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Abstract—We study the regular and chaotic dynamics of two nonholonomic models of a Celtic
stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic
dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle,
and undergoes certain stages of development under the change of a parameter including the
appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second
model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete
Lorenz attractors) and trace both scenarios of development and break-down of these attractors.
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1. INTRODUCTION

In this paper we study the dynamics of the nonholonomic model of a Celtic stone (also called
“rattleback”, “celt” etc.) moving on a plane. It is well known that such a model allows one to answer
the main question of Celtic stone dynamics — the nature of reverse, i.e., rotational asymmetry,
which results in the fact that the stone can rotate freely in one direction (e.g. clockwise) but “does
not want” to rotate in the opposite direction (counterclockwise). In the latter case it performs
several rotations due to inertia, then stops rotating and starts oscillating, after that it changes the
direction of rotation and finally continues rotating freely (clockwise).

A mathematical explanation of this phenomenon seems now simple enough. Like most of the
well-known nonholonomic mechanical models, the Celtic stone model is described by a reversible
system, i.e., a system that is invariant with respect to the coordinate and time change of the
form X → R X, t → −t, where R is an involution — a specific diffeomorphism of the phase space
such that R2 = Id. However, in the case of a Celtic stone, this system is, in general, neither
conservative nor integrable, although it possesses two independent integrals. Because of this, the
system can possess, on a common level set of the integrals, asymptotic stable and completely
unstable solutions, stationary (equilibria), periodic (limit cycles) solutions etc., R-symmetric with
respect to each other. Then, for example, a stable equilibrium corresponds to a stable vertical
rotation of the stone, and an unstable equilibrium symmetric with respect to it corresponds to
an unstable rotation in the opposite direction. Such an explanation of the reverse in Celtic stone
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dynamics was given in a series of papers: by I. S. Astapov [1], A. V. Karapetyan [2], A. P. Markeev [3]
and others (further references can be found in [4], Section 3.6).

Nevertheless, the motion of a Celtic stone is still regarded in mechanics as one of the most
complicated and poorly studied types of rigid body motion. Moreover, this is one of the few types
of motion in which chaotic dynamics was observed. Recently complex chaotic dynamics has also
been found in a model featuring an unbalanced rubber ball (a dynamically asymmetric ball with a
displaced center of gravity) moving on a plane, see [5, 6].

Strange attractors in Celtic stone dynamics were first found by A. V. Borisov and I. S. Mamaev [7,
8]. In the present paper we continue these investigations. However, our point of view differs from
that of [7, 8]: as it seems to us, the chaotic dynamics associates here not only with strange attractors
(SA). Although they exist for some values of parameters (for example, we have a numerical evidence
on the existence of Shilnikov-like spiral attractors [9]), it is very interesting that a new kind of
dynamical chaos can be observed here — the so-called mixed dynamics [10–13]. In this case the set
of nonwandering orbits of the corresponding system possesses the following properties:

• it contains hyperbolic periodic orbits of all possible topological types, i.e., stable, completely
unstable, saddle-type and, since the system is reversible, symmetric elliptic periodic orbits;

• the closures of the sets of periodic orbits of different types have non-empty intersections.

These properties imply that “attractors” and “repellers” (here ω- and α-limit sets of a system)
have a non-empty intersection.

Remark 1. This intersection itself can be very complicated. An attractor belonging to a Newhouse
region1) in which systems with infinitely many periodic sinks and sources are dense may serve as
a mathematical image of mixed dynamics. As follows from [18] (an analogous argumentation is
also contained in [19]), for such Newhouse regions it is generic2) that the α- and ω-limit sets
of a system contain in the intersection a “horseshoe” — some nontrivial uniformly hyperbolic
set. Note that Newhouse regions with mixed dynamics exist, for example, near two-dimensional
diffeomorphisms having nontransversal heteroclinic cycles (contours) containing fixed saddle points
with the Jacobians > 1 and < 1, [10]. The existence of such regions in the space of two-dimensional
reversible diffeomorphisms was proved in [12, 13]. This result must also hold for higher dimensions.

In the present paper we study chaotic dynamics in two different Celtic stone models using both
qualitative and numerical methods. These models are described by the six-dimensional system of
differential equations (see Section 2). The numerical experiments were performed using the software
package “Chaos” developed at the Institute of Computer Science, Udmurt State University, Izhevsk,
Russia.

The first model (see Section 2 (2.1)-(2.5)) deals with a stone having physical and geometrical
parameters given by (3.1); we call it BM-stone, since its chaotic dynamics was first studied by
Borisov and Mamaev [7, 8]. In Section 3 we show new results on the chaotic dynamics of the BM-
stone. We trace the stages of development of chaotic dynamics in the BM-stone: the onset of chaos;
qualitative changes in its structure, including the birth of a spiral attractor (when the limit set
contains a saddle focus with negative divergence), and mixed dynamics — a spiral attractor-repeller
(when the limit set contains both saddle foci symmetric with respect to each other); the appearance
of the elements of conservative dynamics.

The second stone, with the parameters (4.1), is interesting primarily in that Lorenz-like attractors
for diffeomorphisms (we also call them discrete Lorenz attractors) are observed in its nonholonomic
model. Accordingly, we study this phenomenon in Section 4. Recall that the discrete Lorenz
attractor is a strange attractor with the following properties:

1)Recall that Newhouse regions are called open (in Cr-topology, r � 2) domains from the space of dynamical
systems in which systems with homoclinic tangencies are dense. S. Newhouse [14] has proved that such regions
exist in any neighborhood of any two-dimensional diffeomorphism with homoclinic tangency. This result was
extended to the multidimensional case in [15–17].

2)A property is said to be generic if it is valid for a residual (of the second Baire category) subset of some open
set (this subset is obtained as an intersection of a countable collection open and dense subsets).
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1) it looks like the famous attractor from the Lorenz model (compare Figs. 6a and 6b), in
particular, the discrete Lorenz attractor has one fixed point, a saddle for which the unstable
invariant manifolds form a “homoclinic butterfly”;

2) it possesses the so-called pseudo-hyperbolic structure, like the Lorenz attractor, i.e., there
exist invariant directions along which the map is strongly contracting, while the map expands
volumes in transverse directions (see the exact definition 1).

Thus, the discrete Lorenz attractor is a genuine SA, the same as hyperbolic and Lorenz
attractors, since pseudo-hyperbolicity persists for all close systems [20, 21] and it prevents the
existence of stable periodic orbits inside the attractor (this is not the case for many SA like the
Hénon-like attractors).

Note that discrete Lorenz attractors were first found in three-dimensional Hénon maps [22].
However, as we know, the Celtic stone model is the first model from applications where such
interesting and genuine attractors were found [23, 24].

For the reader’s convenience, an Appendix containing the main notations related to the discrete
Lorenz attractors is presented (see Section 4) .

2. EQUATIONS OF MOTION AND THEIR PROPERTIES
We study the dynamics of a rigid body moving on a plane without slipping. This means that we

consider a nonholonomic model of motion in which the contact point of the body has zero velocity.
The latter implies that v + ω × r = 0, where r is the radius vector from the center of mass C to
the contact point, v is the velocity of C and ω is the angular velocity of the body. As usual, the
coordinates of all vectors are defined in some coordinates rigidly attached to the body. Then the
equations of motion can be written in the form [25]

Ṁ = M× ω + mṙ× (ω × r) + mgr× γ,

γ̇ = γ × ω,
(2.1)

where M is the angular momentum of the body with respect to the contact point, γ is the unit
vertical vector and mg is the gravity force. Vectors M and ω are related by

M = [I + m(r, r) ·E− mr · rT ] · ω, (2.2)

where where I is the inertia tensor, E is the 3× 3 identity matrix and (·) means the matrix product.
Equation (2.1) admits two integrals

H =
1
2
(M, ω) − mg(r, γ) and (γ, γ) = 1, (2.3)

an energy integral (the first integral) and a geometric integral, respectively.
We consider the Celtic stone whose surface F (r) has the shape of an elliptic paraboloid

F (r) =
1
2

(
r2
1

a1
+

r2
2

a2

)
− (r3 + h) = 0,

where a1 and a2 are the principal radii of curvature at the paraboloid vertex (0, 0,−h), and the
center of mass is the point r1 = r2 = r3 = 0. Therefore, the vector r and γ are related by:

r1 = −a1
γ1

γ3
, r2 = −a2

γ2

γ3
, r3 = −h +

a1γ
2
1 + a2γ

2
2

2γ2
3

. (2.4)

It is also assumed that one of the principal axes of inertia is vertical. One of the main features of
the Celtic stone is that two other principal axes of inertia have been rotated about the geometrical
axes by some angle δ, where 0 < δ < π/2. Accordingly, the inertia tensor takes the following form [8]:

I =

⎛⎜⎜⎜⎝
I1 cos2 δ + I2 sin2 δ (I1 − I2) cos δ sin δ 0

(I1 − I2) cos δ sin δ I1 sin2 δ + I2 cos2 δ 0

0 0 I3

⎞⎟⎟⎟⎠, (2.5)

where I1, I2 and I3 are the principal moments of inertia of the stone.
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We express the vectors r, ṙ and ω by M and γ using relations (2.2), (2.4) and (2.5). Then the
system (2.1) can be represented in the standard form of a six-dimensional system with respect to
the phase variables M and γ:

(Ṁ, γ̇) = G(M, γ, μ), (2.6)

which also depends on the parameters μ characterizing the geometrical and physical properties of
the stone. Note that on the common level set of the integrals (2.3) the system (2.1) defines the
flow on a four-dimension manifold: M3 = {(M, γ) : (γ, γ) = 1,H(M, γ) = const}, homeomorphic
to S3 × S3.

Remark 2. Note that the explicit form of the system (2.6) is rather unwieldy, therefore, we do not
present it here. The detailed description how to obtain this system can be found in [26, Section 2].
However, exactly this formula (in the variables M and γ) is integrated in the software package
“Chaos”. We emphasize that the Andoyer–Deprit variables, see Section 2.1, are only used for
graphical representations of the Poincaré map.

2.1. The Andoyer–Deprit variables

In numerical investigations of the dynamics of the Celtic stone we use the so-called Andoyer–
Deprit variables (L, H, G, g, l) defined by the formulae [25]

M1 =
√

G2 − L2 sin l, M2 =
√

G2 − L2 cos l, M3 = L,

γ1 =

(
H

G

√
1 − L2

G2
+

L

G

√
1 − H2

G2
cos g

)
sin l +

√
1 − H2

G2
sin g cos l,

γ2 =

(
H

G

√
1 − L2

G2
+

L

G

√
1 − H2

G2
cos g

)
cos l −

√
1 − H2

G2
sin g sin l,

γ3 =
HL

G2
−
√

1 − L2

G2

√
1 − H2

G2
cos g.

(2.7)

By definition (see, e.g., [25]),

H = (M, γ) = M1γ1 + M2γ2 + M3γ3. (2.8)

On the common level set of two integrals (2.3), the system (2.6) represents a four-dimensional
flow GE . Note that the new coordinates L, H, G, g and l are chosen in such a way that the condition
(γ, γ) = 1 holds automatically. Thus, the formulae (2.7) specify a one-to-one correspondence
between the coordinates {(M, γ) : γ2 = 1} and (L, H, G, g, l) everywhere except for the planes
L/G = ±1 and H/G = ±1 (in which the coordinate l and, respectively, g are not defined).

Further, we will investigate the systems on the four-dimensional energy levels
H(L, G, H, l, g) = E. In this case the planes g = g0 = const (for appropriate g0) can be considered
as cross-sections for orbits of the corresponding four-dimensional flow GE . Thus, we can also study
the dynamics of a three-dimensional Poincaré map [7, 8]:

x̄ = Fg0(x), x =
(

l,
L

G
,
H

G

)
, (2.9)

which is defined in the domain 0 � l < 2π,−1 < L
G < 1,−1 < H

G < 1.

2.2. Symmetries in the Celtic Stone Model

The system (2.6) possesses a number of interesting and useful symmetries described by the
following lemma.
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Lemma 1 ([8]). In the case under consideration, the system (2.6) is symmetric with respect to
the coordinate changes:

(a) S1 : ω → −(−ω1,−ω2, ω3) , γ → (−γ1,−γ2, γ3) (2.10)
and is reversible with respect to the following involutions:

(b) I1 : ω → −ω, , γ → γ, , t → −t

(c) I2 : ω → (ω1, ω2,−ω3) , γ → (−γ1,−γ2, γ3), t → −t.
(2.11)

Note that these symmetries and involutions are also preserved for the Andoyer–Deprit coordi-
nates. However, they cannot always be linear in this case. But for the Poincaré map (2.9) with the
cross-section g = 0, which we denote as F0, the symmetries (2.11) remain linear.
Lemma 2 ([8]). The map F0 is invariant under the following transformations:

(a) S̃1 : l → l + π,
L

G
→ L

G
,

H

G
→ H

G
,

(b) Ĩ1 : l → l + π,
L

G
→ −L

G
,

H

G
→ −H

G
, F0 → F−1

0 ,

(c) Ĩ2 = Ĩ1S̃1 : l → l,
L

G
→ −L

G
,

H

G
→ −H

G
, F0 → F−1

0 .

(2.12)

Corollary 1. Let F0 have an orbit L∗. Then S̃1(L∗), Ĩ1(L∗) and Ĩ2(L∗) are also orbits of F0.
Moreover, the orbits L∗ and S̃1(L∗), as well as Ĩ1(L∗) and Ĩ2(L∗), are symmetric with respect to
each other. The orbits L∗ and S̃1(L∗) are both in involution with the orbits Ĩ1(L∗) and Ĩ2(L∗).

3. BIFURCATIONS AND CHAOTIC DYNAMICS OF THE BM-STONE
In this section we consider the model of a Celtic stone having the following geometrical and

physical parameters: 3)

I1 = 5, I2 = 6, I3 = 7, m = 1, g = 100, a1 = 9, a2 = 4, h = 1 and δ = 0, 2 (3.1)
Thus, we study the same model as in [7, 8], see also [26, Section 4] and [32]. We consider the

one-parameter families of four-dimensional flows (2.6) or three-dimensional maps (2.9) with the
governing parameter E.

Denote the one-parameter families of the flows (2.6) and the maps (2.9) as GE and F0E,
respectively. As was shown in [7, 8], the dynamics of system GE is quite simple at large values of E.
The system has two equilibria O1 and O2 corresponding to permanent rotations about the vertical
axis γ = (0, 0, 1) with angular frequencies ω1 = (0, 0, ω0) and ω2 = (0, 0,−ω0). At E > E2 > 1300
the equilibrium O2 is asymptotically stable and, hence, O1 is completely unstable4).

Remark 3. For the vertical rotation we have E = 1
2I3ω

2
0 + mgh, which implies that ω0 =√

2(E − mgh)/I3.

As E decreases, certain bifurcations occur. At first, they are related to changes of the stability
regimes: the loss of stability of the equilibrium O2 and the appearance of new attractors (repellers).
Next, the bifurcations lead to the emergence of complex dynamics and chaos (associated with
strange attractors, mixed dynamics or almost conservative non-integrable dynamics). This is
followed eventually by dynamical behavior close to integrable one (when the values of energy are
close to potential E = 100). Below we describe the corresponding bifurcations in detail.

3)The linear sizes are represented here in centimeters, time in sec/
√

10 , weight in kilograms (in particular, the

gravity acceleration g is equal to 100 as the standard 10m/sec2 is transformed into 100m/{(
√

10sec)2}).
4)However, stones for which both equilibria are always unstable (saddle-foci) are also known [2, 8]. An example of

such Celtic stone is presented in [8]. In this case I1 = 4, I2 = 5, I3 = 6, whereas for the stone under consideration
we have I1 = 5, I2 = 6, I3 = 7. Note that for such stones the Andronov–Hopf bifurcation goes from infinity, thus,
a stable vertical rotation occurs here with a small precession (the larger the value of energy, the smaller the
precession).
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3.1. Bifurcations in Regular Dynamics

At E = E2 = 1300 the equilibrium O2 loses stability under the soft (supercritical) Andronov–
Hopf bifurcation and a stable limit cycle is born in its neighborhood, which we will call the K-cycle.5)

At the same time, a completely unstable limit cycle is born due to reversibility in a neighborhood
of O1; the points O1 and O2 become simultaneously saddle-foci of type (2, 2).6)

Note that the K-cycle loses its stability at E = E3 ∼ 935 under a saddle-node bifurcation: the K-
cycle collides at E = E3 with a saddle limit cycle of the same period, and both disappear. However,
another stable regime is immediately observed after that — an asymptotically stable limit cycle,
[8], which we will call the BM -cycle.

Remark 4. The stable K-cycle is unique (and hence S1-symmetric). Concerning the stable BM -
cycles, two of them are born at the same time, C1 and C ′

1 = S1(C1), symmetric with respect to
each other; therefore, there also exist two completely unstable BM -cycles — C̃1 = I2(C1) and
C̃ ′

1 = I1(C1), see Fig. 1.

We tracked the evolution of the stable BM -cycle(s) as E increased. It loses stability at
E = E1 ∼ 1510, under a soft Neimark–Sacker bifurcation: at E < E1 the cycle is stable, at E > E1

it becomes a cycle of saddle-focus type (with one stable and two complex-conjugate unstable
multipliers) and an attracting two-dimensional invariant torus is born. Note that this torus preserves
stability for a narrow range of E: for E > Etor ∼ 1550 it becomes a torus of saddle type as well.
We did not consider the existence of other stable regimes for higher (E > 1500) values of energy.

(a) (b)

Fig. 1. Projections of the limit cycles onto the three-dimensional section g = 0: (a) a stable K-cycle and one
of the BM -cycles at E = 1100; (b) four BM -cycles: two stable and two completely unstable cycles at E = 600.

Remark 5. For E1 > E > E3 the system is multistable, as three attractors exist in it. At E1 >
E > E2 they are the equilibrium O2 and two BM -cycles C1 and C ′

1 and at E2 > E > E3 the stable
limit cycles, K-cycle and two BM -cycles.7)

5)Note that this bifurcation was first studied by A. V. Karapetyan in [27].
6)The point O2 has the characteristic roots ν1,2 = −λ1 ± iμ1, ν3,4 = λ2 ± iμ2, where μi > 0, i = 1, 2, λ1 > 0 and and

λ2 < 0 if E > E2, λ2 = 0 at E = E2 and λ2 > 0 if E < E2. Accordingly, the equilibrium O1 has the characteristic
roots of ν1,2 = λ1 ± iμ1, ν3,4 = −λ2 ± iμ2.

7)In the experiment one can expect the following. With the initial vertical clockwise rotation with frequencies
(0, 0,−ω0) this rotation will be preserved at E1 > E > E2 or will keep its direction and have a slight precession
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3.2. The Onset of Chaos

The limit BM-cycles C1 and C ′
1 lose their stability simultaneously at E = E4 ∼ 561 under a

period-doubling bifurcation. This loss of stability is sharp (or catastrophic, or dangerous), since
the stable BM -cycle collides at E = E4 with a double-period saddle cycle and becomes a cycle of
saddle type at E < E4. Moreover, chaotic dynamics — something like a “strange attractor” — is
observed immediately after that. Note that the value E = E4 is close to the moment of creation of
a homoclinic loop to the saddle-focus O2. This gives rise to complex dynamics [28], where stable
BM -cycles exist, but it is not attractive in this case. Due to reversibility, for E < E4 there also
exists a “strange repeller”. At the instant close to the moment of bifurcation the attractor and the
repeller are definitely separated, as is evident from the numerical calculations in Fig. 2a.

(a) (b)

Fig. 2. (a) E = 555, the attractor (black) and the repeller (grey) are definitely separated; (b) the stability
window: the stable limit cycle of period 5 (black) and the completely unstable cycle (grey) symmetric with
respect to it at E = 510.

Note that the observed chaos is certainly not hyperbolic due to the presence or appearance of
stable periodic orbits under small perturbations of the homoclinic tangencies or non-transversal
heteroclinic cycles (contours) etc. In such cases, a change in the parameters usually leads to the
appearance of the so-called “stability windows”, i.e., open sets in the parameter space in which the
attractor is a periodic orbit. Such a stability window was observed in our model: at 528 > E > 485
the attractor is a stable limit cycle of period 5, see Fig. 2b. Due to a further decrease in the values
of E this cycle undergoes a series of period-doubling bifurcations (we observed several of them)
and then a SA appears again.

The chaos is spiral over a sufficiently wide range of values of the parameter (470 > E > 350)
because the saddle-focus belongs to the attractor (which is obtained numerically), see Fig. 3a. This
means automatically that the saddle-focus O1 belongs to the repeller at the same moment.

With further decrease in E the observable attractor and repeller may significantly “mix” so
that the limit regimes for backward and forward iterations will be hard to distinguish. In other
words, the phenomenon of mixed dynamics may be observed here (see also the Introduction) when

at E2 > E > E3 (the motion along the K-cycle). With the initial counter-clockwise rotation corresponding to
the frequencies (0, 0, ω0), this rotation due to the system’s reversibility will change its direction at E1 > E > E3

but a precession with a higher magnitude than that in the previous case may occur (the motion along one of the
BM -cycles).

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 5 2013
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(a) (b)

Fig. 3. (a) E = 470, a spiral attractor; (b) mixed dynamics at E = 320.

hyperbolic periodic orbits of various types (stable, completely unstable and saddle) and elliptic
orbits coexist and, generically, they are not separable from each other.

Specifically, the mixed dynamics takes place when both saddle-foci O1 and O2 (with positive
and negative divergence, respectively) belong to the closure of the limit set to which the orbits tend
as t → +∞ (hence, due to the reversibility, they also belong to the closure of the limit set to which
the orbits tend as t → −∞). In Fig. 3b, a picture of the attractor and the repeller of map FE is
shown for E = 320, which consists of about 20000 points, of which 10000 (red) have been obtained
for forward iterations and the other 10000 (grey) for backward iterations of the map (the total
number of forward and backward iterations counted by us was 50000, but the first 40000 ones were
ignored). In the average, the limit set appears to be “pink”. Note that some kind of asymmetry
may occur here during forward and backward iterations if asymptotically stable and asymptotically
unstable periodic orbits symmetric with respect to each other are present in the dynamics of the
map F0E. However, such orbits have usually very large periods, and therefore the asymmetry can
be weak [5].

With further decrease in E the development of conservative chaos is observed. Initially it can be
associated with the mixed chaotic dynamics in which the symmetric orbits start to play a key role,
see Fig. 4a. Due to them the dynamics becomes more and more similar to integrable conservative
dynamics, see Fig. 4b, as E tends to the limit value E = 100, which corresponds to the stop of the
stone.

3.3. A Sketch of Bifurcations and Chaotic Dynamics in the Model of BM-stone

In this section we represent a “bifurcation tree” from Fig. 5, in which we try to express the
main results presented in Sections 3.1 and 3.2. This tree reflects only some important qualitative
dynamical properties of the BM-stone model and their changes as the parameter E varies.

The main bifurcations in regular dynamics (discussed in Section 3.1) are also schematically
shown. When E < E4, the regular dynamics gives way to chaotic dynamics. In fact, Fig. 5 is
a graph with the axes E and L/G. The line L/G = −1 corresponds to the equilibrium O2, by
symmetry, L/G = +1 corresponds to O1. The line L = 0 corresponds to the line of fixed points of
the involution Ĩ2, see formula (2). Therefore, the presented symmetric elements of dynamics for
L > 0 and L < 0 are in involution. Thus, for L < 0 and L > 0 we have attractors and repellers,
respectively.

Concerning the stable regular dynamics, when decreasing E we have the following sequence:
the stable equilibrium O2 (for E < E2), a stable 2-torus (for Etor > E > E1), the BM-cycle
(E1 < E < E4) and the K-cycle (E2 < E < E3). These objects can evidently coexist.
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(a) (b)

Fig. 4. Mixed dynamics at E = 220 (a) two-dimensional tori for the Poincaré map at E = 170 (b).

Fig. 5. A bifurcation tree for the BM-stone model. We use the following notation here: AH is the Andronov–
Hopf bifurcation with an equilibrium state of the flow GE ; NS is the Neimark–Sacker bifurcation, SN is a
saddle-node bifurcation, and PD is a period-doubling bifurcation (in this case it is sharp (subcritical)) with a
fixed point of the map F0E .

When E < E4 � 561, the chaotic dynamics occurs. We show chaotic zones in Fig. 4 (open
domains in the plane (E, L/G) such that, for every fixed E, the values of (L/G) range from
the minimal to the maximal one on the attractor (repeller)). Strange attractors (repellers)
corresponding to zone I (I’) (such as in Fig. 2) are not specified by us. Zone II (II’) corresponds

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 5 2013
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to a spiral strange attractor (repeller), such as in Fig. 3. In this case the saddle foci O1 and O2

belong to the attractor and the repeller, respectively. Accordingly, the line L/G = −1 adjoins zone II
(L/G = +1 adjoins II’). The region IIIa ∪ IIIb corresponds to the existence of the mixed dynamics.
For the region IIIa, the type of mixed dynamics is such that both saddle-foci O1 and O2 belong to
the chaotic set. Whereas the region IIIb corresponds to another type of mixed dynamics when both
saddle-foci O1 and O2 keep of out the chaotic set. Note that as the value E = 100 (the potential
energy) is approached, the elements of conservative dynamics become more clearly visible.

4. ON DISCRETE LORENZ ATTRACTORS IN CELTIC STONE DYNAMICS

In this section we consider the nonholonomic model of a Celtic stone whose physical parameters
are as follows:

I1 = 2, I2 = 6, I3 = 7, m = 1, g = 100, a1 = 9, a2 = 4, h = 1. (4.1)

We also take δ = 0.485. Note that this model only differs from the model of BM-stone by the values
given to I1 and δ.

Note that the Celtic stone model with the parameters (4.1) was considered in [33] in which a SA
was found, at E = 770, δ = 0.405, to be quite similar to the attractor from Fig. 10f. Since analogous
attractors are known to exist in three-dimensional Hénon maps [34, 41] near the boundaries of
destruction of discrete Lorenz attractors, the question naturally arises whether a discrete Lorenz
attractor exists for close values of the parameters E and δ. The answer is positive and we give here
a short review of results obtained.

We study, using both qualitative and numerical methods, bifurcations in the family F0E of the
Poincaré map F0E (2.9) for appropriate values of E (with fixed δ = 0.485). We will act by employing
the following strategy (its justification is given in the Appendix, Section 4).

1) We verify the geometrical similarity of our attractor AE∗ found in the Celtic stone model
to the Lorenz attractor. Here the strange attractor which was found for E = E∗ = 752 is
examined.

In particular, this similarity manifests itself in the fact that our three-dimensional map F0E∗

possesses the following features: (i) it has a fixed saddle point O∗ belonging to the attractor AE∗ with
the multipliers of λ1, λ2, γ such that |λ2| < |λ1| < 1 < |γ|, λ1 > 0, λ2 < 0, γ < −1 and |λ1γ| > 1;
(ii) the manifolds W u(O) and W s(O) have a nonempty intersection; (iii) the phase portraits look
“similar”, see Fig. 6.

We mention that negative values of the multipliers λ2 and γ provide the Lorenz symmetry
(x → x, y → −y, z → −z) of the homoclinic structure. Moreover, for the values of the parameter E
close to E∗, the manifold W u will intersect W s strictly from one side of the strong stable invariant
manifold W ss(O), which is tangent to the eigendirection corresponding to the multiplier λ2 of
O∗, which provides the “homoclinic configuration of a figure-eight-butterfly” similar to the Lorenz
attractor.

2) Verify numerically the strangeness and pseudo-hyperbolicity of the attractor AE∗ (we refer
to Section 4 for the definition of pseudo-hyperbolicity and related terms).

At this stage we investigate the spectrum Λ1, Λ2, Λ3 of the Lyapunov exponents of the map
F0E∗ on the attractor A∗ and show that this spectrum, where Λ1 > Λ2 > Λ3, satisfies the following
conditions: (1) Λ1 > 0; (2) Λ1 + Λ2 + Λ3 < 0; (3) Λ1 + Λ2 > 0. The conditions (1) and (2) imply
that the attractor A∗ is strange and the condition (3) implies that it is pseudo-hyperbolic (the
map expands areas in two directions transversal to the strong contraction related to the exponent
Λ3 < 0).

3) Plot numerically the graph of the maximal exponent Λ1 = Λ(E) for some range of the
parameter E containing this value, E = E∗, for which the attractor AE∗ exists, see Fig. 7.
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At this stage we verify (only numerically) that our attractor is not a quasi-attractor, i.e., it does
not contain stable periodic orbits of large periods, which do not appear under perturbations either.
As is seen from Fig. 7, the graph resides in the domain Λ1 > 0 and looks like a continuous function,
whereas, if AE∗ were a quasi-attractor, the “holes” would be observed on the plot containing the
ranges of Λ1 < 0 corresponding to “stability windows”.

4) Investigate (mostly numerically) the main bifurcations starting at a stable fixed point and
leading to the appearance of discrete Lorenz attractors (including AE∗). We also trace the
main stages of destruction of SA.

In principle, this item may seem unnecessary but we suppose it to be the most interesting as here
one can follow a certain “genetic” connection between the phenomena observed in flows with the
Lorenz attractors (Lorenz model, Shimizu–Morioka model etc.) and those observed in the model
of a Celtic stone. Moreover, as the calculations show, our Poincaré map F0E behaves like a “small
perturbation of the time shift of a flow from the geometric Lorenz model” for corresponding values
of E. Formally, this circumstance can be caused by the interesting fact that the middle Lyapunov
exponent Λ2 is very close to zero (for the flow case it is simply equal to zero): during calculations it
demonstrates small oscillations in the range between 0.00007 and 0.00015, see [22] for a discussion
of this topic. But what is really interesting is that the bifurcations leading to the appearance of SA
are here almost identical to those which accompany the birth of SA in the Lorenz model [31], see.
Fig. 8b–8f.

(a) (b)

Fig. 6. (a) a Lorenz-like attractor for E = E∗ = 752 in the Celtic stone model with the set of parameters (4.1)
(about 10000 iterations of some initial point are shown); b) the projection of the Lorenz attractor from the
Lorenz model onto the (x, z) plane.

Below we show the results of numerical investigations performed according to items 1)–4) of the
strategy.

1) Figure 6 shows (a) iterations of a single point of the attractor AE∗ of the map TE for
E = E∗ = 752 (for an appropriate angle of projection) and (b) the projection of orbits of the
classical Lorenz attractor from the Lorenz model for r = 28, σ = 10, and b = 8/3 onto the (x, z)
plane displayed for comparison.

The fixed saddle point O∗ with the coordinates of l = 3.650; L/G = 0.669; H/G = −0.384 on the
attractor AE∗ has the multipliers λ1 = 0.996; λ2 = −0.664; γ = −1.312. If one draws its unstable
manifolds (“separatrices”), then, as expected, they will have “loops” (due to the existence of the
homoclinic intersection), see Fig. 9a, in contrast with the unstable separatrices of the Lorenz
attractor in flows which appear to be sufficiently monotonous spirals.

2) For the attractor AE∗ at E = E∗ = 752 the spectrum of the Lyapunov exponents was obtained
as follows: Λ1 = 0.0248; Λ3 = −0.2445, 0.00007 < Λ2 < 0.00015.

Evidently, the conditions Λ1 > 0, Λ1 + Λ2 + Λ3 < 0 and Λ1 + Λ2 > 0 hold here.
3) On the graph of Fig. 7 the dependence of the maximal Lyapunov exponent Λ1 = Λ1(E) on

E is shown for the range [752; 752.01] of the parameter E.
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Fig. 7. The plot of Λ1(E) in the range of [752; 752.01].

(a) E=747 (b) E=748.4 (c) E=748.4395

(d) E = 748.5 (e) E=750 (f) E=750

Fig. 8. The main stages of evolution of the Lorenz-like attractor in the map TE . Figures a) and e) show
iterations of some starting point, and Figs. b)–g) show unstable manifolds (separatrices) of the fixed point O.

4) Figure 8 illustrates the main stages of evolution of a discrete Lorenz attractor in the map
F0E for the parameter E growing from E = 747 to E = E∗ = 750.

Initially the attractor is a stable fixed point O, Fig. 8a. Then, at E = E1 = 747.61, it undergoes
a period-doubling bifurcation and the stable cycle P = (p1, p2) of period two becomes an attractor,
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Fig. 8b. At E = E2 = 748.4395 a “homoclinic figure-eight-butterfly” of the unstable manifolds
(separatrices) of the saddle O is created, Fig. 8c, which then gives rise to a saddle-type closed
invariant curve L = (L1, L2) of period two (where F0E(L1) = L2,F0E(L2) = L1), the curves L1

and L2 surround the point p1 and p2, respectively. At the same time, the unstable separatrices of
O are rebuilt and now, for E2 < E < E3, the left (right) one is coiled around the right (left) point
of the cycle P , Fig. 8d. Moreover, together with the closed period-2 invariant curve L, an invariant
limit set Ω is born here here, [31], which is not attracting yet. As the numerical calculations
show, for E = E3 ∼ 748.97 the separatrices “lie” on the stable manifold of the curve L and then
leave it. Almost immediately after that, at E = E4 ∼ 748.98, the period-2 cycle P sharply loses
stability under a subcritical torus-birth bifurcation: the closed invariant curve L merges with the
cycle P , after that the cycle becomes a saddle and the curve disappears. The value of E = E4 is the
bifurcation moment of the creation of SA — the invariant set Ω becomes attracting. Even for the
parameter values close to E = E3 (and E > E3) the separatrices start to unwind, see Fig. 8e and
their configuration becomes similar to the Lorenzian one, which also applies to the phase portrait,
see Fig. 8f.

(a) (b)
Fig. 9

Figure 9 shows the behavior of (a) manifolds W u(O∗) and (b) iterations of the points on the
attractor A∗ of map F0E∗ (here E = E∗ = 752). This attractor is studied in items 1)–3) above.

Figure 10 shows some stages of destruction of the discrete Lorenz attractor, which is related to
the appearance of resonant stable invariant curves , (b), (d) and (e), and the chaotic regimes (torus-
chaos), (c) and (f). Note that for E > 790 “nothing is left” from the discrete Lorenz attractor and
the orbits run away from its neighborhood, tending to a new stable regime — the spiral attractor,
observed in [32, 33].

APPENDIX. TOWARDS THE DEFINITION OF THE DISCRETE LORENZ ATTRACTOR
The Lorenz attractors for flows play a special role in the theory of dynamical chaos. Until recently,

these and hyperbolic attractors were the only ones which were classified as “genuine” strange
attractors, which, in particular, do not allow the appearance of stable periodic orbits under small
perturbations. After publication of the paper [20] by Turaev and Shilnikov the situation changed
drastically. They not only provided an example of a wild hyperbolic spiral attractor that must be
regarded as a genuine SA but also introduced a new class of pseudo-hyperbolic attractors. Thus,
a new trend related to the study of such strange attractors appeared in the theory of dynamical
chaos.

Below we will give the definition of pseudo-hyperbolicity for diffeomorphisms, which is, in fact,
a reformulation of the corresponding definition for flows from [21].
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(a) E = 754 (b) E = 755 (c) E = 765

(d) E = 770 (e) E = 775 (f) E = 780

Fig. 10. Certain stages of destruction of the discrete Lorenz attractor; a) this is definitely a discrete Lorenz
attractor; b) a resonant invariant curve with the period more than 160; c) a strange attractor of torus-chaos
type close to the break-down of an invariant curve (Λ1 = 0.009); d) an invariant curve with the rotation
number ρ = 29/62; e) an attractive resonant invariant curve with ρ = 15/28; f) a strange attractor of torus-
chaos type with Λ1 = 0.090 (such strange attractors appear after break-down of an invariant two-dimensional
torus (closed invariant curve), by the Afraimovich–Shilnikov scenario [42]);

Let f be a Cr-diffeomorphism, r � 1 and let Df be its linearization: Df(x0) =
(

∂f
∂x |x=x0

)
. An

open bounded domain D ⊂ Rn is absorbing for f if f(D) ⊂ D.
Definition 1. The diffeomorphism f is called pseudo-hyperbolic on D if the following conditions
hold.

1) For each point of D there exist two transversal subspaces N1 and N2 continuously depending
on the point (dimN1 = k � 1, dim N2 = n − k) which are invariant with respect to Df :

Df(N1(x)) = N1(f(x)), Df(N2(x)) = N2(f(x)).

and for each orbit L : {xi | xi+1 = f(xi), i = 0, 1, . . . ; x0 ∈ D} the maximal Lyapunov expo-
nent corresponding to the subspace N1 is strictly smaller than the minimal Lyapunov exponent
corresponding to the subspace N2, i.e., the following inequality holds:

lim
n→∞

sup
1
n

ln

⎛⎜⎝ sup
u∈N1(x0)
‖u‖=1

‖Dnf(x0)u‖

⎞⎟⎠ < lim
n→∞

inf
1
n

ln

⎛⎜⎝ inf
v∈N2(x0)
‖v‖=1

‖Dnf(x0)v‖

⎞⎟⎠ . (A.1)

2) The restriction of f to N1 is contracting, i.e., there exist such constants λ > 0 and C1 > 0
that

‖Dnf(N1)‖ � C1e
−λn. (A.2)

3) The restriction of f to N2 expands volumes exponentially, i.e., there exist such constants
σ > 0 and C2 > 0 that

| detDnf(N2)| � C2e
σn. (A.3)
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The following property immediately follows from this definition:

* All the orbits in D are unstable: each orbit has a positive maximal Lyapunov exponent

Λmax(x) = lim
n→∞

sup
1
n

ln ‖Dnf(x)‖ > 0

Note that the pseudo-hyperbolicity conditions require the expansion of only (n− k) volumes (by
the restriction of the diffeomorfism to N2), which makes these conditions different from those for
uniform hyperbolicity, where the expansion of full volumes is required. But for the hyperbolicity
the following condition must hold: ‖D−nf(N2)‖ < Ce−σn, i.e., the uniform expansion should be
along all directions in N2. Nevertheless, it is possible to establish the following fact in a standard
way [20, 35].

** The pseudo-hyperbolicity conditions are not violated under small Cr-perturbations of the
system. Moreover, the spaces N1 and N2 change continuously.

These two conditions imply that if the diffeomorphism f has an attractor in D, then this
attractor is strange and does not contain stable periodic orbits, which do not appear under small
perturbations either. In other words, pseudo-hyperbolic attractors appear to be genuine SA (in
contrast to the so-called quasi-attractors [36], which can contain stable periodic orbits of large
periods).

The discrete Lorenz attractors form a certain subclass of the class of pseudo-hyperbolic
attractors. Following Turaev and Shilnikov [20, 21], we make an attempt below to give a definition
of such attractors.

First of all, we mention that there exist various definitions of an attractor, see, e.g., [37]. Usually a
strange attractor is defined to be a compact, asymptotically stable, transitive invariant set. However,
an attractor is not always transitive and asymptotically stable. For example, such an attractor may
not even be present in the geometric Lorenz model [38], which should be regarded as basic in
the theory of Lorenz-like attractors. Thus, we will follow a definition of the attractor introduced
in [20, 39], which is based on the notion of ε-orbits (Anosov, Ruelle, Conley and others). Recall the
corresponding definitions.

Definition 2. Let f : M → M be a diffeomorphism of a manifold M and let ρ(x, y) be the distance
between the points x, y ∈ M . A sequence of points xn ∈ M such that

ρ(xn+1, f(xn)) < ε, n ∈ Z,

is called an ε-orbit of f .

Definition 3. We will call a point y achievable from a point x by ε-orbits (ε-achievable) if for any
ε > 0 there exists an ε-orbit of the point x passing through the point y.

Definition 4. A compact invariant set Λ is called an attractor if it is (i) chain-transitive, i.e.,
each point of Λ is achievable from any other point of this set by ε-orbits which also belong to Λ
for each sufficiently small ε, and (ii) stable, i.e., any ε-orbit starting near the set Λ never leaves
some small neighborhood of this set.

Note that the attractors defined in this way (according to Ruelle–Turaev–Shilnikov, [20, 39])
keep their main properties under small random perturbations (noises) as well. Concerning the
properties of stability, another important notion is often used in the theory.

Definition 5. A prolongation of a point x ∈ D is the limit invariant set Px defined as

Px =
⋂
ε>0

⋃
x̃∈Lε

x̃ ∩ D,

where Lε is the set of points of all ε-orbits of x. Also, we define the prolongation of some set as a
union of prolongations of all its points.
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We would like to mention that the prolongation of any point/set is always a stable (ε-stable)
closed invariant set [20, 40]. Then

• a chain-transitive attractor is always a prolongation of any of its points.

This important property of the attractor appears to be a theoretical basis of the main “working
strategy” for finding the attractors, which is to find a prolongation of an appropriate point and to
try to prove that it is chain-transitive. This is not always easy and various numerical methods can
provide significant help.

Definition 6 ([20, 21]). A pseudo-hyperbolic attractor is a stable chain-transitive invariant set
with a uniform pseudo-hyperbolic structure.

This definition is quite wide. The class of systems with pseudo-hyperbolic attractors includes
systems with hyperbolic attractors and those with Lorenz-like attractors.

Note that the dynamical properties of the geometric Lorenz model [38] under small time-periodic
perturbations were investigated in [21]. It was also shown that the properties of pseudo-hyperbolicity
and chain-transitiveness of a non-perturbed Lorenz attractor hold for a periodically perturbed
attractor as well. Thus, the Poincaré map (the map for a period of perturbation) also possesses here
a pseudo-hyperbolic attractor A, which appears to be a basic example of a discrete Lorenz attractor.
Note that the saddle equilibrium of the Lorenz attractor will correspond, after perturbations, to a
saddle-type fixed point of the corresponding Poincaré map. Hence, the attractor A is exactly the
prolongation of this fixed point, and A is always chain-transitive (when the perturbation is small),
see [21].

The same conclusions can also be drawn without assuming that the map under consideration
is a Poincaré map of a system periodic in time and close to an autonomous one. For this general
case the corresponding definition of a discrete Lorenz attractor was given in [41], however, here we
do not reproduce it as it is quite complicated and abstract. But the main idea is the following.
First a suspension of a diffeomorphism f is considered which is some flow Ft. Therefore, the flow Ft

is required to satisfy the main conditions (chain-transitiveness, pseudo-hyperbolicity etc.), which
hold for the flow with the periodically perturbed Lorenz attractor from the geometric model. These
conditions are then verified for the initial map. But this approach is quite hard to implement
in practice although it would be appropriate for theoretical investigations. In the present paper,
according to the definitions given above, we have used, instead, the strategy of qualitative and
numerical study of Lorenz-like attractors described in items 1)–4) of Section 4.
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