies that the set R(x, o) of
all the gains, corresponding to division from K(x, ), is a compact one.
Therefore there is at least one division (y, 7), such that the corresponding
pair (Ga(y, 7), Gs(y, 7)) maximizes G, + Gg over set R(x, o). Division (y,
) is an efficient division. If it is wrong that means that there is a division
(z, v), dominating (y, 7); hence, it dominates (X, o). Then by the construc-
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tion it must belong to K(x, o), but by the definition of (y, 7) it is
impossible. The contradiction proves the assertion in case L > 0. In case L
= 0 all the considered sets are finite ones and the assertion is true.
2. The inclusion P(S) C E(S) is proved analogously the previous one: any
proportional division is efficient itself or it is dominated by an efficient
division (this is proved exactly as in the previous part 1); the latest is
proportional because every participant gains more or the same.
3. In order to prove the inclusion Q(S) — P(S), let us introduce the useful
notion of complement division. For any division (x, o) let us define the
division { X, ) (called the complement division) such that
Xi=1l-x(@G=1,...,L),
gi=l-o(i=1,...,M).
Formulas (3) and (4) — (6) imply that
Ga(X,0) =H - Ga(X, 0),
Gg(X,0 ) =H - Gg(x, 0);
because Ga(x, o) = Gg(X, o), at least one of two equitable divisions (X, o)
and (X, ) is proportional that implies the required inclusion.
4. The inclusion F(S)c Q(S) is true, because by definition of fair
division it is equitable.
The statement 1 is proved.

Above mentioned theorem 4.1 from book [1] can be formulated as
follows.

Statement 2. For division problems such that in their signatures M = 0
(i.e. any item is divisible) all the inclusions in (9) are equalities.

It is clear that even one indivisible item disturbs this beautiful picture. At
the same time, fear divisions can exist even in the case L = 0 (i.e. any
item is indivisible).

Let us introduce notions concerning an arbitrary division problem (a, b,
S) itself (not its specific divisions). Denote

As(a, b, S)=U,G%(x), (10)
where the union is taken over all the distributions x of L divisible items
only;

Au(a, b, S)=U,G" (o),
14



where the union is taken over all the distributions ¢ of M indivisible items
only;

A@, b, S) = U, G(x,0),

where the union is taken over all the divisions (X, o) in problems with a
given signature S.

The three defined sets — Aq (a, b, S), Ay (a, b, S), A(a, b, S) — are sets of
points in plane.

From the above notations and formula (7) it is clear that

A(a,b,S)=As(a, b, S)+A,(ab,S). (11)
Finally, denote by Af(a, b, S), Af (a, b,S) and AP"(a, b, S) Pareto-optimal
parts of A4 (a, b, S), Aw(a, b, S) and A(a, b, S), correspondingly.
Introduced notions immediately imply
Statement 3. Assume a division (x, o) is efficient, i.e. G(x, o) € A°(a, b,
S). Then G(x) € A5 (a, b, S) and G*(0) € A% (a, b, S).
This statement means that for any efficient divisions (X, o) its
«projections» X and o are efficient in the corresponding «projections» Aq
(a, b, S) and A, (a, b, S) of set A(a, b, S). Set A(a, b, S) can be named
«attainability set» of the considered division problem (a, b, S).

In order to illustrate the introduced notions, consider the following
example (see section 1.5).

Example 3. Continuation. 1.The initial data for this case is given in
Table 5. The two first rows in this table describe divisible items that are
rewritten in Table 6:

Table 6
Items A B
1 10 30
2 10 20
Total 20 50

Set Aq (a, b, S) of all the points, corresponding to all the possible
distributions of these divisible items, is the set of all points presented as
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(10x+10y, 30(1—x)+20(1-y)), (12)

where
0<x<1,0<y<l. (13)
In (12), (13) x and y are the parts of divisible items 1 and 2, received by
participant A.
Moving pair (X, y) along the way (0,0)—(0,1)—(1,1)—(1,0)—(0,0) and
calculating corresponding points by formula (12), we find the
quadrilateral shown in Fig.1. It coincides with Ay (a, b, S). Its Pareto-
optimal part Af(a, b, S) is shown in the figure.
2. The three last rows in this table 5 describe indivisible items that are
rewritten in Table 7. There are 8 possibilities of distributions of three
indivisible items between two participants that can be presented by 8
Boolean vectors o = (o1, 02, 63). Using formulae (5) we find that set Ay(a,
b, S) in the considered case consists of 8 points
(3501 + 300, + 1503, 18(1-07) + 20(1-07) + 12(1-03)),
where (o1, 07, 03) are all the Boolean vectors with 3 components.
Substituting (a1, 02, a3) consecutively with their values from (0,0,0) till
(1,1,1) easily find 8 points in the plane:
Au(a,b,S) = {(0,50),(15,38),(30,30),(45,18),(35,32),(50,20),(65,12),(80,0)}. (14)
Among 8 points (14) there are two dominated: (30, 30) is dominated by
(35, 32), and (45, 18) is dominated by (50, 20). Therefore, AL (a,b,S)
consists of 6 points:
AP (a,b,S) = {(0, 50), (15, 38), (35, 32), (50, 20), (65, 12), (80, 0)}.

3. The attainability set A(a, b, S) in the considered example is easily
constructed using (11) and explicit presentation of sets Ay (a, b, S) and
Au(a, b, S), given in Fig.1 and 2. This set A(a, b, S) is marked grey in
Fig.3. The Pareto-optimal part A”(a, b, S) of the attainability set A(a, b, S)
is shown in Fig.4.
By virtue of statement 3, it is enough to add to each point belonging to
the finite set A% (a,b,S), shown in Fig.2, the set A5(a, b, S), shown in
Fig.1 (adding here means coordinate adding of two-dimension vectors).
In Fig.4 the different parts of Pareto-optimal border A°(a, b, S) of the
attainability set A(a, b, S) are marked bold; a white circle at the end of a
part means that the corresponding point belongs to the part; the absence
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of a circle means that the corresponding end does not belong to A°(a, b,
S). The point marked by a black square presents an equitable division
with maximal possible gains 56,67. This division is not a fair one,
because it is not efficient: the point (65, 62) dominates the marked
equitable division as well as any other equitable division (65>56,67 and
62>56,67). Therefore, in the considered problem there are no fair
divisions at all. Note that the properties of divisions are determined by
geometry of Pareto set A”(a, b, S)

Table 7
Items A B
3 35 18
4 30 20
5 15 12
Total 80 50

2.2. General structure of Ag(a, b, S)

In Example 3 (see Fig.1) set Ay (a, b, S) is a center-symmetrical convex
polygon, whose all the edges have negative slope. The same is true for
arbitrary division problem (a, b, S). Let us consider the structure of A4 (a,
b, S) in general case in more detail.

Assume

$1= Xieq G, (15a)

$2=Xi-1 b (15b)

(index d is omitted for simplicity). To construct the set, assume that
values are ordered as in (1):

a,;/by >ay,/b, > ... >a,/b.. (16)

It is clear that set Aq (a, b, S) is a convex polygon.
Let us consider the unit cube in L-dimension space. Any point X = (X, ...,
X_) belonging to this cube determines point f(x) belonging to polygon
Aq(a, b, S):

f(x) = (i1 aixi, Bieq bi(1 — X))
(see formulae (4)) and any point of the polygon coincides with f(x) for

some x. Let us consider all the vertices of the unit cube starting with
(0,0,...,0) till (1,1,...,1). The images of these vertices cover completely
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all the vertices of polygon A4(a, b, S). The vertex (0,0,...,0) corresponds
to the left point (0, s,). Consider the edges connecting vertex (0,0,...,0) to
the L adjacent vertices of unit cub: (1,0,...,0), (0,1,...,0), ..., (0,0,...,1).
Corresponding segments on the plane have the common left end (0, s)
and slopes bi/a; (i=1, ..., L). Order (16) means that the minimal possible
slope has the segment connecting point (0, s,) to the point (ai, s,—b1),
because its inverse value a; / b; is the maximal. That means that this
segment is a part of border of Ay (a, b, S). Considering the next vertex
(a1, S-by), analogously find the next border point (a; + a,, s,—bi—h,), and
so on, up to the last point (s;, 0) (see (15)). Thus, set Af(a, b, S) is the
broken line whose k-th point is:

(i1 @i, Bicgar b)) (k=1, .., L);

The 0-th point is (0, s;). The geometrical illustration is given in Fig.5.
The same reasoning implies that the low border of the polygon consists of
the same segments in reverse order. Therefore, point (s1/2, s,/2) is the
center of symmetry of the polygon.

In the case M = 0O there are only L divisible items, and the reasoning of
this section gives another proof of statement 2 (theorem 4.1 from [1]).
Indeed, in this case s; = s, = H, and intersection of line x = y with broken
line A5(a, b, S) determines the same fair division.

¥
B
5, \
b \h
X
5] ) dy
Fig.5
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The established structure of set Ay (a, b, S) implies several important
corollaries (formulated further as statements):

Statement 4. Assume (X, o) is an arbitrary efficient division. Then not
more than one item must be divided; every other item is given to one of
the participants entirely.

Proof. We have (see (7)) G(x, 0) = G'(X) + G"(¢) and by virtue of
statement 3 G%(x) € A5 (a, b, S). That means that point G(x, o) belongs to
broken line G"(¢) + Af(a, b, S). Every vertex on this line presents
distribution of all the divisible items as whole (see the previous
construction), and any point inside a segment between two vertices
presents division of the item, corresponding to this segment.

Statement 5. Assume (X, o) is a maximal equitable division (i.e. an
equitable division with maximal possible common gain). Then not more
than one item must be divided; every other item is given to one of the
participants entirely.

Proof. Because {x, o) is an equitable division, point G(x, o) must belong
to line x = y. Consider intersection of line x = y with any polygon G"(o¢) +
Aq (a, b, S). If point G(x, o) does not belong to G"(s) + Af(a, b, S), then
both coordinates of G(x, o) can be increased, i.e. {(x, o) is not a maximal
equitable division. Therefore, it belongs to broken line G"(o) + Af(a, b,
S) that implies the assertion by the same reasoning as at the end of the
previous prove.

3. Modifications of notion of fair division
Now we introduce the essential notions of this work — modifications of
notion of fair division. In the division problem from Example 3 it is
impossible to provide efficiency and equitability simultaneously — we can
receive the equitable division that is not efficient or the efficient division
that is not equitable (see points in Fig.4). It is not a pathologic exception:
it really happens in several examples given further in section 6.
These examples led us to the following formal definitions.
A division (x, o) in problem (a, b, S) is profitably fairy if it is

e proportional;

o efficient;

e maximizes expression min{Ga(x, o), Gg(X, o)}over the set of all

the divisions (x, o).
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A division (x, o) in problem (a, b, S) is uniformly fairy if it is

e proportional;

o efficient;

e minimizes expression |Ga(x, o) — Gg(X, )| over the set of all such

divisions {x, o).

A division (x, o) in problem (a, b, S) is equitably fairy if it is

e proportional,

e equitable;

e maximizes common gain G over all such divisions {x, o).
Thus, profitably fair divisions maximize minimal profits of participants
but do not care about equality; uniformly fair divisions try to make profits
as equal (uniform) as possible, yet under efficiency restriction; finally,
equitably fairy divisions provide equality of profits but do not care about
efficiency.
There is an evident connection between these different kinds of fairness;
let us formulate it as an assertion.
Statement 6. Any division is fair if and only if it is profitably, uniformly,
and equitably fair.
Let us consider a polygon, denoted by A(o):

A(0) = G"(0) + Aq,
where ¢ is an arbitrary distribution of indivisible items (see (5)), polygon
Ay is described in section 2.2. Remember that the union of all these
polygons (over all Boolean vectors ¢) forms the attainability set A(a, b,
S).
Statement 7. If polygon A(o) is completely below (above) line x =y, then
its left (right) vertex maximizes expression
min{Ga(X, o), Gg(X, 0)}
and minimizes expression
|GA(X’ 0-) - GB(X’ 0-)|

over the polygon.
Proof. It is enough to consider any line with a negative slope, because
slopes of all the edges of the polygon are negative. For the second
expression the geometric illustration of this evident fact is given in Fig.6.
For the first expression it is evident because minimal y-coordinate of B is
less than of A.
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Fig.6

Statement 8. If line x =y intersects polygon A(o), then in intersection of
this line and Pareto border of the polygon A(s) the same expressions
reach maximal and minimal values over the polygon, so that the value of
the second expression is equal to 0, and Ga(X, o) = Gg(X, 0)}

This statement immediately follows from the previous definitions and
constructions.

Modified definitions of fair divisions together with Statements 4 and 5
imply

Statement 9. Any profitably, any uniformly, and any equitably fair
division has the property: not more than one item must be divided; every
other item is given to one of the participants entirely.

It is clear that fair divisions also have the same property.

4. Algorithms

Statements 6 — 8 allow elaborating of computationally efficient algorithm
of finding profitably, uniformly, and equitably fair divisions. All of them
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are found by this algorithm. Before describe the algorithm, let us consider
the following useful procedure.

4.1. Constructing AF (a, b,S)
Definition (5) means that set A,(a, b, S) consists of all points with
coordinates

(XL a0, XiLibi(1—a)),
where ¢ = (01, ..., ow) IS an arbitrary Boolean vector with M components
(index w is omitted for simplicity).
Assume A, be the projection of set A,(a, b, S) to x-axis. In Example 3 A,
consists of 8 numbers: A, = {0, 15, 30, 35, 45, 50, 65, 80} (see (14)). By
definition of projection for any x € A, there is at least one number y such
that

(x,y) € Ay(a, b, S). 17
Denote the maximal y satisfying (17) by y(x) and define set A as follows:
A={(x y(x) | xeAc}.
By the definition of A it is clear that
AP (a,b,S) SACS Ay b,S)
and
AP (a,b,S) = A;
it means that the considered problem is reduced to construction of A®.
Note, that in Example 3 the second inclusion is equality.
In order to select the Pareto set A” from A it is enough simply to start with
maximal number from A, and go left, eliminating all the pairs in which y-
components does not exceed the previous one. Therefore, the considered

problem is reduced to the problem of finding A.
Assume

Sl = Z{\il aiv

S2= X1ty by
and consider the following family of optimization problem relatively
Boolean variables o4, ..., o

Zlivil b;(1 — g;) — max (18)
subject to
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Zé\il a;o; = k (k =Sy, S1—1, 51*2, R 0) (19)
By the construction, for all k that do not belong to A, equation (19) is
incompatible. For k = 0 equation (19) is compatible: the corresponding
value of goal function (18) is s,.
Assume

Ti = 1—O'i (l = 1,2, ceey M)
and substitute in (18), (19) oy with1 —7; (i=1, 2, ..., M). We receive the
equivalent family of optimization problem relatively Boolean variables z,
ves TM -
>M . bjt; — max (20)

subject to

Z?’ilai‘[i =k (k:O, 1, ...,Sl). (21)
Thus, the considered in this section problem of A, (a, b, S) construction is
reduced to the solution of the family of optimization problems (20), (21).
If for some k a solution exists, it gives a point of A corresponding to the
following items distribution: participant A (B) receives item i, if z; = 0 (5
=1).
Consider now family (20), (21) of optimization problems. The problems
differ from well-known knapsack problem only in the following: instead
of weight restrictions (<) there are equalities (=) in conditions (21).
However, they can be solved (analogously knapsack problem) by
dynamic programming. Let us consider the situation in more detail.
Denote the optimization problem

YP_ bit; — max
subject to
i ar =k

by Z(k, p), and the optimal value of its goal function by F(k, p). Then
Bellman equation for the problem is:
F(k, p) = max{F(k, p-1),F(k-a,, p-1) + b} (k=0,1,...,s; p=2, ..., M);
if the maximal value here is F(k, p—1), that means that in the optimal

solution z, = 0; otherwise, in the optimal solution z, = 1.
Finally, initial value are determined by formula
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_(by, ifa;=k

Fk 1) = {—oo, otherwise
The solution of optimization problem Z(k, p) for p = M corresponds to the
solution of the initial problem (20), (21). If the goal function for some k is
equal to —o, then for this k equation (21) is incompatible.

Thus, in this section the efficient and relatively simple algorithm of
AP (a, b,S) construction is described. In more detail: by the construction,
the algorithm is efficient relatively number H — the third component of
the signature of the problem. Note, that the number of undominated
points does not exceed H.

(k: 0,1, . Sl).

4.2. Checking dominance
In order to find profitably, uniformly, and equitably fair divisions it is
necessary to know about arbitrary point (X, y) belonging to attainability
set A(a, b, S), whether it corresponds to an efficient division, i.e. whether
it belongs to Pareto-optimal part A”(a, b, S) of attainability set A(a, b, S).
Statement 3 immediately implies that A°(a, b, S) is a subset of the
following set:
Af(a, b, S) € UY, Z;, (22)

where

Zi=W;+Af(a,b,S) (i=1,...,w). (23)
In (23) points W; (i = 1, ..., w) form set AL (a,b,S) of different
undominated pairs of gains from distribution of indivisible items only;
they are found by the algorithm from section 4.1.
Remember that Af(a, b, S) is a broken line with L edges, which is an
upper part of border of a convex polygon Aq (a, b, S) (see section 2.2 and
Fig.5). By the construction of Z; all their graphs are received as shifts of
the same graph A% (a, b, S) by vectors W; .
Inclusion (22) implies that a point (x, y) is undominated into A(a, b, S) if
and only if it does not dominated by any point belonging to U, Z;.
Therefore, it is enough to check, whether point (x, y) is dominated by a
point belonging to one of known broken lines W; + A5(a, b, S) (i=1, ...,
w). Hence, the problem is reduced to checking dominance for every
broken line (23) separately. The last problem finally is reduced to the
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analogous problem for every of L edges forming one line; and the
solution of this problem is evident.

It is clear that the bulk of all these operations is computationally efficient
(relatively parameters w and L).

4.3. Constructing equitable fair division
In this section an algorithm for construction of an equitable fair division
is suggested. Division (x, o) is an equitable fair division if it is a solution
of optimization problem
Yicialx + YN, al o, — max (24)

subject to

falx + T alo =i b (1 —x) + T, by (1 - 0y). (25)
Equality (25) for gains follows immediately from (8), taking into account
(4) - (6).
Statement 9 allows reducing the considered problem to the analogous
problem with exactly one indivisible item. In more detail: let us consider
the problem with the same values of participants and additional
condition: only item k (among divisible in the initial problem items 1, 2,
..., L) is divisible; all the other items are indivisible. That means that in
equality (25) variable x;€ {0,1} (i=1, ..., M; i#k). Denote this problem by
Z(k). Using introduced in section 2 notion of signature, the signature of
Z(k) is (1, L+M-1, H) (instead of initial signature S = (L, M, H)).
Denote the value of goal function (24) in problem Z(k) by F(k). Assume

F(k*) = maxy<x<y F(k);

then the corresponding to this number k* division (X, o) is an equitable
fair division in the considered initial division problem (a, b, S).
Thus, the problem of construction of an equitable fair division is reduced
to the same problem in situations where only one item is divisible.
4.3.1. Case of one divisible item. In order to simplify notations, in this
section a division problem is described by a couple {(a, b), where a = (ay,
a;, ...,an), b=(by, by, ..., by) are values of participants; item 0 is only
divisible item; all the other items are indivisible. Any division is
presented by a couple <x, o), where

0<x<I; (26)
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o = (o1, ..., oy) IS a Boolean vector. In these notations optimization
problem (24), (25) is written as

xag+ YN, a;0; — max (27)
subject to
Xag+ YLq a;0; = (1-x)bg + XN b (1 — ay). (28)
Condition (28) can be rewritten equivalently as
Y a0, -2, bi(1 = 0;) = (1- X)bo — xap. (29)
Let us consider the double inequality
—a< XL a0, - XL bi(1 = 0;) < b (30)

Statement 10. Couple (x, o) satisfies conditions (26), (28) if and only if
Boolean vector o satisfies double inequality (30).

Proof. 1. For x = 0 (1- X)by — xag = bg, for x = 1 (1- X)by — Xag = —ag,
which implies that for any x < [0,1] right-hand side of (29) belongs to
segment [-a,, bo]. Therefore, for any couple (X, o) satisfying (26), (28)
vector o satisfies double inequality (30).

2. Assume Boolean vector ¢ satisfies double inequality (30). Let

2=YN a0, - Y, bi(1 - ay). (31)
By virtue of (30)
—ap <2<y (32)
Define a number x from the equality
Z = (1- x)bg — xay, (33)
implying
bo—z
= m; (34)

from (34) and right inequality in (32) we have 0 < x, and from (34) and
left inequality in (32) we have x < 1; together they coincide with (26).
Equality (28) follows from substitution in (31) z with right-hand side of
(33) and rearrangement of the expression. Statement is proved.

Assume

ci=a+bi(i=1,...,N), (35)
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Statement 11. Division problem (a, b) (with one divisible item) has an
equitable division if and only if the following systems of two linear
inequalities relatively Boolean variables a4, ..., oy

H—(ap+bo) <YV, cio; <H. (36)
is compatible.
Proof. By virtue of statement 10 equitability of a division is equivalent to
existence of solutions of double inequality (30). Rewrite (30) as

—a0< XiLi(a; +b)o; — XLy b <D,

Adding to every part ¥, b;, we receive

—a0+ XiLy by < Bi(a; + b)oy <bo+ X, b;. (37)
Right-hand side of (37) is the sum of all the values of participant B, and,
hence, is equal to H. Left-hand side of (36) is equal to —ag + (H—bg) = H
— (ap * bg). Taking into account (35), finally write (37) as (36).
By the reverse way (36) can be rewritten as (30). By virtue of statement
10 double inequality (30) is equivalent to equitability of a division. The
statement is proved.

Statement 12. An equitable division (x, o) is a solution of optimization
problem (27) subjected to (26), (28) if and only if Boolean vector ¢ is a
solution of optimization problem

%0' b,a;, —a,b, N Ha,

4 i
i1 b, +a, b, +a,

— max (38)

subject to (36).

Proof. It is enough to express x through o from (28), substitute x with this
expression in goal function (27) and rearrange the formula.

Now we can multiply goal function (38) by (b, + ao), subtract Ha,, and
finally receive

Statement 13. The considered problem of construction of equitable
division in a problem with one divisible item is reduced to optimization
problem relatively Boolean variables a4, ..., oy

YN . d;o; —> max (39)
i=1"%1%1

subject to (36), where d; = bga; — agh; (1 =1, 2, ..., N) are integer
numbers.
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Problem (39), (36) is replaced by the family of problems with the same
goal function (39) and condition

YN cioi =k (k=H-(a + bg), H-(ao + bp)+1, ..., H); (40)
they are solved as problems (20), (21) in section 4.1 (by dynamic
programming).
Thus, the reasoning in this section shows that an equitable fair division in
general case can be found by the suggested computationally efficient
method. Pay attention that solving problem (39), (40) we automatically
check compatibility of condition (40) for every k = H—(ap + bg), H-(ao +
bo)+1, ..., H; the incompatibility for all k means that the considered
division problem does not have equitably fair divisions.

4.4. Essential algorithm
The essential algorithm of finding profitably, uniformly, and equitably
fair divisions is based on Statements 7 and 8 and the algorithms from
section 4.1, 4.2 and 4.3.
The main steps of the essential algorithm briefly are described as follows.
Step 1. Assume sg = 1. Construct an equitably fair division {x, o) by the
algorithm from section 4.3. If no equitably fair division exists, assume sg
= 0 and go to Step 3. Otherwise, assume e = Ga(X, o) and go to Step 2.
Step 2. Check dominancy of point (e, €) (where e is found in step 1) by
the algorithm, described in section 4.2. If this point (e, e) is undominated,
then division (X, o) is simultaneously profitably, uniformly and equitably
fair division. The algorithm stops.
Step 3. Construct set AF (a,b,S) = {Wi, W,, ..., W, } by algorithm from
section 4.1.
Step 4. Construct set (23) of broken lines Z; = W; + A5(a, b, S) (i=1, ...,
w).
Step 5. Assume P = @, U = @ (initial assignments for current sets of
profitably and uniformly fair divisions).
Step 6. Fori=1, ..., wdo the following:
Step 6.1. If Z; is completely below line x =y, denote the division
corresponding to its left vertex by (z, ) and go to Step 6.3.
Otherwise, go to Step 6.2.
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Step 6.2. If Z; is completely above line x =y, denote the division
corresponding to its right vertex by (z, 7) and go to Step 6.3.
Otherwise, continue the cycle in Step 6.
Step 6.3. Assume P = P U{(z, )}, U = U U{(z, ©)}; continue the
cycle in Step 6.
Step 7. Assume Q =P U U.
Step 8. Eliminate from Q all the divisions (z, 7), such that Ga(z, 7) or
Gg(z, 7) is less then H/2.
If Q is empty, then profitably fair divisions, uniformly fair divisions, and
equitably fair divisions in the considered problem do not exist. The
algorithm stops. Otherwise, go to Step 9.
(Comment: if Q is empty, let us consider two cases: sg = 0 and sg = 1
(see Step 1). In the case sg = 0 no equitably fair division exists; in the
case sg = 1 the equitably fair division (x, o), found in Step 1, is the
efficient division, but in this case the algorithm had to stop in Step 2).
Step 9. Denote by X the set of all the points (Ga(z, 7), Gg(z, 7)), where (z,
7) € Q; denote by X" Pareto-optimal part of X and by Q the set all the
divisions, whose gains (Ga(z, 7), Gg(z, 7)) belong to X
denote by q the cardinality of X".
Step 10. Fori=1, ..., g do the following:
Step 10.1. Checking dominance of i-th point (x; y;) from X" by
algorithm from section 4.2.
Step 10.2. If (x;, y;) is dominated, then assume X" = X7 \ {(x;, yi)};
continue.
Step 11. Maximize the expression min{x, y} over set of points X". The
corresponding division is a profitably fair one.
Step 12. Minimizes the expression |x — y| over set of points X". The
corresponding division is a uniformly fair one.
Step 13. The algorithm stops, because profitably, uniformly and equitably
fair divisions are found (correspondingly, in Steps 11, 12 and 1).

5. Existence conditions in division problems

In this section the last of the mentioned at the end of section 1.5 problems
is considered. Namely, though the diagnostic is included into essential
algorithm described in section 4.4, the existence or absence of some
properties can be established easier, without full completion of all the
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operations. We establish necessary and sufficient conditions of existence
of proportional and equitable fair divisions in terms of items evaluation
by participants.
Consider an arbitrary problem {a, b, S), where S = (L, M, H). That means
that there are L divisible items, M indivisible items and sums of
participants’ values are equal to H. Assume

S1=Xfal, =Y b, Ti= Yl af, T, = Xk, bY. (41)
Let us associate with any problem (a, b, S) the following systems of
linear inequality relatively Boolean variables oy, ..., om:

Yilioa <H/2,
M w . (42)
i=10:by 2 H/Z;
Zﬂflilaiag > H/2, 43)
Zi=1 O-ibi < H/Z,
Zli‘il cio; < H,
» (44)
Yi=1€0; = H— (51 +55),
where
ci=a+ b (i=1,..,M). (45)

Statement 14. Problem (a, b, S)e P(S) (i.e. proportional divisions exist)
if and only if at least one of inequalities systems (42), (43), (45) is
compatible.

Proof. Assume

Ti(0) =Xili0:a, To(o) = XiL1(1 = 0)bY’, T(0) = (Tu(0), To(0)).  (46)

Let us consider set A(c) = T(o) + A4 (a, b, S) (see formula (10)). A(o) is a

shifted polygon A4(a, b, S). By definition, proportional division exist if

and only if polygon A(o) intersects set P of the plane, defined as follows:
P={(x,y)|x>H/2,y>H/2}

at least for one Boolean vector o.

It can happen in one of the three cases:

1) left vertex of A(o) (point (T1(o), T2(o) + S,) belongs to P;

2) right vertex of A(o) (point (T1(o) + Sy, T2(o)) belongs to P;
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3) vertices defined in 1) and 2) do not belong to P, but at least one point
of A(o) belongs to P.
In the 1% case we have inequalities (see (41) and (46)):

M o >H/2, (47a)
M (A—0)bY+¥- b >H/2. (47b)
Rearranging left-hand side of (47b), we have
L = o)bY + Xy b = XL, bY — XL oybl + Xioq b = XL, b}
+ Yk bt - YM o;b¥=H-XM, 5;b" > H/2 that implies
M obY <H/2. (47c)
(47a) and (47c) together coincide with system (43).
Analogously, in the 2™ case we receive system (42).
In the 3" case simple geometrical reasoning shows that the segment
connecting points (Ty(o) + Sy, To(0)) and (T1(o), T2(o) + S,) must intersect
the rayon x = y. In the intersection point we receive that for some 1 €
[01]
M w — M w
i=10ia; +(1-2) S1=X;21(1 —a)b” + 1 S,.
Expressing A from this equation and taking into account inequalities 1 >
0, 2 <1, after rearranging receive system (44).

Statement 15. Problem (a, b, S)e Q(S) (i.e. an equitable division exists)
if and only if inequalities system (44) is compatible.
Proof. See the 3“ case in the previous proof.

To be useful, statements 14 and 15 must be completed with some
efficient algorithms of compatibility checking for systems (42), (43) and
(44). In order to find them consider the following optimization problems
relatively Boolean variables oy, ..., oy:

N
> o;b, — max (48a)
i=1

subject to
N
.0, <H/2 (48b)
i=1
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N
2.0,;8; — max (49a)
i=1

subject to
tiSHQ; (49b)
ici ¢; — max (50a)
subject to -
Yoc <H. (50b)

1

The following statement is evident.

Statement 16.

System (42) is compatible if and only if the maximal value in problem
(48) is not less than H /2.

System (43) is compatible if and only if the maximal value in problem
(49) is not less than H /2.

System (44) is compatible if and only if the maximal value in problem
(50) is not less than H —(S; + Sy).

Thus, statements 14 — 16 reduce checking existence of proportional and
equitable division problem to optimization problems relatively Boolean
variables a4, ..., oy . Namely:

Problem (48) is a knapsack problem with item weights by, ..., by, item
values ay, ..., ay and weight restriction H /2.

Problem (49) is a knapsack problem with item weights ay, ..., ay , item
values by, ..., by and weight restriction H /2.

Problem (50) is a simplest knapsack problem, where values ¢y, ..., Cy
coincide with weights and weight restriction is H.

All the above mentioned knapsack problems can be efficiently solved by
dynamic programming (see detail in section 4.1).

6. Examples

In this section we give some relatively simple examples that illustrate the
results of sections 5 and 6.
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Example 4. Let us consider the following division problem with one
divisible and four indivisible items (divisible items here and in next
examples are at the beginning):

Table 8
A B
1 1
45 30
30 25
15 22
9 22
100 100

For this problem:
system (42) is

{450'l +300, +150,+ 90, <50

300, + 250, + 220, + 220, =50 )
system (43) is

450, +300, +150, + 90, =50

{300'l +250,+220,+220, <50

€y = 45+30 =75, ¢, = 30+25 = 55, ¢3 = 15+22 = 37, c3 = 9+22 = 31,
system (44) is

{750—1 +550, +370, + 310, <100

(52)

53
750, + 550, + 370, + 31, > 98 3)

In order to check compatibility of these three systems, consider the set of
all the 16 Boolean vectors (o1,00,03,04) and calculate the corresponding
value of three expressions:

Vl = 450’1+300’2+150'3+90'4,
V2 = 300'1+250'2+220'3+220'4,
V3 = 750'1+550'2+370'3+310'4 (V3 = V1+V2).

Results of these simple calculations are presented in Table 9:
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Table 9

01| O2 | O3 | O4 Vl V2 V3 O1 | O2 | O3 | O4 V]_ V2 V3

0|0j]0j0Oj0O|0O] O 110]0]0]45]30] 75

0J]0J0]1]9 22 31 11001 ]54|52]102
0010|1522 37 110|1|0]60|52]|112
0|01 ]1]24|44 ] 68 1101 |1]69)|74]143
0[1]0[0|30|25]| 55 111]0|0]75]55]|130
0]1|0]1]39)|47 | 86 111018477161
0]1|1]0]45)|47 ] 92 1]1111|0]90]| 77167
0]1|1]1]5)|69]123 111]1)1]99]|99|198

The compatibility of system (51) means that in some row of the table V; <
50, V, > 50; the compatibility of system (52) means that in some row of
the table V; > 50, V, < 50; the compatibility of system (53) means that in
some row of the table 98 < V3; < 100. None of rows satisfies these
conditions. Thus, in the considered case proportional division does not
exist, that can be written in the form

P(S) C E(S) (54)
at least for S =(1, 4, 100).

Example 5. Let us consider the following division problem with one
divisible and four indivisible items:

Table 10
A B
3 3
45 17
30 20
20 22
2 38
100 100

In this case formulas (6) for gains are written as follows:

N
GA(X, O') =Xag t+ ZO’i a, = 3x+4501+300,+2003+2034, (55)
i=1

Ga(X, 0) = (1X)bo + > (L )b, = — xbp = 3(1-x) +17(1-0) +20(1—
i=1
0'2)+22(1*O'3)+ 38 (1*0'4). (56)
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From (55) and (56) immediately
Ga(X, 6) =3x + Vy,
Gg(X, 0) = 3(1-X) + V,,
Ga(x, 0) — Gg(X, 0) = (6x-3) + (V1 —V2),
where
V1 = 4561+300,+2003+204, V, = 17(1-01) +20(1-0,)+22(1-03)+ 38 (1-04).
Because 0 < x < 1, it is clear that existence of an equitable division
implies that for some Boolean vector ¢
[Vi— V| <3.
Assume V3 = 6201+500,+4203+400,; System (44) in the considered case

becomes
94 <V3<100.

Let us consider the set of all the 16 Boolean vectors (o1,0,,03,04) and
calculate the corresponding value of V4, V, and Va:

Table 11

o |0y o3| os| V1| Vo| Vs o1 | 02| o3| oa| Vi | Va| V3

0Oj|0lO0O|O|0O0]|97]| O 10|00 |45|80| 62

0|00 ]|1| 2 |59] 40 1101|0147 |42 | 102
0|0|1]|0|20|75]| 42 110|1]0|65]|58]|104
0101112237 82 1/0|1(1]|67]|20] 144
0O|1(0|0|30|77]| 50 1110 0]|75]|60]|112
0O|1(0]1(32|39]| 90 1110 1]|77]|22]|152
0|11 |0|50|55]| 92 111|1]0|95]|38]|154
0|1 (1|1|52]|17]|132 11111 (1]|97| 0 |184

The compatibility of system (44) means that in some row of the table 94
< V3 < 100. None of rows satisfies this condition. Thus, by statement 11
in the considered case an equitable division does not exist. Indeed, for
any row |V; — V, | > 3, and this difference cannot be compensate be one
divisible item with value 3 for both participants. At the same time in
several rows of the table (namely, 0110, 1010, 1100) V; > 50, V, > 50 that
means that proportional divisions exist. This example implies inclusion

Q(S)=P(S) (57)
at least for S =(1, 4, 100).
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Example 6. Let us consider the following division problem with one
divisible and four indivisible items:

Table 12
A B
5 5
40 49
10 1
20 25
25 20
100 100

In this case system we easily find equitable divisions
{1, 2}, {0, 3,4} and {0, 3, 4}, {1, 2}.

In both cases each participant receives exactly 50; one of these divisions
is a complement division for another. But this division is not efficient
because division corresponding ¢ = (0,1,1,1): division {2, 3, 4} for A and
{0, 1} for B gives more for both participants: (55, 54). Thus, this example
implies inclusion

F(S)cQ(S) (58)
at least for S =(1, 4, 100).
Summing inclusion (54), (57) and (58), we have

F(S)c Q(S)c P(S)c E(S) = U(S),

in opposite to the case in which all items are divisible, where all the
inclusions are equalities (see statement 2).
Note, that the same inclusion is true for the problem from Example 3 with
the other signature S = (2, 3, 100).
Example 7*. Let us consider the following division problem with one
divisible and four indivisible items:

Table 13
A B
17 17
42 45
37 34
2 2
2 2
100 100

*This example was suggested by SU — HSE student Alexander Shalenny
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For this problem:
system (42) is
420, +370,+ 20, + 20, <50
{45(71 + 340, + 20, +20, 250 (9)
system (43) is
420, +370,+ 20, + 20, 250
{4561 + 340, +20,+20, <50 (60)

C,=42+45=87,¢,=37+34=71,c3=2+2=4,c,=2+2 =41,
system (44) is

870, + 710, + 40, + 4o, <100
(61)

870,+1lo, + 40, +40, > 66

In order to check compatibility of these three systems, consider the set of
all the 16 Boolean vectors (o1,02,03, a4) and calculate the corresponding
value of three expressions:
V]_ = 420'1+370'2+20'3+20'4,
V, = 450,1+340,+205+20,,
V3 = 870'1+710'2+40'3+40'4 (V3 = V1+V2).

Results of these simple calculations are presented in Tablel14:

Table 14
01| Oy | 03 | O4 V1 V2 V3 01 | 02 | 03 | O4 Vl V2 V3
0jo0ojojoj0]0]0O 1]0]0|0]42]45 ] 87
00|01 2 24 100,144 47| 91
0j]0|1]0] 2] 2] 4 1]0]1]0]44 147 91
0j0|1]1]4]4)8 10114649 95
0]1]0]0[37]34 |71 11,0079 |79 ]|158
0[1]0]1(39]36]75 1]1]0]1]81)81]162
0[1]1]0(39]36]75 1]1]1]0]81)81]162
O[1]1]1]41]38]79 1/1]1)1)83]|83]|166

The compatibility of system (59) means that in some row of the table V; <
50, V, > 50; the compatibility of system (60) means that in some row of
the table V; > 50, V, < 50; the compatibility of system (61) means that in

38



some row of the table 66 < V; < 100. None of rows satisfies first two
conditions, though there are 8 rows satisfying (61). Thus, in the
considered case equitably fair division exists: for instance, participant A
receives item 3 (37%) and 14,5 of item 1 (14,5%), while participant B
receives items 2, 4, 5 (49%) and 2,5 of item 1 (2,5%). Thus, everyone
receives 51,5%; no division gives more for both. Therefore, this is a fair
division (it is simultaneously profitably, uniformly and equitably fair).

Example 8. Let us consider the following division problem with three
indivisible items:

Table 15
A B
51 40
45 50
4 10
100 100

In this problem point (Ga(o), (Gg(o)) is the pair of gains received by
participants as a result of division o, where

Ga(o) = 5101+450,+403,

Gg(0) = 40(1-01)+50(1-0,)+10(1-03).

Let us calculate gains Ga(o), Gg(o) and expressions

min{Ga(0), Ge(0)}, (62)

|Ga(o) — Gg(o)| (63)

for all 8 Boolean vectors (o1,0,,03) (see statement 7 and steps 11, 12 of

the essential algorithm). The results of calculation are presented in Table
16:

Table 16

01 | 02 | 03 | Ga(0) | Gg(o) | mMin{Ga(0), 8(9)} | 1Ga(0) — Gg(o)|
0|0|0 0 100 0 100
001 4 90 4 86
010 45 50 45 5
0|11 49 40 40 9
1/0|0| 51 60 51 9
1/0]|1 55 50 50 5
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1/1/0,| 96 10 10 86
1/1]1) 100 0 0 100

Table 16 clear demonstrates that criteria (62) and (63) defining profitable
and uniform fairness lead to different divisions. There are only two rows
(5™ and 6™) presenting proportional divisions. One of them maximizes
(62) while the other minimizes (63) over the set of all the efficient
divisions.

7. Manipulation in the divisible case

Usually, presentation of false data — false importance values in this case —
in order to receive more is called manipulation. The well known
manipulation problem is considered in the following game form.

1. Players independently choose arbitrary integer coefficients ay, ..., ay
and by, ..., by that are considered as their values of items.

2. A fair division (X, o) is constructed based on the presented values a =
(al, ey aN) and b = (bl, cees bN)

3. The gain of player A is equal to value of division (X, o) from the point

of view of his true valuations af, ..., af (analogously for player B).
Formally

Ga(a, b) = XL, giaf + Xi-y x;af, (64a)

Ga(a, b) = XiZ,(1 — 0)bf + Xioy (1 — xp)b], (64b)

where (X, o) is a fair division corresponding to the presented values a and
b (not to the true values a' and b").

Thus, the game of two persons with finite number of strategies is defined.
Remember, that strategy a* of player A is a guarantying strategy, if the
minimal gain of this strategy is the maximal one, or

miny, G4 (a*, b) > miny, G4(a, b)
(analogously for player B:
min, Gg(a,b™) > min, Gz (a, b)).

If guarantying strategy a* differs from true strategy a', that means that
manipulation (i.e. presentation of strategy a* instead true strategy a') is
profitable for player A; otherwise, manipulation can decrease the gain of
the player (the same for player B).
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Statement 17. In the considered case a* = a', b* = b', i.e. manipulation
can decrease the gains.

Proof. Suppose that a* # a". If player B chooses strategy a' of player A,
then player B receives more than a half in values a' (see Statement 2).
Hence, player A receives less than a half in his own values a' (see (64)).
At the same time, if player A chooses his true strategy a', then he receives
at least half in his own values a' independently of any choice of B.
Therefore, strategy a', is the guarantying strategy of A (analogously for
B).

8. Conclusion
In the connection with the presented material two typical questions arise:
e How to modified the results to the case of N participants, where N
> 27
e How to cope with manipulation in general case?
These questions, as well as some others, are out of scope of this material.
However, the author intends to continue investigation in this wide
domain. Particularly, it seems of expedient to consider division problems
in which some groups of items may be of special interest for participants,
so that value of a group significantly exceeds the sum of values of its
separate items (package deals).
The author is grateful to his colleagues F.T. Aleskerov and D.A. Shwarts
for their support and attention to this work.
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