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Abstract We study the propagation of pulses of kink waves in magnetic-flux tubes. We use
the thin-tube approximation and assume that the dependence of the phase speed on the dis-
tance along the tube is either linear or quadratic. In this case, the wave equation describing
the propagation of kink waves reduces to the Klein–Gordon equation with constant coeffi-
cients. We present the general solution of the initial value–boundary value problem for this
equation. Using this solution, we study the general properties of non-reflective pulse propa-
gation. Then we apply the general results to the kink-pulse propagation in coronal magnetic
loops. In particular, we suggest an alternative mechanism of small-amplitude decay-less
kink oscillations in coronal loops.

Keywords Corona · Coronal magnetic loops · Waves · Wave reflection

1. Introduction

Propagating kink waves have been observed in spicules (Zaqarashvili et al., 2007), in mottles
(Kuridze et al., 2012), in active-region fibrils (Pietarila et al., 2011), in filament threads (Lin
et al., 2007; Okamoto et al., 2007), and in coronal loops (Tomczyk et al., 2007; Tian et al.,
2012). Common to all of these phenomena is the transverse displacement of a magnetic
tube that is caused by an external driver. Then the perturbation caused by this displacement
propagates along the tube. It is usually detected as a temporal variation of the magnetic-tube
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position. The propagating waves can be excited by a periodic driver acting at a fixed posi-
tion on the magnetic tube. This mechanism was considered by Verth, Terradas, and Goossens
(2010) and Terradas, Goossens, and Verth (2010) to explain the observed waves propagating
along the coronal magnetic field reported by Tomczyk et al. (2007) and Tomczyk and McIn-
tosh (2009). The periodic driving generates periodic waves that propagate along a magnetic
tube.

Another mechanism that generates transverse waves in magnetic tubes is an impulsive
transverse displacement of the tube. It generates a perturbation of the magnetic tube that is
a superposition of fast-kink eigenmodes, each with its own amplitude. In the absence of dis-
persion, the initial wave form would keep its original shape during its propagation. Recently,
the propagation of impulsively excited fast-kink waves along a homogeneous magnetic tube
was studied by Oliver, Ruderman, and Terradas (2014).

Real magnetic-flux tubes in the solar atmosphere are inhomogeneous, with the density
varying along and across the tube, and the tube cross-section radius varying along the tube.
The density variation across the tube can cause wave damping due to resonant absorption.
In this article we do not consider this phenomenon and concentrate on the effect of density
and tube cross-section radius variation along the tube. In general, this variation causes wave
reflection. Hence, even when a driver is situated at the tube footpoint and generates waves
propagating from this footpoint along the tube, at some distance from the footpoint waves
propagating in the opposite direction are also present. However, it is often observed that the
reflected waves are practically absent and the waves generated by a driver only propagate
in one direction. In particular, this is the case for propagating kink waves in coronal loops.
They propagate from the footpoint to the loop apex (Tomczyk et al., 2007). To explain this
phenomenon, Ruderman et al. (2013) (Article 1 in what follows) suggested that the density
and cross-section radius vary along the loop in a way corresponding to the non-reflective
propagation of kink waves. They then studied the non-reflective propagation of periodic
kink waves. Note that in application to solar physics, the non-reflective wave propagation
has also been studied by Petrukhin, Pelinovsky, and Batsyna (2012).

In this article we aim to study non-reflective propagation of kink-wave pulses in mag-
netic tubes. This study can be considered as the generalisation of two studies: one presented
in Article 1, and the other by Oliver, Ruderman, and Terradas (2014). However, the analysis
in this article is much simpler than that of Oliver, Ruderman, and Terradas (2014) because
we use the thin-tube approximation, while Oliver, Ruderman, and Terradas carried out the
analysis without any assumptions about the ratio of the tube radius to the characteristic per-
turbation length. This article is organised as follows: In the next section we formulate the
problem and write down the governing equations. In Section 3 we briefly describe the reduc-
tion of the wave equation to the Klein–Gordon equation and formulate the conditions where
it describes the non-reflective wave propagation. In Section 4 we present the solution of the
initial value–boundary value problem. In Section 5 we investigate the general properties of
pulse propagation in non-reflective wave guides. In Section 6 we apply the general results to
kink-pulse propagation in coronal loops. Section 7 contains the summary of the results and
our conclusions.

2. Problem Formulation

We consider kink-wave propagation along a straight magnetic tube in the cold-plasma ap-
proximation. We assume that the tube cross-section is circular, and its radius can vary along
the tube. The plasma density can also vary along the tube, but does not vary across the tube.
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Hence, in cylindrical coordinated [r, ϕ, z] with the z-axis coinciding with the tube axis, the
plasma density is given by

ρ =
{

ρi(z), r < R(z),

ρe(z), r > R(z),
(1)

where R(z) is the radius of the tube cross-section. In the thin-tube approximation, plane-
polarised kink waves are described (Ruderman, Verth, and Erdélyi, 2008) by

∂2(η/R)

∂t2
− c2

k(z)
∂2(η/R)

∂z2
= 0, (2)

where η is the tube displacement, ck the kink speed, defined by

c2
k(z) = B2(z)

μ0[ρi(z) + ρe(z)] , (3)

μ0 the magnetic permeability of free space, and B the magnetic-field magnitude related to
the tube radius by

B(z)R2(z) = const. (4)

Equation (2) is used below to study non-reflective propagation of kink-wave pulses.

3. General Theory

A solution to Equation (2) in the form

u(z, t) ≡ η(z, t)/R(z) = A(z)�
(
τ(z), t

)
, (5)

with

τ(z) =
∫

dz

ck(z)
, A(z) = c

1/2
k (z), (6)

reduces Equation (2) to the variable-coefficient Klein–Gordon equation (see Article 1)

∂2�

∂t2
− ∂2�

∂τ 2
= c2

k

A

d2A

dz2
�. (7)

This equation reduces to the Klein–Gordon equation with constant coefficients,

∂2�

∂t2
− ∂2�

∂τ 2
= β�, (8)

where β is a constant, when ck(z) is either linear or quadratic function of z, i.e. when either

ck = ±2
√|β|(z + L), β < 0, (9)

or

ck = M(z + N)2 + β

M
, (10)
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where M and N are constant. In what follows, we assume that perturbations are generated
at z = 0. If we assume that they propagate in the positive z-direction along an unbounded
magnetic tube, then z ∈ [0,∞). To have ck(z) positive, we have to choose the + sign in
Equation (9) and take L > 0. Similarly, we have to impose the conditions that either

β > 0, M > 0, (11)

or

β < 0, M > 0, N > 0, M2N2 > |β|. (12)

However, propagating kink waves are also observed in coronal magnetic loops (Tomczyk
et al., 2007; Tian et al., 2012), which are wave guides of finite length. They are driven at
one loop footpoint. There is no reflection from the other footpoint because the waves damp
before they reach it. A suitable form of ck(z) for coronal loops is one given by Equation (10)
with

M < 0, N = −	, β < −M2	2, (13)

where 	 is the loop half-length.
When ck(z) is defined by Equation (9) with the + sign, the function τ(z) is given by

τ(z) = ln(z/L + 1)

2
√|β| , (14)

where we have imposed the condition τ(0) = 0. When ck(z) is defined by Equation (10), the
function τ(z) is given by

τ(z) = 1√
β

(
arctan

M(z + N)√
β

− arctan
MN√

β

)
(15)

when β > 0, and by

τ(z) = 1

2
√|β| ln

[M(z + N) − √|β|](MN + √|β|)
[M(z + N) + √|β|](MN − √|β|) (16)

when β < 0 and M > 0. Finally,

τ(z) = 1

2
√|β| ln

[√|β| + |M|(z − 	)](√|β| + 	|M|)
[√|β| − |M|(z − 	)](√|β| − 	|M|) (17)

when β < 0 and M < 0. When deriving Equations (15) – (17), we again imposed the condi-
tion τ(0) = 0.

When the dependence of the phase speed on z is linear, it follows from Equation (14)
that τ → ∞ as z → ∞, so in this case Equation (8) has to be solved for τ ∈ [0,∞). On
the other hand, when the dependence of the phase speed on z is quadratic, it follows from
Equations (15) and (16) that τ → τ0 as z → ∞, where

τ0 =
⎧⎨
⎩

1√
β
( π

2 − arctan MN√
β

), β > 0

1
2
√|β| ln MN+√|β|

MN−√|β| , β < 0.
(18)

Hence, in the case of a quadratic phase-speed profile given by Equation (10) with M > 0, we
solve Equation (8) for τ ∈ [0, τ0). Finally when the phase speed is given by Equation (10)
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with M < 0, we solve Equation (2) for z < 2	. This implies that we solve Equation (8) for
τ ∈ [0, τ1), where

τ1 = τ(2	) = 1√|β| ln

√|β| + 	|M|√|β| − 	|M| . (19)

4. General Solutions Describing Pulse Propagation

We assume that the magnetic-flux tube is perturbed at its footpoint, i.e. at z = 0, and it is at
rest at the initial moment of time. Hence, we impose the initial conditions

u = ∂u

∂t
= 0 at t = 0, z ≥ 0. (20)

In addition, we impose the boundary condition

u = u0(t) at z = 0, t ≥ 0. (21)

In what follows we assume that the perturbation has the form of a pulse, i.e. u0(t) → 0 as
t → ∞. In addition, to have consistency between the initial and boundary conditions, we
assume that u0(0) = u′

0(0) = 0. Using Equations (5) and (6), we transform the boundary
condition in Equation (21) to

� = c
−1/2
k (0)u0(t) ≡ �0(t) at τ = 0, t ≥ 0. (22)

The initial conditions (20) are reduced to

� = ∂�

∂t
= 0 at t = 0, τ ≥ 0. (23)

The consistency condition between the initial and boundary conditions reduces to �0(0) =
�′

0(0) = 0.
When ck(z) is a linear function, τ ∈ [0,∞) and we impose the additional boundary condi-

tion � → 0 as τ → ∞. In the case when ck(z) is a quadratic function with M > 0, τ ∈ [0, τ0)

and the perturbation reaches infinity at finite time, which is, of course, unphysical. In this
case, we therefore only consider the perturbation propagation for a time shorter than that
necessary for the perturbation to reach infinity. Hence, in this case we also formally impose
the condition � → 0 as τ → ∞. To justify this condition, we can, for example, assume
that ck(z) is a quadratic function only for z < z∗, while it is linear for z > z∗, where z∗ is
sufficiently large, and impose the conditions that ck(z) and c′

k(z) are continuous at z = z∗.
Finally, in the case when ck(z) is a quadratic function with M < 0, τ ∈ [0, τ1) and the pertur-
bation reaches the other footpoint of the loop at finite time. In this case we only consider the
perturbation propagation for a time shorter than that necessary for the perturbation to reach
the other footpoint. Again we formally impose the condition � → 0 as τ → ∞. To justify
this condition, we can extend ck(z) as a smooth function beyond z = 	. For this we first
extend it using the quadratic profile with M > 0 to get c′

k(z) > 0, and then further extend it
as a linear function.

When β = a2 > 0, the solution to Equation (8) with the initial conditions in Equation (23)
and the boundary condition in Equation (22) is given by Budak, Samarski, and Tikhonov
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(1964). It reads

�(τ, t) = �0(t − τ) + aτ

∫ t−τ

0

I1(a
√

(t − ξ)2 − τ 2)√
(t − ξ)2 − τ 2

�0(ξ)dξ, (24)

where I1 is the modified Bessel function of the first kind and of order one. Equation (24) is
valid for τ ≤ t , while �(τ, t) = 0 when τ > t .

When β = −a2 < 0, the solution to Equation (8) with the initial conditions in Equa-
tion (23) and the boundary condition in Equation (22) is obtained in the Appendix. It reads

�(τ, t) = �0(t − τ) − aτ

∫ t−τ

0

J1(a
√

(t − ξ)2 − τ 2)√
(t − ξ)2 − τ 2

�0(ξ)dξ, (25)

where J1 is the Bessel function of the first kind and of order one. Again Equation (25) is
valid for τ ≤ t , while �(τ, t) = 0 when τ > t . It is interesting to note that Equation (24) can
be obtained from Equations (25) by substituting ia for a.

When ck(z) is a quadratic function with M > 0, we only consider the perturbation prop-
agation for a time shorter than that needed for the perturbation to reach infinity, we impose
the restriction t < τ0. In the case when ck(z) is a quadratic function with M < 0, we only
consider the perturbation propagation for a time shorter than that needed for the perturbation
to reach the other loop footpoint. Hence, in that case we impose the restriction t < τ1.

5. General Properties of Propagating Pulses

In this section we study the general properties of pulse propagation. We start by considering
very short pulses and take �0(t) to be a non-negative function different from zero in the
interval (0, T ) and equal to zero when t /∈ (0, T ), and such that �′

0(0) = 0. We assume that
aT � 1. In this case we can neglect the variation of the first multiplier in the integrands in
Equations (24) and (25) and use the approximate expressions valid for t > τ + T ,

�(τ, t) ≈ �0(t − τ) + aτQ
I1(a

√
t2 − τ 2)√

t2 − τ 2
, β = a2, (26)

�(τ, t) ≈ �0(t − τ) − aτQ
J1(a

√
t2 − τ 2)√

t2 − τ 2
, β = −a2, (27)

where Q = ∫ T

0 �0(t)dt . It is interesting to study the evolution of perturbation at fixed z or,
which is the same, at fixed τ . For t < τ the plasma is at rest at this spatial position. Since
aT � 1, the first term on the right-hand side of Equations (24) and (25) strongly dominates
the second term for moderate values of τ when τ < t < τ + T . For t > τ + T the first
term is zero and the perturbation evolution is defined by the second term. At this point the
perturbation evolution in the case with β > 0 is qualitatively different from that in the case
with β < 0.

We start the study of the perturbation behaviour for t > τ +T from the second case where
β < 0. It is instructive to write down the dispersion equation. If we take � ∝ exp(ikτ − iωt)

in Equation (8), then we obtain ω2 = k2 + a2, which implies that there is a cut-off frequency
equal to a. Only harmonic perturbations with frequencies higher than a can propagate, while
perturbations with lower frequencies are evanescent. Recalling the properties of J1(z), we
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Figure 1 Dependence of
instantaneous oscillation
frequency [ωinst] on time for
aτ = π .

see that the perturbation behaviour is oscillatory. Let jn be the nth positive zero of J1(z),
n = 1,2, . . . Then �(τ, tn) = 0, where tn = √

τ 2 + a−2j 2
n . We introduce the definition that

the instantaneous period of oscillations at time tn is equal to 2(tn+1 − tn), and the oscillation
frequency is ωinst = π/(tn+1 − tn). The instantaneous frequency [ωinst] at time t such that
tn < t < tn+1 is a linear function in the interval [tn, tn+1], so that ωinst(t) is a piecewise-
linear function. The dependence of ωinst on time is shown in Figure 1. We see that the
instantaneous oscillation frequency decreases with time and only slightly deviates from the
cut-off frequency a when t ≥ t1. Using the asymptotic formula (Abramowitz and Stegun,
1964)

J1(z) ≈
√

2

πz
cos

(
z − 3π

4

)
, z � 1, (28)

we obtain that

�(τ, t) ≈ aτQ

√
2

πat3
cos

(
at + π

4

)
, t � max

(
a−1, τ

)
. (29)

Hence, for a long time, there are oscillations with the cut-off frequency at a fixed spatial
position decaying as t−3/2. Note that a similar behaviour was previously found by Rae
and Roberts (1982) when studying the propagation of slow-sausage-wave pulses in thin
magnetic-flux tubes.

In the case where β > 0 the perturbation behaviour is qualitatively different. In this case
the dispersion equation is ω2 = k2 −a2, so there is no cut-off frequency. Using expansion of
I1(z) in the power series, it is straightforward to show that the second term in Equation (26)
is a monotonically increasing function of t . Hence, for t > τ +T , the perturbation amplitude
grows monotonically with time. We recall that we can only have β > 0 for a parabolic kink-
velocity profile with M > 0. In this case we have imposed the restriction t < τ0. When
t → τ0 the perturbation amplitude tends to

Amax(τ ) = aτQ
I1(a

√
τ 2

0 − τ 2)√
τ 2

0 − τ 2
. (30)

It follows from Equation (18) that τ0 < π/a. Then it is straightforward to obtain that

Amax(τ ) < Alim(τ ) = a2τQI1(
√

π2 − a2τ 2)√
π2 − a2τ 2

. (31)

A numerical investigation shows that the maximum value of the function

xI1(
√

π2 − x2)√
π2 − x2
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is approximately equal to 1.95. Hence, we have Amax(τ ) < Alim(τ ) < 2aQ. Since Q =
T 〈�0(t)〉, where 〈�0(t)〉 is the mean value of function �0(t) in the interval [0, T ], and
aT � 1, we see that, for T < t < τ0, the perturbation amplitude remains much smaller than
the amplitude of the initial pulse.

We also studied numerically the propagation of a pulse with longer duration. To do this,
we introduced the dimensionless variables t̃ = at and τ̃ = aτ and rewrote Equations (24)
and (25) in the dimensionless form as

�(τ̃ , t̃) = �0(t̃ − τ̃ ) + τ̃

∫ t̃−τ̃

0

I1(
√

(t̃ − ξ)2 − τ̃ 2)√
(t̃ − ξ)2 − τ̃ 2

�0(ξ)dξ (32)

and

�(τ̃ , t̃) = �0(t̃ − τ̃ ) − τ̃

∫ t̃−τ̃

0

J1(
√

(t̃ − ξ)2 − τ̃ 2)√
(t̃ − ξ)2 − τ̃ 2

�0(ξ)dξ. (33)

The boundary condition at τ̃ = 0 is given by

�0(t̃) = (t̃/ζ )2 exp
[
1 − (t̃/ζ )2

]
, (34)

where ζ/a = T is the characteristic time of pulse duration at τ = 0.
As we have pointed out, the perturbation evolution in the case where β > 0 is qualita-

tively different from that in the case where β < 0. When β > 0, Equation (8) is similar to the
wave equation describing the density waves in a homogeneous self-gravitating medium (e.g.
Zeldovich and Novikov, 1975). This equation admits solutions that unboundedly grow with
time. These solutions describe the Jeans instability. The dispersion relations for Equation (8)
and for the equation describing the density waves are the same. They read ω2 = k2 − a2.
Hence, where β > 0, the solutions are unstable. This instability is not unphysical because
for a non-reflective kink-speed profile that corresponds to β > 0, the wave escapes to infinity
at a finite time.

The perturbation evolution at fixed τ is only shown for β < 0 because this case is more
interesting from the point of view of applications than the case β > 0. Figures 2, 3, and 4
correspond to ζ = 0.5, ζ = 1, and ζ = 2.

It is interesting to compare the results obtained in this section with those obtained by
Cally (2012). Although Cally considered the Alfvén-wave propagation, the equation that he
studied is the wave equation with variable phase speed, i.e. it coincides with Equation (2).
Hence, from the mathematical point of view, the problem that we studied here and that
studied by Cally are the same. In particular, Cally studied the Alfvén wave propagation in
an atmosphere where the phase speed is proportional to z(n−1)/(n−2), where n > 0 and n �= 2.
When n = 3, we obtain that the phase speed is proportional to z2, which is a particular case
of the phase-speed profile given by Equation (2) corresponding to β = 0. Cally showed that
there is no oscillatory wake after the main pulse when n is an odd integer. In particular, there
is no wake when n = 3, i.e. when the phase speed is proportional to z2. Obviously, this result
does not contradict the results obtained in the present article. To obtain ck ∝ z2, we need to
take β = 0. In this case the Klein–Gordon equation (8) reduces to the wave equation with
constant coefficients, which allows the d’Alembert solution. Hence, there is no wake in this
case. As we showed above, an oscillatory wave only appears when β < 0.

6. Application to Kink Oscillations of Coronal Loops

The magnetic tubes with the best-known properties probably are coronal loops. Since, in
addition, they are almost always thin with a cross-section radius much smaller than the
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Figure 2 Dependence of the function � defined by Equation (33) on t̃ = at at fixed τ̃ = aτ for ζ = 0.5. The
solid, dotted, dashed, dashed–dotted, and long-dashed curves correspond to τ̃ = 0, 0.5, 1, 1.5, and 2. The left
panel shows the dependence of � on t̃ for t̃ ≤ 3, while the right panel shows this dependence for t̃ ≤ 14.5.
There is no solid curve in the right panel because � ≈ 0 at τ̃ = 0 for t̃ > 3.

Figure 3 Dependence of the function � defined by Equation (33) on t̃ = at at fixed τ̃ = aτ for ζ = 1. The
solid, dotted, dashed, dashed–dotted, and long-dashed curves correspond to τ̃ = 0, 0.5, 1, 1.5, and 2. The left
panel shows the dependence of � on t̃ for t̃ ≤ 3.5, while the right panel shows this dependence for t̃ ≤ 14.5.
There is no solid curve in the right panel because � ≈ 0 at τ̃ = 0 for t̃ > 3.5.

length, they are the best candidates for applying the theory developed in this article. Real
coronal loops are characterised by a great variety of parameters. The plasma temperature
inside the loop often differs from that outside, and the temperature varies along the loop. In
addition, the loop shape differs from loop to loop. We do not aim to apply theoretical results
to real observations. We only wish to present an example showing the qualitative properties
of propagating pulses. We therefore use below the model of a coronal loop, which is the
most popular in theoretical studies. It is a symmetric loop immersed in an isothermal atmo-
sphere with the same plasma temperature inside and outside the loop. Since the kink speed
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Figure 4 Dependence of the function � defined by Equation (33) on t̃ = at at fixed τ̃ = aτ for ζ = 2. The
solid, dotted, dashed, dashed–dotted, and long-dashed curves correspond to τ̃ = 0, 0.5, 1, 1.5, and 2. The
left panel shows the dependence of � on t̃ for t̃ ≤ 7, while the right panel shows this dependence for t̃ ≤ 25.
There is no solid curve in the right panel because � ≈ 0 at τ̃ = 0 for t̃ > 7.

increases from the loop foot-point to the loop apex and has to be symmetric with respect to
the apex, ck(z) is defined by Equation (10) with the parameters satisfying Equation (13). It
is convenient to transform Equation (10) to

ck = cka − a2

cka
(z − 	)2, (35)

where cka = ck(	) is the kink speed at the loop apex. We recall that 	 is the loop half-length. It
is convenient to introduce the parameter κ = Ha/H , where Ha is the loop height and H is the
atmospheric scale height. In an isothermal atmosphere, the plasma density is proportional to
e−h/H , where h is the height in the atmosphere and ck is inversely proportional to the square
root of the density, we therefore obtain cka/ckf = eκ/2, where ckf = ck(0) is the kink speed at
the loop foot-point. Using this result and Equation (35) yields

a2 = 2c2
kf

	2

(
eκ − eκ/2

)
. (36)

When κ increases from 0.5 to 2, the cut-off frequency a monotonically increases from
0.6ckf/	 to 2.16ckf/	, while the corresponding period Pcut = 2π/a monotonically decreases
from 10.5	/ckf to 2.9	/ckf. The fundamental-mode period in a homogeneous loop with the
kink speed equal to ckf is 2	/ckf. In a stratified loop ck(z) > ckf for z > 0, which means that
the fundamental-mode period is shorter than 2	/ckf. We see that for 0.5 ≤ κ ≤ 2 the cut-off
period is longer than the fundamental-mode period.

Consider now the loop of a half-circle shape. For such a loop 	 = πκH/2, and we can
rewrite Equation (36) as

Pcut = π2κH

ckf

√
eκ − eκ/2

. (37)
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We take ckf = 1000 km s−1 and H = 60 Mm as typical values for coronal loops. Then the
loop length varies from 94 Mm to 376 Mm when κ varies from 0.5 to 2. The values of func-
tion κ/

√
eκ − eκ/2 are between 0.8 and 1 when κ ∈ [0.5,2], so to obtain estimates for Pcut

we can take κ/
√

eκ − eκ/2 ≈ 0.9. Then it follows from Equation (37) that Pcut ≈ 0.9π2H/ckf

530 seconds.
Recently, Nisticò, Nakariakov, and Verwichte (2013) and Anfinogentov, Nisticò, and

Nakariakov (2013) reported observations of low-amplitude decay-less kink oscillations
in coronal loops. At present, the continual buffeting of the loop foot-points by the sub-
photospheric convection is considered as the most probable mechanism of excitation of these
oscillations. Some of the observed oscillations have quite long periods, above 500 seconds.
Taking this into account, we suggest an alternative mechanism of excitation of the decay-
less kink oscillations. If we assume that pulses of kink waves are permanently launched at
loop foot-points, then the observed low-amplitude kink oscillations can be oscillations with
frequencies close to the cut-off frequency that exist after the leading pulse has passed.

7. Summary and Conclusions

We have studied the propagation of pulses of kink waves on magnetic-flux tubes. We used
the thin-tube approximation and assumed that the phase speed of kink waves is either a linear
or a quadratic function of the distance along the tube. We briefly described the method of
reduction of the wave equation describing the kink wave propagation to the Klein–Gordon
equation with constant coefficients.

The pulse propagation of kink waves is described by the initial value–boundary value
problem for the Klein–Gordon equation. We assumed that the tube is at rest at the initial
moment of time. The wave pulse is launched by the perturbation of the tube footpoint. We
presented the general solution for this problem. Using this general solution, we studied the
propagation of very short pulses analytically and longer pulses numerically. The signatures
of pulse propagation are qualitatively different when there is a cut-off frequency and when it
is absent. When there is a cut-off frequency, oscillations with the cut-off frequency emerge
after the passage of a short pulse. Their amplitudes decay as t−3/2. When the cut-off fre-
quency is absent, a perturbation with a smaller amplitude emerges after the passage of a
short pulse. The amplitude of this perturbation grows with time.

We applied the general theory to the propagation of kink pulses in coronal loops. We
assumed that the phase speed is a quadratic function of the distance along the loop that has
its maximum at the loop apex. We also assumed that the loop has the shape of a half-circle,
a circular cross-section of constant radius, and that it is situated in the vertical plane. There
is a cut-off frequency for this equilibrium. We derived the general expressions for the cut-
off frequency and period. Then we estimated that the cut-off period is about 500 seconds
for typical parameters of coronal magnetic loops. We suggested that the oscillations with
the cut-off frequency emerging after the passage of the initial short pulse can be one pos-
sible mechanisms of the excitation of low-amplitude decay-less kink oscillations recently
observed in coronal loops.
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Appendix: Solution of Equation (8) with β = −a2 < 0

In this section we solve Equation (8) with the initial conditions given by Equation (23)
and the boundary condition given by Equation (22). We introduce a function � defined as
� = � − �0(t)e−aτ . Then Equation (8) reduces to

∂2�

∂t2
− ∂2�

∂τ 2
= −�′′

0(t)e
−aτ , (38)

and the function � satisfies the boundary conditions

�(0, t) = 0, �(τ, t) → 0 as τ → ∞, (39)

and the initial conditions

�(τ,0) = 0,
∂�

∂t
(τ,0) = 0, (40)

where we have taken into account that �0(0) = � ′
0(0) = 0. Now we introduce the Fourier

sine transform with respect to τ ,

�̂(σ, t) =
∫ ∞

0
�(τ, t) sin(στ)dτ, �(τ, t) = 2

π

∫ ∞

0
�̂(σ, t) sin(στ)dσ. (41)

Applying this transform to Equation (38), we obtain

∂2�̂

∂t2
+ (

a2 + σ 2
)
�̂ = − σ�′′

0(t)

a2 + σ 2
. (42)

From Equation (40) we obtain the initial conditions

�̂(σ,0) = 0,
∂�̂

∂t
(σ,0) = 0. (43)

To obtain the solution to Equation (42) with the initial conditions (43), we use the method
of varying arbitrary constants. The calculation is straightforward, so we give only the final
result:

�̂(σ, t) = − σ�0(t)

a2 + σ 2
+

∫ t

0

σ�0(ξ) sin((t − ξ)
√

a2 + σ 2)√
a2 + σ 2

dξ. (44)

The function �(τ, t) is given by the inverse Fourier transform. To calculate it we use the
formula (Erdélyi, 1954)

∫ ∞

0

sin(t
√

a2 + σ 2) cos(στ)√
a2 + σ 2

dσ =
{

1
2πJ0(a

√
t2 − τ 2), 0 < τ < t,

0, τ > t,
(45)

Differentiating this equation with respect to τ , we obtain

∫ ∞

0

σ sin(t
√

a2 + σ 2) sin(στ)√
a2 + σ 2

dσ = π

2
δ(τ − t)

−
⎧⎨
⎩

πaτJ1(a
√

t2−τ2)

2
√

t2−τ2
, 0 < τ < t,

0, τ > t,

(46)
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where δ is the delta-function. Using this result yields

�(τ, t) = −�0(t)e
−aτ

+
⎧⎨
⎩�(τ − t) − aτ

∫ t−τ

0
J1(a

√
(t−ξ)2−τ2)√

(t−ξ)2−τ2
dξ, 0 < τ < t,

0, τ > t.

(47)

Recalling the relation between � and �, we arrive at Equation (25).
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