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Abstract
Let (M, I, J,K, g) be a hyperkähler manifold, dimR M = 4n.
We study positive, ∂-closed (2p, 0)-forms on (M, I). These
forms are quaternionic analogues of the positive (p, p)-forms,
well-known in complex geometry. We construct a monomor-
phism Vp,p : Λ2p,0

I (M)−→ Λn+p,n+p
I (M), which maps ∂-closed

(2p, 0)-forms to closed (n+p, n+p)-forms, and positive (2p, 0)-
forms to positive (n + p, n + p)-forms. This construction is
used to prove a hyperkähler version of the classical Skoda-El
Mir theorem, which says that a trivial extension of a closed,
positive current over a pluripolar set is again closed. We also
prove the hyperkähler version of the Sibony’s lemma, showing
that a closed, positive (2p, 0)-form defined outside of a com-
pact complex subvariety Z ⊂ (M, I), codimZ > 2p is locally
integrable in a neighbourhood of Z. These results are used to
prove polystability of derived direct images of certain coherent
sheaves.

Contents

1 Introduction 2
1.1 Hypercomplex manifolds and hyperkähler manifolds . . . . . 2
1.2 Positive (2, 0)-forms on hypercomplex manifolds

and quaternionic Hermitian structures . . . . . . . . . . . . . 4
1.3 Positive (2p, 0)-forms on hypercomplex manifolds . . . . . . . 6
1.4 Hyperholomorphic bundles and reflexive sheaves . . . . . . . 8

2 Quaternionic Dolbeault complex 11
2.1 Weights of SU(2)-representations . . . . . . . . . . . . . . . . 11
2.2 Quaternionic Dolbeault complex: a definition . . . . . . . . . 12
2.3 The Hodge decomposition of the quaternionic Dolbeault com-

plex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Quaternionic pseudo-Hermitian structures 14

4 Positive, closed (2p, 0)-forms 16

4.1 The isomorphism Λp+q,0I (M)
Rp,q−→ Λp,q+,I(M) . . . . . . . . . . 16

4.2 Strongly positive, weakly positive and real (2p, 0)-forms . . . 18
4.3 The map Vp,q : Λp+q,0I (M)−→ Λn+p,n+q

I (M)
on SL(n,H)-manifolds . . . . . . . . . . . . . . . . . . . . . . 21

1Misha Verbitsky is supported by CRDF grant RM1-2354-MO02.

– 1 – version 1.0, 12.01.2008



M. Verbitsky Positive forms on hyperkähler manifolds

5 Sibony’s Lemma for positive (2p, 0)-forms 25
5.1 ωq-positive (1,1)-forms . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Positive (2p, 0)-forms on hypercomplex manifolds . . . . . . . 27
5.3 ωq-positive forms in a neighbourhood of a subvariety . . . . . 28

6 Skoda-El Mir theorem for hyperkähler manifolds 30

1 Introduction

1.1 Hypercomplex manifolds and hyperkähler manifolds

Let M be a smooth manifold, equipped with an action of the algebra

H =
〈

1, I, J,K | I2 = J2 = IJK = −1
〉

of quaternions on its tangent bundle. Such a manifold is called an almost
hypercomplex manifold. The operators I, J , K define three almost
complex structures on M . If these almost complex structures are integrable,
(M, I, J,K) is called a hypercomplex manifold.

Hypercomplex manifolds can be defined in terms of complex geometry,
using the notion of a twistor space ([HKLR], [V2]). A scheme-theoretic
definition of a hypercomplex space also exists, allowing one to define hyper-
complex varieties, and even hypercomplex schemes ([V2]).

Still, in algebraic geometry, the notion of a hyperkähler manifold is
much more popular. A hyperkähler manifold is a hypercomplex manifold
(M, I, J,K), equipped with a Riemannian form g, in such a way that g is a
Kähler metric with respect to I, J and K.

Historically, these definitions were given in opposite order: Calabi de-
fined the hyperkähler structure in 1978, and constructed one on the total
space of a cotangent bundle to CPn ([Ca]), and Boyer defined hypercomplex
structures and classified compact hypercomplex manifolds in quaternionic
dimension 1 in 1988 ([B]). The hyperkähler structures are much more promi-
nent because of Calabi-Yau theorem, [Y], which can be used to construct
hyperkähler structures on compact, holomorphically symplectic Kähler man-
ifolds ([Bes]).

Let (M, I, J,K, g) be a hyperkähler manifold. Since g is Kähler with
respect to I, J , K, the manifold M is equipped with three symplectic forms:

ωI(·, ·) := g(·, I·), ωJ(·, ·) := g(·, J ·), ωK(·, ·) := g(·,K·).

A simple linear-algebraic calculation can be used to show that the form
Ω := ωJ +

√
−1 ωK is of Hodge type (2, 0) with respect to the complex

structure I (see e.g. [Bes]). Since Ω is also closed, it is holomorphic. This
gives a holomorphic symplectic structure on a given hyperkähler manifold.
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Conversely, each holomorphically symplectic, compact, Kähler manifold ad-
mits a hyperkähler metric, which is unique in a given Kähler class ([Bes]).

In algebraic geometry, the words “hyperkähler” and “holomorphically
symplectic” are used as synonyms, if applied to projective manifolds. There
are papers on “hyperkähler manifolds in characteristic p” dealing with holo-
morphically symplectic, projective manifolds in characteristic p.

The first occurence of hyperkähler manifolds precedes the definition
given by Calabi by almost 25 years. In his work on classification of irre-
ducible holonomy groups on Riemannian manifolds, [Ber], M. Berger listed,
among other groups, the group of Sp(n) of quaternionic unitary matrices.
The holonomy of the Levi-Civita connection of a Kähler manifold preserves
its complex structure (this is one of the definitions of a Kähler manifold).
Therefore, the holonomy of a hyperkähler manifold preserves I, J, and K.
We obtained that the holonomy group of a hyperkähler manifold lies in
Sp(n). The converse is also true: if the Levi-Civita connection of a Rieman-
nian manifold M preserves a complex structure, it is Kähler (this is, again,
one of the definitions of a Kähler manifold), and if it preserves an action of
quaternions, it is hyperkähler.

In physics, this is often used as a definition of a hyperkähler structure.
Summarizing, there are three competing approaches to hyperkähler ge-

ometry.

(i) A hyperkähler manifold is a Riemannian manifold (M, g) equipped with
almost complex structures I, J,K satisfying I ◦ J = −J ◦ I = K, such
that (M, I, g), (M,J, g) and (M,K, g) are Kähler.

(ii) A hyperkähler manifold is a Riemannian manifold with holonomy which
is a subgroup of Sp(n).

(iii) (for compact manifolds) A hyperkähler manifold is a compact com-
plex manifold of Kähler type, equipped with a holomorphic symplectic
structure.

Returning to hypercomplex geometry, there is no hypercomplex analogue
of Calabi-Yau theorem, hence no definition in terms of algebro-geometric
data such as in (iii). However, hypercomplex manifold can also be charac-
terized in terms of holonomy.

Recall that Obata connection on an almost hypercomplex manifold is a
torsion-free connection preserving I, J and K. Obata ([Ob]) has shown that
such a connection is unique, and exists if the almost complex structures I,
J and K are integrable. The holonomy of Obata connection obviously lies
in GL(n,H). The converse is also true: if a manifold M admits a torsion-
free connection preserving operators I, J,K ∈ End(TM), generating the
quaternionic action,

I2 = J2 = K2 = IJK = − IdTM ,
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then the almost complex structure operators I, J,K are integrable. Indeed,
an almost complex structure is integrable if it is preserved by some torsion-
free connection.

We obtain that a hypercomplex manifold is a manifold equipped with
a torsion-free connection ∇ with holonomy Hol(∇) ⊂ GL(n,H). If, in ad-
dition, the holonomy of Obata connection is a compact group, M is hy-
perkähler.

Some notions of complex geometry have natural quaternionic analogues
in hypercomplex geometry, many of them quite useful.

By far, the most useful of these is the notion of HKT-forms, which is
a quaternionic analogue of Kähler forms ([GP], [BS], [AV]). Generalizing
HKT-forms, one naturally comes across the notion of closed, positive (2, 0)-
forms on a hypercomplex manifold.

1.2 Positive (2, 0)-forms on hypercomplex manifolds
and quaternionic Hermitian structures

Let (M, I, J,K) be a hypercomplex manifold. We denote the space of (p, q)-
forms on (M, I) by Λp,qI (M). The operators I and J anticommute, and
therefore, J(Λp,qI (M)) = Λq,pI (M). The map η −→ J(η) induces an anticom-
plex endomorphism of Λp,qI (M). Clearly,

J2

∣∣∣∣Λp,q
I

(M)
= (−1)p+q Id .

For p+ q even, η −→ J(η) is an anticomplex involution, that is, a real struc-
ture on Λq,pI (M). A (2p, 0)-form η ∈ Λ2p,0

I (M) is called real if η = J(η).
The bundle of real (2p, 0)-forms is denoted Λ2p,0

I (M,R).
The real (2, 0)-forms are most significant, because they can be inter-

preted as quaternionic pseudo-Hermitian structures.
Recall that a Riemannian metric g on an almost complex manifold (M, I)

is called Hermitian if g is U(1)-invariant, with respect to the U(1)-action
on TM defined by

t−→ cos t · idTM + sin t · I.

This is equivalent to g(I·, I·) = g(·, ·).
When M is almost hypercomplex, it is natural to consider a group G ⊂

End(TM) generated by U(1)-action associated with I, J , K as above. It is
easy to see that G is the group of unitary quaternions, naturally identified
with SU(2). Thus obtained action of SU(2) on Λ∗(M) is fundamental, and
plays in hypercomplex and hyperkähler geometry the same role as played
by the Hodge structures in complex algebraic geometry.

Recall that bilinear symmetric forms (not necessarily positive definite)
on TM are called pseudo-Riemannian structures.
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A (pseudo-)Riemannian structure g on an almost hypercomplex manifold
(M, I, J,K) is called quaternionic (pseudo-)Hermitian if g is SU(2)-
invariant. In other words, a quaternionic pseudo-Hermitian structure is a
bilinear, symmetric, SU(2)-invariant form on TM .

Given a real (2, 0)-form η ∈ Λ2,0
I (M,R), consider a bilinear form

gη(x, y) := η(x, Jy)

on TM . Since η is a (2, 0)-form, we have

η(Ix, Iy) = −η(x, y),

for all x, y ∈ TM and therefore

gη(Ix, Iy) = gη(x, y).

Similarly, we obtain gη(Jx, Jy) = gη(x, y), because η (J(x), J(y)) = η(x, y).
Since η is skew-symmetric, and J2 = −1, gη is symmetric. We obtained

that gη is a pseudo-Hermitian form on TM . This construction is invertible
(see Section 3), and gives an isomorphism between the bundle H of real
(2, 0)-forms and the bundle Λ2,0

I (M,R) of quaternionic pseudo-Hermitian
forms (Claim 3.1). The inverse isomorphism H −→ Λ2,0

I (M,R) is given as
follows. Starting from a quaternionic pseudo-Hermitian form g, we construct
2-forms ωI , ωJ , ωK as in Subsection 1.1. Then Ωg := ωJ +

√
−1 ωK is a real

(2, 0)-form.
A real (2, 0)-form η is called positive definite if the corresponding

symmetric form gη is positive definite.
There are two differentials on Λ∗,0I (M): the standard Dolbeault differ-

ential ∂ : Λp,0I (M)−→ Λp+1,0
I (M), and ∂J , which is obtained from ∂ by

twisting with η −→ J(η). One could define ∂J as ∂J(η) := −J∂(Jη).
The pair of differentials ∂, ∂J behaves in many ways similarly to the

operators d, dc on a complex manifold. They anticommute, and satisfy ∂2 =
∂2
J = 0.

A positive definite (2, 0)-form η ∈ Λ2,0
I (M,R) is called HKT-form if

∂η = 0. The corresponding quaternionic Hermitian metric is called the
HKT-metric. This notion was first defined by string physicists [HP], and
much studied since then (see [GP] for an excellent survey of an early re-
search).

In [BS] (see also [AV]), it was shown that HKT-forms locally always
have a real-valued potential ϕ, known as HKT-potential: η = ∂∂Jϕ. This
function is a quaternionic analogue of the Kähler potential.

We obtain the following dictionary of parallels between the complex and
hypercomplex manifolds.
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C H
complex manifold hypercomplex manifold

Λp,p(M,R) Λ2p,0
I (M,R)

d, dc ∂, ∂J

real (1, 1)-forms real (2, 0)-forms

closed positive definite (1,1)-forms HKT-forms

Kähler potentials HKT-potentials

This analogy can be built upon, to obtain the notion of positive (2p, 0)-forms.

1.3 Positive (2p, 0)-forms on hypercomplex manifolds

Definition 1.1: ([AV]) A real (2p, 0)-form η ∈ Λ2,0
I (M,R) on a hypercom-

plex manifold is called weakly positive if

η (x1, J(x1), x2, J(x2), ...xp, J(xp)) > 0,

for any x1, ..., xp ∈ T 1,0
I M , and closed if ∂η = 0.

In modern complex geometry, the positive, closed (p, p) forms and cur-
rents play a central role, due to several by now classical theorems, which
were proven in 1960-1980-ies, building upon the ideas of P. Lelong (see [D]
for an elementary exposition of the theory of positive currents).

The hypercomplex analogue of these results could be just as significant.

In [AV], a hypercomplex version of the classical Chern-Levine-Nirenberg
theorem was obtained. In the present paper, we prove quaternionic versions
of two classical theorems, both of them quite important in complex geometry.

Theorem 1.2: (“Sibony’s Lemma”) Let (M, I, J,K, g) be a hyperkähler
manifold, dimRM = 4n, and Z ⊂ (M, I) a compact complex subvariety,
codimZ > 2p. Consider a weakly positive, closed form η ∈ Λ2p,0

I (M\Z,R).
Then η is locally integrable around Z.

Proof: See Theorem 5.5.

The classical version of this theorem states that a closed, positive (p, p)-
form defined outside of a complex subvariety of codimension > p is integrable
in a neighbourhood of this subvariety. Its proof can be obtained by slicing.

In hypercomplex geometry, the slicing is possible only on a flat manifold,
because a typical hypercomplex manifold has no non-trivial hypercomplex
subvarieties, even locally. In earlier versions of [V4], Theorem 1.2 was proven
for flat hypercomplex manifold using slicing, and then extended to non-flat
manifold by approximation. The approximation argument was very unclear
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and ugly. In 2007, a new proof of Sibony’s lemma was found ([V9]), using
the emerging theory of plurisubharmonic functions on calibrated manifolds
([HL1], [HL2]) instead of slicing. In Section 5, we adapt this argument
to hyperkähler geometry, obtaining a relatively simple and clean proof of
Theorem 1.2.

Theorem 1.2 was used in [V4] to prove results about stability of certain
coherent sheaves on hyperkähler manifolds (Subsection 1.4). Theorem 1.2
was used to show that the form representing c1(F ) for such a sheaf is in-
tegrable. To prove theorems about stability, we need also to show that the
corresponding current is closed. Then the integral of the form representing
c1(F ) can be interpreted in terms of the cohomology.

Given a form η on M\Z, locally integrable everywhere on M , we can
interpret η as a current on M ,

α−→
∫
M\Z

η ∧ α.

This current is called a trivial extension of η to M . A priori, it can
be non-closed. However, in complex geometry, a trivial extension of an
integrable, closed and positive form is again closed. This fundamental result
is known as Skoda-El Mir theorem (Theorem 6.2). In Section 6, we prove a
hypercomplex analogue of Skoda-El Mir theorem.

Recall that hypercomplex manifolds can be defined in terms of holonomy
(Subsection 1.1), as manifolds equipped with a torsion-free connection ∇,
with Hol(∇) ⊂ GL(n,H). A hypercomplex manifold (M, I, J,K) is called
an SL(n,H)-manifold if its holonomy lies in SL(n,H) ⊂ GL(n,H). Such
manifolds were studied in [V7] and [BDV]. It was shown that (M, I, J,K) is
an SL(n,H)-manifold if and only if M admits a holomorphic, real (2n, 0)-
form. In particular, all hyperkähler manifolds satisfy Hol(∇) ⊂ SL(n,H).

Theorem 1.3: Let (M, I, J,K) be an SL(n,H)-manifold, and Z ⊂ (M, I)
a closed complex subvariety. Consider a closed, positive form

η ∈ Λ2p,0
I (M\Z,R),

and assume that η is locally integrable around Z. Let η̃ be the current
obtained as a trivial extension of η to M . Then ∂η̃ = 0.

Proof: Theorem 6.3.

Theorem 1.3 is deduced from the classical Skoda-El Mir theorem. In
Subsection 4.3, we construct a map Vp,q : Λp+q,0I (M)−→ Λn+p,n+q

I (M),
which has the following properties.
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Claim 1.4: Let η ∈ Λ2p,0
I (M) be a (2p, 0)-form on an SL(n,H)-manifold.

Then the (n + p, n + p)-form (
√
−1 )pVp,p(η) is real (in the usual sense) if

and only if η is real, positive if and only if η is positive, and closed if and
only if ∂Jη = ∂η = 0.

Proof: Follows immediately from Proposition 4.10.

To prove Theorem 1.3, take η ∈ Λ2p,0
I (M) which is closed and positive.

As follows from Claim 1.4, the (n+ p, n+ p)-form (
√
−1 )pVp,p(η) is closed

and positive, in the usual complex-analytic sense. Its trivial extension is
closed and positive, by the Skoda-El Mir theorem. Then (

√
−1 )pVp,p(η̃) is

closed. Applying Claim 1.4 again, we find that closedness of (
√
−1 )pVp,p(η̃)

implies that ∂η̃ = 0.

1.4 Hyperholomorphic bundles and reflexive sheaves

The results about positive (2, 0)-forms on hypercomplex manifolds are espe-
cially useful in hyperkähler geometry. In [V4], we used this notion to prove
theorems about stability of direct images of coherent sheaves. The earlier
arguments were unclear and flawed, and the machinery of positive (2p, 0)-
forms was developed in order to obtain clear proofs of these results. Here we
give a short sketch of main arguments used in [V4]. Throughout this paper,
stability of coherent sheaves is understood in Mumford-Takemoto sense.

Let (M, I, J,K) be a compact hyperkähler manifold, and B a holomor-
phic Hermitian bundle on (M, I). Denote the Chern connection on B by ∇.
We say that B is hyperholomorphic if its curvature ΘB ∈ Λ2(M)⊗EndB
is SU(2)-invariant, with respect to the natural action of SU(2) on Λ2(M).
This notion was defined in [V0], and much studied since then.

It is easy to check that SU(2)-invariant 2-forms are pointwise orthogonal
to the Kähler form ωI . Therefore, (B,∇) satisfies the Yang-Mills equation
ΛΘB = 0.1 In other words, ∇ is Hermitian-Einstein.

One can easily prove that Yang-Mills bundles are always polystable,
that is, obtained as a direct sum of stable bundles of the same slope.
The converse is also true: as follows from Donaldson-Uhlenbeck-Yau the-
orem [UY], a Yang-Mills connection exists on any polystable bundle, and is
unique.

In [V0], it was shown that a polystable bundle on (M, I) admits a hy-
perholomorphic connection if and only if the Chern classes c1(B) and c2(B)
are SU(2)-invariant.

In [V1], it was shown that for any compact hyperkähler manifold
1Here

Λp,q
I (M)⊗ EndB −→ Λp,q

I (M)⊗ EndB

is the standard Hodge operator, which is Hermitian adjoint to L(η) = ωI ∧ η.
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(M, I, J,K) there exists a countable set

P ⊂ S2 = {a, b, c | a2 + b2 + c2 = 1}

with the following property. For any (a, b, c) /∈ P , let L := aI + bJ + cK
be the corresponding complex structure on M induced by the quaternionic
action. Then all integer (p, p)-classes on (M,L) are SU(2)-invariant. In
particular, all stable bundles on (M,L) are hyperholomorphic.

Many of these results can be extended to reflexive coherent sheaves.
Recall that a coferent sheaf F on a complex manifold X is called reflexive
if the natural map F −→ F ∗∗ is an isomorphism. Here, F ∗ denotes the dual
sheaf, F ∗ := Hom(F,OX). The following properties of reflexive sheaves are
worth mention (see [OSS]).

• Holomorphic vector bundles are obviously reflexive.

• Let Z ⊂ X be a closed complex subvariety, codimZ > 2, and j :
X\Z −→X the natural embedding. Then j∗F is reflexive, for any
reflexive sheaf F on X\Z.

• The sheaf F ∗ is reflexive, for any coherent sheaf F .

• For any torsion-free coherent sheaf F , the natural map F −→ F ∗∗ is
a monomorphism, and F ∗∗ is reflexive. Moreover, F ∗∗ is a minimal
reflexive sheaf containing F .

• For any torsion-free coherent sheaf F , the singular set Sing(F ) has
codimension > 2. If F is reflexive, Sing(F ) has codimension > 3.

• A torsion-free sheaf of rank 1 is always reflexive.

• A torsion-free sheaf F is stable if and only if F ∗∗ is stable.

In [V3], the definition of a hyperholomorphic connection was extended to
reflexive coherent sheaves, using the notion of admissible connection defined
by Bando and Siu in a fundamental work [BS].

Let us recall what Bando and Siu did.

Definition 1.5: Let (X,ω) be a Kähler manifold, Z ⊂ X a closed com-
plex subvariety, codimZ > 2, and F a holomorphic vector bundle on X\Z.
Given a Hermitian metric h on F , denote by ∇ the corresponding Chern
connection, and let ΘF be its curvature. The metric h and the connection
∇ are called admissible if

(i) ΛΘF is uniformly bounded, where Λ : Λ1,1
I (M) ⊗ EndB −→ EndB is

the Hodge operator, which is Hermitian adjoint to L(η) = ωI ∧ η.
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(ii) The curvature ΘF is locally L2-integrable everywhere on M .

Bando and Siu proved the following.

• Let (X,ω) be a Kähler manifold, Z ⊂ X a closed complex subvariety,

codimZ > 2, and F a holomorphic vector bundle on X\Z
↪→
X. Assume

that F is equipped with an admissible connection. Then j∗F is a
reflexive coherent sheaf. Conversely, any coherent sheaf admits an
admissible connection outside of its singularities. Such a connection is
called an admissible connection on F .

• A version of Donaldson-Uhlenbeck-Yau theorem is valid for stable re-
flexive sheaves. Let F be a reflexive sheaf on a compact Kähler man-
ifold X. The admissible connection on F is called Yang-Mills if
ΛΘF = c IdF , where ΘF is its curvature, and c some constant. Bando
and Siu proved that a Yang-Mills connection is unique, and exists if
and only if F is polystable.

In [V3], these results were applied to coherent sheaves on a hyperkähler
manifold (M, I, J,K, g). A hyperholomorphic connection on a reflexive
sheaf F on (M, I) is an admissible connection with SU(2)-invariant curva-
ture. Since any SU(2)-invariant form ΘF satisfies ΛΘF = 0, a hyperholo-
morphic connection is always Yang-Mills. In [V3], it was shown that any
polystable reflexive sheaf with SU(2)-invariant Chern classes c1(F ), c2(F )
admits a hyperholomorphic connection.

In [V4], this formalism was used to prove polystability of derived direct
images of hyperholomorphic bundles. Let M1,M2 be compact hyperkähler
manifolds, and B a hyperholomorphic bundle on M1 × M2. Denote the
natural projection M1 ×M2 −→M2 by π. It was shown that the derived
direct image sheaves Riπ∗B admit a hyperholomorphic connection, outside
of their singularities. Were this connection admissible, Bando-Siu theorem
would imply polystability of Riπ∗B outright. However, L2-integrability of
its curvature is difficult to establish. In [V4], we proposed a roundabout
argument to prove polystability of F := (Riπ∗B)∗∗.

Let (M, I, J,K, g) be a compact hyperkähler manifold, dimRM = 4n,
and F a reflexive coherent sheaf on (M, I). Assume that outside of its
singularities, F is equipped with a metric, and its Chern connection has
SU(2)-invariant curvature. Consider a subsheaf F1 ⊂ F . Then, outside
of singularities of F , F1, the class −c1(F ) is represented by a form ν with
ν − J(ν) positive, and vanishing only if F = F1 ⊕ F2. This follows from an
argument which is similar to one that proves that holomorphic subbundles
of a flat bundle have negative c1: the SU(2)-invariance of the curvature ΘF

is equivalent to ΘF − J(ΘF ) = 0. From positivity and non-vanishing of
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ν−J(ν), one needs to infer that deg c1(F1) < 0, which would suffice to show
that F is polystable.

The expression

deg c1(F1) = −
∫
M
ν ∧ ω2n−1

I = −1
2

∫
M

(ν − J(ν)) ∧ ω2n−1
I (1.1)

would have been true were the form ν − J(ν) integrable, and closed as a
current on M . However, the (2, 0)-form Ων corresponding to ν as in Section
3 is ∂-closed, because ν is closed. This form is positive, because ν − J(ν) is
positive, and Ων satisfies 2Ων = Ων−Jν , which is clear from its construction.
This form is defined outside of the set S ⊂ M where the sheaves F, F1 are
not locally trivial. Since these sheaves are reflexive, codimS > 2, and we
could apply the hyperkähler version of Sibony’s lemma (Theorem 1.2) to
obtain that Ων is integrable. Now, the hypercomplex version of Skoda-El
Mir theorem (Theorem 1.3) implies that the trivial extension of Ων is a
∂-closed current. Therefore, degF1 can be computed through the integral
(1.1). Since ν−J(ν) is positive, this integral is negative, and strictly negative
unless F = F1 ⊕ F2. Therefore, F is polystable. We gave a sketch of an
argument showing that F = (Riπ∗B)∗∗ is polystable. For a complete proof,
please see [V4].

2 Quaternionic Dolbeault complex

In this Section, we introduce the quaternionic Dolbeault complex(⊕
Λp,qI,+, d+

)
,

used further on in this paper. We follow [V5].

2.1 Weights of SU(2)-representations

It is well-known that any irreducible representation of SU(2) over C can
be obtained as a symmetric power Si(V1), where V1 is a fundamental 2-
dimensional representation. We say that a representation W has weight i
if it is isomorphic to Si(V1). A representation is said to be pure of weight i
if all its irreducible components have weight i. If all irreducible components
of a representation W1 have weight 6 i, we say that W1 is a representation
of weight 6 i. In a similar fashion one defines representations of weight
> i.

Remark 2.1: The Clebsch-Gordan formula (see [H]) claims that the weight
is multiplicative, in the following sense: if i 6 j, then

Vi ⊗ Vj =
i⊕

k=0

Vi+j−2k,
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where Vi = Si(V1) denotes the irreducible representation of weight i.

A subspace W ⊂ W1 is pure of weight i if the SU(2)-representation
W ′ ⊂W1 generated by W is pure of weight i.

2.2 Quaternionic Dolbeault complex: a definition

Let M be a hypercomplex (e.g. a hyperkähler) manifold, dimHM = n.
There is a natural multiplicative action of SU(2) ⊂ H∗ on Λ∗(M), associated
with the hypercomplex structure.

Remark 2.2: The space Λ∗(M) is an infinite-dimensional representation
of SU(2), however, all its irreducible components are finite-dimensional.
Therefore it makes sense to speak of weight of Λ∗(M) and its sub-repre-
sentations. Clearly, Λ1(M) has weight 1. From Clebsch-Gordan formula
(Remark 2.1), it follows that Λi(M) is an SU(2)-representation of weight
6 i. Using the Hodge ∗-isomorphism Λi(M) ∼= Λ4n−i(M), we find that for
i > 2n, Λi(M) is a representation of weight 6 2n− i.

Let V i ⊂ Λi(M) be a maximal SU(2)-invariant subspace of weight < i.
The space V i is well defined, because it is a sum of all irreducible repre-
sentations W ⊂ Λi(M) of weight < i. Since the weight is multiplicative
(Remark 2.1), V ∗ =

⊕
i V

i is an ideal in Λ∗(M). We also have V i = Λi(M)
for i > 2n (Remark 2.2).

It is easy to see that the de Rham differential d increases the weight by
1 at most. Therefore, dV i ⊂ V i+1, and V ∗ ⊂ Λ∗(M) is a differential ideal
in the de Rham DG-algebra (Λ∗(M), d).

Definition 2.3: Denote by (Λ∗+(M), d+) the quotient algebra Λ∗(M)/V ∗

It is called the quaternionic Dolbeault algebra of M , or the quater-
nionic Dolbeault complex (qD-algebra or qD-complex for short).

The space Λi+(M) can be identified with the maximal subspace of Λi(M)
of weight i, that is, a sum of all irreducible sub-representations of weight i.
This way, Λi+(M) can be considered as a subspace in Λi(M); however, this
subspace is not preserved by the multiplicative structure and the differential.

Remark 2.4: The complex (Λ∗+(M), d+) was constructed much earlier by
Salamon, in a different (and much more general) situation, and much studied
since then ([Sal], [CS], [Bas], [LY]).

2.3 The Hodge decomposition of the quaternionic Dolbeault
complex

.
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Let (M, I, J,K) be a hypercomplex manifold, and L a complex structure
induced by the quaternionic action, say, I, J or K. Consider the U(1)-action
on Λ1(M) provided by ϕ

ρL−→ cosϕ Id + sinϕ · L. We extend this action to
a multiplicative action on Λ∗(M). Clearly, for a (p, q)-form η ∈ Λp,q(M,L),
we have

ρL(ϕ)η = e
√
−1 (p−q)ϕη. (2.1)

This action is compatible with the weight decomposition of Λ∗(M), and
gives a Hodge decomposition of Λ∗+(M) ([V5]).

Λi+(M) =
⊕
p+q=i

Λp,q+,I(M)

The following result is implied immediately by the standard calculations
from the theory of SU(2)-representations.

Proposition 2.5: Let (M, I, J,K) be a hypercomplex manifold and

Λi+(M) =
⊕
p+q=i

Λp,q+,I(M)

the Hodge decomposition of qD-complex defined above. Then there is a
natural isomorphism

Λp,q+,I(M) ∼= Λp+q,0(M, I). (2.2)

Proof: See [V5].

This isomorphism is compatible with a natural algebraic structure on⊕
p+q=i Λp+q,0(M, I), and with the Dolbeault differentials, in the following

way.

Let (M, I, J,K) be a hypercomplex manifold. We extend

J : Λ1(M)−→ Λ1(M)

to Λ∗(M) by multiplicativity. Recall that

J(Λp,q(M, I)) = Λq,p(M, I),

because I and J anticommute on Λ1(M). Denote by

∂J : Λp,q(M, I)−→ Λp+1,q(M, I)

the operator J ◦ ∂ ◦ J , where ∂ : Λp,q(M, I)−→ Λp,q+1(M, I) is the stan-
dard Dolbeault operator on (M, I), that is, the (0.1)-part of the de Rham
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differential. Since ∂2 = 0, we have ∂2
J = 0. In [V5] it was shown that ∂ and

∂J anticommute:
{∂J , ∂} = 0. (2.3)

Consider the quaternionic Dolbeault complex (Λ∗+(M), d+) constructed
in Subsection 2.2. Using the Hodge decomposition, we can represent this
complex as

Λ0
+,I(M)

d1,0
+,I

����������
d0,1

+,I

��////////

Λ1,0
+,I(M)

d1,0
+,I

���������
d0,1

+,I

��///////
Λ0,1

+,I(M)

d1,0
+,I

���������
d0,1

+,I

��///////

Λ2,0
+,I(M) Λ1,1

+,I(M) Λ0,2
+,I(M)

(2.4)

where d1,0
+,I , d

0,1
+,I are the Hodge components of the quaternionic Dolbeault

differential d+, taken with respect to I.

Theorem 2.6: Under the isomorphism

Λp,q+,I(M) ∼= Λp+q,0(M, I)

constructed in Proposition 2.5, d1,0
+ corresponds to ∂ and d0,1

+ to ∂J :

Λ0
+(M)

d
0,1
+

�����������
d
1,0
+

��/////////
Λ

0,0
I

(M)

∂

�����������
∂J

��/////////

Λ
1,0
+ (M)

d
0,1
+

�����������
d
1,0
+

��/////////
Λ

0,1
+ (M)

d
0,1
+

�����������
d
1,0
+

��/////////
∼= Λ

1,0
I

(M)

∂

�����������
∂J

��/////////
Λ

1,0
I

(M)

∂

�����������
∂J

��/////////

Λ
2,0
+ (M) Λ

1,1
+ (M) Λ

0,2
+ (M) Λ

2,0
I

(M) Λ
2,0
I

(M) Λ
2,0
I

(M)

(2.5)

Proof: See [V5] or [V8]. For another proof Theorem 2.6, please see
Claim 4.2.

3 Quaternionic pseudo-Hermitian structures

Further on in this paper, we shall use some results about diagonalization of
certain (2, 0)-forms associated to quaternionic pseudo-Hermitian structures.
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The results of this section are purely linear-algebraic and elementary. We
follow [V5], [V6] and [AV].

Let (M, I, J,K) be a hypercomplex manifold. A quaternionic pseudo-
Hermitian form on M is a bilinear symmetric real-valued form g which is
SU(2)-invariant. Equivalently, g is quaternionic pseudo-Hermitian if

g(·, ·) = g(I·, I·) = g(J ·, J ·) = g(K·,K·).

If g is in addition positive definite, g is called quaternionic Hermitian.
Notice that a quaternionic Hermitian structure exists, globally, on any hy-
percomplex manifold. Indeed, one could take any Riemannian form, and
average it with SU(2)

As in Subsection 1.1, we can associate three 2-forms ωI , ωJ and ωK with
g,

ωI(·, ·) = g(·, I·), ωJ(·, ·) = g(·, J ·), ωK(·, ·) = g(·,K·).

An easy linear-algebraic calculation shows that Ωg := ωJ +
√
−1 ωK has

Hodge type (2, 0) under I:

Ωg ∈ Λ2,0
I (M).

The involution η −→ J(η) gives a real structure on Λ2,0
I (M). A (2, 0)-form

η is called real if η = J(η). The bundle of real (2, 0)-forms is denoted
Λ2,0
I (M,R). It is easy to see that the form Ωg is real. In [V6], it was shown

that the converse is also true: any real (2, 0)-form η is obtained from a
quaternionic pseudo-Hermitian form, which is determined uniquely from η.

Claim 3.1: Let (M, I, J,K) be a hypercomplex manifold, H the bundle of
quaternionic pseudo-Hermitian forms, and Λ2,0

I (M,R) the bundle of real
(2, 0)-forms. Consider the map H

ν−→ Λ2,0
I (M,R) constructed above,

ν(g) = Ωg. Then ν is an isomorphism, and the inverse map is determined
by g(x, y) = Ωg(x, J(y)), for any x, y ∈ T 1,0

I (M).

Proof: This is Lemma 2.10, [AV].

The standard diagonalization arguments, applied to quaternionic pseu-
do-Hermitian forms, give similar results about real (2, 0)-forms on hyper-
complex manifolds.

Proposition 3.2: Let (M, I, J,K) be a hypercomplex manifold, dimRM =
4n, and η, η′ ∈ Λ2,0

I (M,R) two real (2, 0)-forms. Then, locally around each
point, η and η′ can be diagonalized simultaneously: there exists a frame
ξ1, J(ξ1), ξ2, J(ξ2), ..., ξn, J(ξn) ∈ Λ1,0

I (M), such that

η =
∑
i

αiξi ∧ J(ξi), η′ =
∑
i

βiξi ∧ J(ξi),
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with αi, βi real-valued functions.

Proof: Follows from Claim 3.1 and a standard argument which gives a
simultaneous diagonalization of two pseudo-Hermitian forms.

In a similar spirit, the Gram-Schmidt orthogonalization procedure brings
the following statement.

A real form η ∈ Λ2,0
I (M,R) is called strictly positive, if it satisfies

η(x, J(x)) > 0 for any non-zero vector x ∈ T 1,0
I (M).

Let x1, ..., xn ∈ T 1,0
I (M) be a set of vector fields. The set {xi} is called

orthogonal with respect to η if

η(xi, xj) = η(xi, J(xj)) = 0

whenever i 6= j.

Proposition 3.3: (Gram-Schmidt orthogonalization procedure) Let η ∈
Λ2,0
I (M,R) be a real, strictly positive form on a hypercomplex manifold, and

x1, ..., xn ∈ T 1,0
I (M) a set of vector fields, which are linearly independent

everywhere. Then there exists functions αi,j , i > j, such that the vector
fields

y1 :=x1,

y2 :=x2 + α2,1y1,

y3 :=x3 + α3,2y2 + α3,1y1,

...

yk :=xk +
∑
i<k

αk,iyi

...

are orthogonal.

Proof: Use Claim 3.1 and apply the Gram-Schmidt orthogonalization
to the quaternionic Hermitian form associated with η.

4 Positive, closed (2p, 0)-forms

4.1 The isomorphism Λp+q,0
I (M)

Rp,q−→ Λp,q
+,I(M)

Let (M, I, J,K) be a hypercomplex manifold. In Proposition 2.5, an iso-
morphism ⊕

Λp+q,0I (M) Ψ−→
⊕

Λp,q+,I(M)
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was constructed. As shown in [V5], this isomorphism is multiplicative. It
is uniquely determined by the values it takes on Λ1(M): on Λ1,0

I (M), Ψ is
tautological, and on Λ0,1

I (M), we have Ψ(x) = J(x). This isomorphism has
an explicit construction, which is given as follows.

Claim 4.1: Let (M, I, J,K) be a hypercomplex manifold, and

Rp,q : Λp+q,0I (M)−→ Λp,qI (M)

map a form η ∈ Λp+q,0I (M) to Rp,q(η), which is defined by

Rp,q(η)(x1, ..., xp, y1, ..., yq) := η(x1, ..., xp, Jy1, ..., Jyq)

Then Rp,q is multiplicative, in the following sense:

Rp,q(η1 ∧ η2) =
∑

p1 + p2 = p,
q1 + q2 = q

Rp1,q1(η1) ∧Rp2,q2(η1).

Moreover, Rp,q induces the isomorphism⊕
Λp+q,0I (M)

ψ−→
⊕

Λp,q+,I(M)

constructed above.

Proof: The multiplicativity of Rp,q is clear from its definition. The
isomorphism R is uniquely determined by the values it takes on Λ1(M) and
multiplicativity, hence it coinsides with Rp,q.

This map also agrees with the differentials, and the anticomplex involu-
tion η −→ Jη acting on Λp+q,0I (M).

Claim 4.2: Let (M, I, J,K) be a hypercomplex manifold, and

Rp,q : Λp+q,0I (M)−→ Λp,qI,+(M)

the map constructed in Claim 4.1. Then

(i) Rp,q(Jη) = (−1)pqRq,p(η).

(ii) Rp,q(∂η) = d1,0
+ Rp−1,q(η)

(iii) Rp,q(∂Jη) = d0,1
+ Rp,q−1(η)
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Proof: Claim 4.2 (i) is clear from the definition. Using Leibniz iden-
tity, we find that it suffices to check Claim 4.2 (ii) and (iii) on some set of
multiplicative generators of

⊕
p,q Λp+q,0I (M). For functions, these identities

are clear. For ∂-exact 1-forms, Claim 4.2 (ii) is clear, because ∂2 = 0 and
(d1,0

+ )2 = 0, hence

0 = Rp,q(∂∂f), and d1,0
+ Rp−1,q(∂f) = (d1,0

+ )2f = 0.

For a ∂-exact 1-form η = ∂ψ, with ψ a holomorphic function, Claim 4.2 (iii)
follows from

Rp,q(∂J∂ψ) = −Rp,q(∂∂Jψ) = −Rp,q(∂J∂ψ) = 0.

The functions, together with 1-forms η = ∂ψ, with ψ a holomorphic function,
generate the algebra Λ∗,0I (M) multiplicatively. Now, the Leibniz identity can
be used to prove that Claim 4.2 (ii) and (iii) is true on the whole Λ∗,0I (M).

Please notice that we just gave a proof of Theorem 2.6.

4.2 Strongly positive, weakly positive and real (2p, 0)-forms

The notion of positive (2p, 0)-forms on hypercomplex manifolds was devel-
oped in [AV] and in ongoing collaboration with S. Alesker.

Let η ∈ Λp,qI (M) be a differential form. Since I and J anticommute, J(η)

lies in Λq,pI (M). Clearly, J2

∣∣∣∣Λp,q
I

(M)
= (−1)p+q. For p + q even, J

∣∣∣∣Λp,q
I

(M)
is

an anticomplex involution, that is, a real structure on Λp,qI (M). A form
η ∈ Λ2p,0

I (M) is called real if J(η) = η. We denote the bundle of real
(2p, 0)-forms by Λ2p,0

I (M,R).
For a real (2p, 0)-form,

η (x1, J(x1), x2, J(x2), ...xp, J(xp)) =

= η
(
J(x1), J2(x1), J(x2), J2(x2), ...J(xp), J2(xp)

)
=

= η (x1, J(x1), x2, J(x2), ...xp, J(xp)) , (4.1)

for any x1, ..., xp ∈ T 1,0
I (M). From (4.1), we obtain that the number

η (x1, J(x1), x2, J(x2), ...xp, J(xp))

is always real.

Definition 4.3: Let (M, I, J,K) be a hypercomplex manifold, and η ∈
Λ2p,0
I (M) a real (2p, 0)-form. It is called weakly positive, if

η(x1, J(x1), x2, J(x2), ..., xp, J(xp)) > 0,
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for any x1, ..., xp ∈ T 1,0
I (M).

Let dimRM = 4n. The complex line bundle Λ2n,0(M) is equipped with a
real structure, hence it is a complexification of a real line bundle Λ2n,0

I (M,R).
This real line bundle is trivial topologically. To see this, take a quaternionic
Hermitian form q on M (such a form always exists: see Section 3). Let
Ω := ωJ +

√
−1 ωK be the corresponding (2, 0)-form. Since JωJ = ωJ ,

J(ωK) = −ωK , the form Ω is real. Then, Ωn is a nowhere degenerate, real
section which trivializes Λ2n,0

I (M,R).
The pairing

Λ2p,0
I (M,R)× Λ2n−2p,0

I (M,R)−→ Λ2n,0
R (M,R)

is nowhere degenerate. Denote by Cw ⊂ Λ2∗,0
I (M,R) the cone of weakly

positive forms, and Cs ⊂ Λ2∗,0
I (M,R) the dual cone. This cone is called the

cone of strongly positive forms.
This notion is well known in complex geometry; a complex analogue of

the following claim is often used as a definition of strongly positive cone,
and then the above definition becomes a (trivial) theorem.

Claim 4.4: Let M be a hypercomplex manifold. The cone Cs ⊂ Λ2∗,0
I (M,R)

of strongly positive real (2p, 0)-forms is multiplicatively generated by prod-
ucts of forms ξ ∧ J(ξ), for ξ ∈ Λ1,0

I (M).

Proof: A form η is weakly positive if

〈η, ξ1 ∧ J(ξ1) ∧ ξ2 ∧ J(ξ2) ∧ ... ∧ J(ξp)〉 > 0

for any ξ1, ..., ξp ∈ Λ1,0
I (M). Therefore, weakly positive cone is dual to the

cone generated by such products.

The strong positivity of a form implies its weak positivity. Unlike the
complex case, in the quaternionic case this is not immediate from its defini-
tion.

For p = n, this implication can be seen as follows. For any ξ1, ..., ξp ∈
Λ1,0
I (M), we have

ξ1 ∧ J(ξ1) ∧ ξ2 ∧ J(ξ2) ∧ ... ∧ J(ξn) =
1
n!

Ωn,

where Ω =
∑
ξi∧J(ξ1) is a (2, 0)-form, which is obtained from a quaternionic

Hermitian form q as in Claim 3.1. The form Ωn is positive, because for
{〈xi, J(xi)} pairwise orthogonal with respect to q, we have

Ωn(x1, J(x1), ..., xn, J(xn)) =
∏
i

q(xi, xi),
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and for {xi} non-orthogonal, this set can be orthogonalized, without chang-
ing η(x1, J(x1), ..., xn, J(xn)), as shown in Proposition 3.3.

This gives
1
n!

Ωn(x1, J(x1), ..., xn, J(xn) > 0 (4.2)

For p < n, we restrict η to a quaternionic subspace generated by x1, ...xp,
and find that the positivity of

ξ1 ∧ J(ξ1) ∧ ξ2 ∧ J(ξ2) ∧ ... ∧ J(ξp) (x1, J(x1), x2, J(x2), ...xp, J(xp))

follows from (4.2).

Recall that a real (p, p)-form ρ on a complex manifold X is called weakly
positive if

(−
√
−1 )pρ(x1, x1, ...xp, xp) > 0,

for any x1, ...xp ∈ T 1,0(X).

Claim 4.5: Let (M, I, J,K) be a hypercomplex manifold, and

Rp,p : Λ2p,0
I (M)−→ Λp,pI (M)

the map constructed in Subsection 4.1. Consider a (2p, 0)-form
η ∈ Λ2p,0

I (M). Then

(i) η is real if and only if (
√
−1 )pRp,p(η) is real (in the usual sense).

(ii) η is weakly positive if and only if (
√
−1 )pRp,p(η) is a weakly positive

(p, p)-form.

Proof: Claim 4.5 (i) is clear from the definition. Indeed,

Rp,p(η)(x1, x1, ..., xp, xp) = η(x1, J(x1), ..., xp, J(xp)).

It is easy to see that a (p, p)-form ρ is real if and only if (
√
−1 )pρ satisfies

ρ(x1, x1, ..., xp, xp) ∈ R.
Claim 4.5 (ii) is also clear. Indeed,

η (x1, J(x1), x2, J(x2), ...xp, J(xp)) =

= (−1)p(p−1)η (x1, x2, ..., xp, J(x1), J(x2), ..., J(xp)) .

Therefore,

Rp,p(η)(x1, x1, ..., xp, xp)Rp,p(η)(x1, ..., xp, x1, ..., xp) =
= η (x1, ..., xp, J(x1), ..., J(xp)) = η (x1, J(x1), x2, J(x2), ...xp, J(xp)) (4.3)

Then, (4.3) is non-negative if and only if η is weakly positive, and this is
equivalent to (

√
−1)pRp,p(η) being weakly positive, by definition of positive

(p, p)-forms.
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4.3 The map Vp,q : Λp+q,0
I (M)−→ Λn+p,n+q

I (M)
on SL(n, H)-manifolds

Let (M, I, J,K) be a hypercomplex manifold, dimRM = 4n, and

Rp,q : Λp+q,0I (M)−→ Λp,qI,+(M)

the isomorphism defined in Subsection 4.1. Consider the projection

Λp,qI (M)−→ Λp,qI,+(M), (4.4)

and let
R : Λp,qI (M)−→ Λp+q,0I (M)

denote the composition of (4.4) and R−1
p,q .

Lemma 4.6: In these assumptions,

R(ξ1 ∧ ...∧ ξp ∧ ξp+1 ∧ ...∧ ξp+q) = ξ1...∧ ξp ∧ J(ξp+1)∧ ...∧ J(ξp+q), (4.5)

for any ξ1, ..., ξp+q ∈ Λ1,0
I (M).

Proof: Denote by R′ the map defined by the formula (4.5). From the
definition of the SU(2)-action on Λ∗(M) it is apparent that R′(η) belongs to
the same SU(2)-representation as η. Since R′(η) lies in Λp+q,0I (M), it belongs
to Λ∗+(M). Therefore, R′ vanishes on the kernel of (4.4). By definition, R
is the unique map Λp,qI (M)−→ Λp+q,0I (M) vanishing on the kernel of (4.4)
and satisfying

R ◦ Rp,q = Id
Λp+q,0

I (M)
.

To prove that R′ = R it suffices now to check that R(Rp,q(η)) = η, but this
is obvious from the definition.

Remark 4.7: The formula (4.5) could be used as a definition of R.

The map R is compatible with Dolbeault differentials, in the following
sense.

Lemma 4.8: Let (M, I, J,K) be a hypercomplex manifold, and

R : Λp,qI (M)−→ Λp+q,0I (M)

the map defined above. Then

R(∂η) = ∂R(η), and R(∂η) = ∂JR(η). (4.6)

Proof: Lemma 4.8 follows immediately from Claim 4.2 and R ◦ Rp,q =
Id

Λp+q,0
I (M)

, which is a part of the definition of R.
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Let ΦI be a nowhere degenerate holomorphic section of Λ2n,0
I (M). As-

sume that ΦI is real, that is, J(ΦI) = ΦI , and positive.
Existence of such a section is highly non-trivial. When M is hyperkähler,

we could take the top power of the holomorphic symplectic form Ω = ωJ +√
−1 ωK . For a general hypercomplex M , such a form ΦI is preserved by

the Obata connection, and reduces the holonomy of Obata connection to a
subgroup of SL(n,H). Such manifolds were studied in [V7] and [BDV].

A manifold with a nowhere degenerate, real, positive form ΦI ∈ Λ2n,0
I (M)

is called an SL(n,H)-manifold.

Remark 4.9: Let (M, I, J,K,ΦI) be an SL(n,H)-manifold. For any section
η ∈ Λ2n,0

I (M), positivity of η in the quaternionic sense is equivalent to
positivity of η ∧ ΦI ∈ Λ2n,2n

I (M), in the usual sense.

Define the map

Vp,q : Λp+q,0I (M)−→ Λn+p,n+q
I (M)

by the relation
Vp,q(η) ∧ α = η ∧R(α) ∧ ΦI , (4.7)

for any test form α ∈ Λn−p,n−qI (M).

The map Vp,p is especially remarkable, because it maps closed, positive
(2p, 0)-forms to closed, positive (n+ p, n+ p)-forms, as the following propo-
sition implies.

Proposition 4.10: Let (M, I, J,K,ΦI) be an SL(n,H)-manifold, and

Vp,q : Λp+q,0I (M)−→ Λ4n−p,4n−q
I (M)

be the map defined above. Then

(i) Vp,q(η) = Rp,q(η) ∧ V0,0(1).

(ii) The map Vp,q is injective, for all p, q.

(iii) (
√
−1)(n−p)2Vp,p(η) is real if and only η ∈ Λ2p,0

I (M) is real, and weakly
positive if and only if η is weakly positive.

(iv) Vp,q(∂η) = ∂Vp−1,q(η), and Vp,q(∂Jη) = ∂Vp,q−1(η).

(v) V0,0(1) = λRn,n(ΦI), where λ is a positive rational number, depending
only on the dimension n.
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Proof: The map R : Λp,qI (M)−→ Λp+q,0I (M) is by construction multi-
plicative, and satisfies

R(Rp,q(η)) = η, (4.8)

for all η ∈ Λp+q,0I (M). This gives

Vp,q(η)∧α = η∧R(α)∧ΦI = R(Rp,q(η)∧α)∧ΦI = V0,0(1)∧Rp,q(η)∧α (4.9)

(to obtain the last equation, we take the test-form α′ := Rp,q(η) ∧ α and
apply (4.7)). Since α is arbitrary, (4.9) gives

Vp,q(η) = V0,0(1) ∧Rp,q(η).

This proves Proposition 4.10 (i).
Injectivity of Vp,q is clear, because for any η ∈ Λp+q,0I (M) there exists χ

such that η ∧ χ ∧ ΦI 6= 0. Using (4.8), we find that

Vp,q(η) ∧Rn−p,n−q(χ) = η ∧R(Rn−p,n−q(χ)) ∧ ΦI = η ∧ χ ∧ ΦI 6= 0.

We proved Proposition 4.10 (ii).
From Claim 4.2 (i), we obtain that R(α) = (−1)pqR(α), for any α ∈

Λp,qI (M). Then
Vp,q(Jη) = (−1)(n−p)(n−q)Vq,p(η)

as follows from (4.7). Then, (
√
−1 )pVp,p(η) is real if Jη = η. The “only if”

part follows from injectivity of Vp,p.
To check the weak positivity of (

√
−1 )pVp,p, take α = ξ1 ∧ ξ1 ∧ ... ∧

ξn−p ∧ ξn−p, with ξ1, ..., ξn−p ∈ Λ1,0
I (M). Then (−

√
−1 )n−pα is positive.

Such forms generate the strongly positive cone. Then R(α) = ξ1 ∧ J(ξ1) ∧
... ∧ ξn−p ∧ J(ξn−p) is strongly positive by definition, and, moreover, R(α),
for all such α, generate the strongly positive cone.

The weak positivity of (−
√
−1 )n−pVp,q(η) is equivalent to

(−
√
−1 )n−pVp,q(η) ∧ α > 0,

and the weak positivity of η is equivalent to

η ∧R(α) ∧ ΦI > 0.

These two inequalities are equivalent by the formula (4.7) which is a defini-
tion of Vp,q(η). We proved Proposition 4.10 (iii).

Proposition 4.10 (iv) follows from the Stokes’ formula∫
M
∂α ∧ β = (−1)degα

∫
M
α ∧ ∂β,

where α or β have compact support.
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Take an (n− q, n− p)-form α with compact support. By Lemma 4.8,∫
M
Vp,q(∂η) ∧ α =

∫
M
∂η ∧R(α) ∧ ΦI = (−1)p+q−1

∫
M
η ∧ ∂R(α) ∧ ΦI =

=(−1)p+q−1

∫
M
η ∧R(∂α) ∧ ΦI =

=(−1)p+q−1

∫
M
Vp−1,q(η) ∧ ∂α =

=
∫
M
∂Vp−1,q(η) ∧ α.

Applying complex conjugation to both sides of Vp,q(∂η) = ∂Vp−1,q(η) and
using

Vp,q(Jη) = (−1)(n−p)(n−q)Vq,p(η)

and J∂η = ∂JJ(η), we obtain the second equation of Proposition 4.10 (iv).
Proposition 4.10 (v) follows from a direct (but tedious) linear-algebraic

calculation. The bundle Λn,nI,+(M) is 1-dimensional, by Proposition 2.5. The
form V0,0(1) lies in Λn,nI,+(M). Indeed,

V0,0(1) ∧ α = R(α) ∧ ΦI ,

and therefore α−→V0,0(1) ∧ α vanishes on all forms of weight less than
2n. Therefore, V0,0(1) has weight 2n, hence belongs to Λn,nI,+(M). The
form Rn,n(ΦI) is a nowhere degenerate section of Λn,nI,+(M), by construc-
tion; therefore, V0,0(1) is proportional to Rn,n(ΦI):

V0,0(1) = λRn,n(ΦI),

where λ is a smooth function on M . To prove Proposition 4.10 (v), we
need to show that λ is a positive rational number depending only from n.
Since (

√
−1 )nRn,n(ΦI) and (

√
−1 )nV0,0(1) are both real and positive, by

Proposition 4.10 (iii) and Claim 4.5, λ is real and positive. Taking α = ΦI

and aplying (4.7), we obtain

1∧ΦI∧ΦI = R(Rn,n(ΦI))∧ΦI = V0,0(1)∧Rn,n(ΦI) = λRn,n(ΦI))∧Rn,n(ΦI)

This gives an expression for λ:

λ =
ΦI ∧ ΦI

Rn,n(ΦI) ∧Rn,n(ΦI)
.

From this formula, it is clear that λ is independent from the choice of ΦI .
Therefore, we may assume that ΦI is associated with a quaternionic Hermi-
tian form q as above: ΦI = Ωn, where Ω = ωJ +

√
−1 ωK , and ωJ , ωK are

the Hermitian skew-linear forms of (M,J) and (M,K). From the definition
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of Rp,q, it is clear that R1,1(Ω) = ωI . Using multiplicativity of Rp,p, we
obtain

Rn,n(Ωn) = Π+(R1,1(Ω)n) = Π+(ωnI ),

where Π+ is the SU(2)-invariant projection to the Λ∗+(M)-part. Since the
metric on Λ∗(M) is SU(2)-invariant, the weight decomposition of Λ∗(M) is
orthogonal; therefore, Π+ is an orthogonal projection to Λ∗+(M).

Consider the algebra A∗ = ⊕A2i generated by ωI , ωJ , and ωK . In [V1],
this algebra was computed explicitly. It was shown, that, up to the middle
degree, A∗ is a symmetric algebra with generators ωI , ωJ , ωK . The algebra
A∗ has Hodge bigrading Ak =

⊕
p+q=k

Ap,q, and its Ap,p-part is generated by

the forms
ωiI ∧ (Ω ∧ Ω)j ,

i, j = 0, 1, 2, ... From the Clebsch-Gordan formula, we obtain that A2i
+ :=

Λ2i
+(M) ∩ A2i, for i 6 n, is an orthogonal complement to Q(A2i−4), where

Q(η) = η ∧ (ω2
I + ω2

J + ω2
K). The space An,n+ = kerQ∗

∣∣∣
An,n is 1-dimensional,

as we have shown above, and generated by Rn,n(Ωn). Clearly,

Q∗
(
ωiI ∧ (Ω ∧ Ω)j

)
= ωi−2

I ∧ (Ω ∧ Ω)j + ωiI ∧ (Ω ∧ Ω)j−2.

Therefore, kerQ∗
∣∣∣
A

n,n
is generated by

Ξ := ωnI − ωn−2
I ∧ (Ω∧Ω) + ωn−4

I ∧ (Ω∧Ω)2 − ωn−6
I ∧ (Ω∧Ω)3 + ... (4.10)

Since Rn,n(Ωn) is equal to the projection of ωnI to kerQ∗, this gives

Rn,n(Ωn) = Ξ ·
(ωnI ,Ξ)
(Ξ,Ξ)

= γΞ,

where γ is a rational coefficient which can be expressed through binomial
coefficients using (4.10). A similar calculation can be used to express

λ =
ΦI ∧ ΦI

Rn,n(ΦI)) ∧Rn,n(ΦI)
=

Ωn ∧ Ωn

γ2Ξ ∧ Ξ

through a combinatorial expression which would take half a page.

5 Sibony’s Lemma for positive (2p, 0)-forms

5.1 ωq-positive (1,1)-forms

Recall that a real (p, p)-form η on a complex manifold is called weakly
positive if for any complex subspace V ⊂ TcM , dimC V = p, the restriction
ρ
∣∣∣
V

is a non-negative volume form. Equivalently, this means that

(
√
−1 )pρ(x1, x1, x2, x2, ...xp, xp) > 0,
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for any vectors x1, ...xp ∈ T 1,0
x M . A form is called strongly positive if it

can be expressed as a sum

η = (
√
−1 )p

∑
i1,...ip

αi1,...ipξi1 ∧ ξi1 ∧ ... ∧ ξip ∧ ξip ,

running over some set of p-tuples ξi1 , ξi2 , ..., ξip ∈ Λ1,0(M), with αi1,...ip real
and non-negative functions on M .

The strongly positive and the weakly positive forms form closed, convex
cones in the space Λp,p(M,R) of real (p, p)-forms. These two cones are dual
with respect to the Poincare pairing

Λp,p(M,R)× Λn−p,n−p(M,R)−→ Λn,n(M,R)

where n = dimCM . For (1,1)-forms and (n − 1, n − 1)-forms, the strong
positivity is equivalent to weak positivity.

Definition 5.1: Let (M,ω) be a Kähler manifold. A real (1,1)-form η ∈
Λ1,1(M,R) is called ωq-positive if ωq−1 ∧ η is a weakly positive form.

This notion was studied in [V9], in connection with plurisubharmonic
functions on calibrated manifolds ([HL1], [HL2]). In [V9], a characterization
of ωq-positivity in terms of the eigenvalues was obtained. At each point
x ∈M , we can find an orthonormal basis ξ1, ...ξn ∈ Λ1,0

x (M), such that

η = −
√
−1

∑
i

αiξi ∧ ξi.

The numbers αi are called the eigenvalues of η at x.

The following theorem was proven in [V9].

Theorem 5.2: Let (M,ω) be a Kähler manifold, and η ∈ Λ1,1(M,R) a real
(1,1)-form. Let α1(x), α2(x), ..., αn(x) denote the eigenvalues of η at x ∈M .
Then the following conditions are equivalent.

(i) η is ωq-positive

(ii) η ∧ ωq−1 is weakly positive

(ii) η ∧ ωq−1 is strongly positive

(iv) The sum of any q eigenvalues of η is positive, for any x ∈M :

q∑
k=1

αik(x) > 0, (5.1)

for any q-tuple {i1, ...iq} ⊂ {1, 2, ..., n}.
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Proof: This is [V9], Theorem 2.4. In [V9], this statement was stated
for forms η = ddcϕ, but the proof is purely linear-algebraic, and can be
extended to arbitrary (1,1)-forms.

Definition 5.3: A form η is called strictly ωq-positive, if η − hω is ωq-
positive, for some continuous, nowhere vanishing, positive function h on
M .

5.2 Positive (2p, 0)-forms on hypercomplex manifolds

Let (M, I, J,K) be a hypercomplex manifold. In Subsection 4.2, a notion of
positivity for (2p, 0)-forms on M was defined. We say that a real (2, 0)-form
η is Ωq-positive if η∧Ωq−1 is positive, and strictly positive if η∧Ωq−1−hΩq

is positive, for some continuous, nowhere vanishing, positive function h on
M .

As shown in Claim 3.1, quaternionic pseudo-Hermitian forms are in (1,1)-
correspondence with real (2, 0)-forms. This allows one to diagonalize a given
(2, 0)-form η locally in an orthonormal frame (Proposition 3.2).

Given a real (2, 0)-form η on a hyperkähler manifold, at any point x ∈M
there exists an orthonormal frame ξ1, Jξ1, ..., ξn, Jξn ∈ Λ1,0

I (M), such that

η
∣∣∣
x

is written as

η
∣∣∣
x

=
∑
i

αiξ1 ∧ Jξ1,

with αi being real-valued functions. The condition of Ωq-positivity is equiv-
alent to the inequality

q∑
k=1

αik(x) > 0, (5.2)

just like in Theorem 5.2.
Given a (1,1)-form η ∈ Λ1,1

I (M), consider a (2, 0)-form R(η) ∈ Λ2,0
I (M),

R(η)(x, y) := η(x, J(y)).

Clearly, R(η) is real and positive if η is real and positive. It is easy to
see that R vanishes on SU(2)-invariant forms, and induces an isomorphism
Λ1,1

+,I(M)−→ Λ2,0
I (M) described in Claim 4.1 (see Lemma 4.6 for a detailed

argument).

Lemma 5.4: Let M be a hyperkähler manifold, dimRM = 4n, and η ∈
Λ1,1(M,R) a real (1, 1)-form, which is ω2n−2p-positive. Then R(η) is Ωn−p-
positive.
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Proof: Denote by η′ the (1, 1)-form η − ηinv, where ηinv = 1
2(η + J(η))

denotes the SU(2)-invariant part of η. Clearly,

η′ =
1
2

(η − J(η)).

Since −J(η) has the same eigenvalues as η, by Theorem 5.2 (iv) it is also
ω2n−2p-positive. Then η′ is ω2n−2p-positive, too.

Using the orthonormal frame as in the proof of (5.2), we find that η′ can
be written as

η′ = −
√
−1

∑
i

αiξi ∧ ξi,

with ξi an orthonormal basis in Λ1,0
I (M) satisfying

J(ξ2i−1) = ξ2i, J(ξ2i) = −ξ2i−1

(see Proposition 3.2). Since J(η′) = −η′, the eigenvalues of η′ occur in pairs:

α2i−1 = α2i. (5.3)

Renumbering the basis, we may assume that α1 6 α2 6 ... 6 α2n. Now,
ω2n−2p-positivity of η′ is equivalent to

α1 + α2 + ...+ α2n−2p > 0. (5.4)

By definition,
R(η′) = 2

∑
i

α2iξ2i−1 ∧ ξ2i,

hence (5.2) implies that Ωn−p-positivity of R(η′) is equivalent to α2 + α4 +
...+ α2n−2p > 0. From (5.3), this is equivalent to (5.4). We proved Lemma
5.4.

5.3 ωq-positive forms in a neighbourhood of a subvariety

Now we can prove the hypercomplex version of Sibony’s lemma.

Theorem 5.5: Let M be a hyperkähler manifold, Z ⊂ (M, I) a compact
complex subvariety, codimC Z > 3, and η ∈ Λ2,0(M\Z, I) a real and positive
form, which satisfies ∂η = 0. Then η is locally integrable everywhere in M .

Proof: We adapt to hypercomplex situation the coordinate-free proof of
the complex-analytic version of Sibony’s lemma, obtained in [V9]. In [V9],
the following result was proven.

Proposition 5.6: Let M be a Kähler manifold, and Z ⊂ M a complex
subvariety, dimC Z < p. Then there exists an open neighbourhood U of Z,
and a sequence {ρi} of ωp-positive, exact, smooth (1, 1)-forms on U satisfying
the following.
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(i) For any open subset V ⊂ U , with the closure V compact and not inter-
secting Z, the restriction ρi

∣∣∣
V

stabilizes as i−→∞. Moreover, ρi
∣∣∣
V

is
strictly ωp-positive for i� 0.

(ii) For all i, ρi = 0 in some neighbourhood of Z.

(iii) The limit ρ = lim ρi is a strictly ωp-positive current on U .

(iv) The forms ρi can be written as ρi = ddcϕi, where ϕi are smooth func-
tions on U . On any compact set not intersecting Z, the sequence {ϕi}
stabilizes as i−→∞.

Proof: This is [V9], Proposition 5.3.

We apply Proposition 5.6 to prove Theorem 5.5. Let ϕi be the sequence
of functions defined in a neighbourhood U ⊃ Z and satisfying conditions of
Proposition 5.6. From Lemma 4.8, we obtain

R(∂∂ϕi) = ∂J(∂ϕi) (5.5)

Therefore, R(ρi) is ∂-closed. By Lemma 5.4, this form is also Ωn−1-positive.
Since η is positive, to show that η is locally integrable on an open set U ⊂M ,
it suffices to prove that the integral∫

D
η ∧ Ωn−1 ∧ Ωn (5.6)

is universally bounded, for any compact subset D ⊂ U\Z. Indeed,∫
D
η ∧ Ωn−1 ∧ Ωn =

∑
i

∫
D
αi VolM

where {αi} are the eigenvalues of η considered as functions on M . In (5.6),
we may replace Ωn−1 by any strictly positive real (n − 1)-form, and if this
integral us bounded, (5.6) is also bounded. Therefore, Theorem 5.5 would
follow from a universal bound on∫

D
η ∧ ρ ∧ Ωn−2 ∧ Ωn

,

where ρ = limR(ρi) is the form constructed in Proposition 5.6 (it is smooth
outside of Z, because {ρi} stabilizes). Now, a universal bound on

∫
D η∧ ρ∧

Ωn−2 ∧ Ωn would obviously follow from a universal bound on the integral∫
D
η ∧R(ρi) ∧ Ωn−2 ∧ Ωn;

this integral is bounded by∫
U
η ∧R(ρi) ∧ Ωn−2 ∧ Ωn

,
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because the forms η and R(ρi) ∧ Ωn−2 are positive.1

The last integral can be expressed by Stokes’ theorem as∫
U
η ∧R(ρi) ∧ Ωn−2 ∧ Ωn =

∫
∂U
η ∧ J(ϕi) ∧ Ωn−2 ∧ Ωn (5.7)

(see (5.5)). However, the integral
∫
∂U η ∧ J(ϕi) ∧ Ωn−2 ∧ Ωn stabilizes as

i−→∞, because ϕi stabilizes in a neighbourhood of ∂U . This shows that
(5.6) is universally bounded. We proved Theorem 5.5.

6 Skoda-El Mir theorem for hyperkähler mani-
folds

We are going to prove a hypercomplex analogue of the classical Skoda-El
Mir theorem ([E], [Sk], [Sib], [D]).

Definition 6.1: Let M be a connected complex manifold, and Z ⊂ M a
closed subset. Assume that there exists a nonconstant plurisubharmonic
function ϕ : M −→ [−∞,∞[, such that Z ⊂ ϕ−1(−∞). Then Z is called
pluripolar.

Skoda-El Mir theorem is a result about extending a closed positive cur-
rent over a pluripolar set Z.

Theorem 6.2: ([E], [Sk], [Sib], [D]) Let X be a complex manifold, and Z
a closed pluripolar set in X. Consider a closed positive current Θ on X\Z
which is locally integrable around Z. Then the trivial extension of Θ to X
is closed on X.

The hypercomplex analogue of this theorem goes as follows.

Theorem 6.3: Let M be a SL(n,H)-manifold, Z ⊂ (M, I) a pluripolar set,
and η ∈ Λ2p,0(M\Z, I) a form satisfying the following properties.

(i) η = J(η) (reality)

(ii) η(x1, J(x1), x2, J(x2), ..., xp, J(xp)) > 0 (weak positivity)

(iii) ∂η = 0 (closedness).

Assume that η is integrable around each point z ∈ Z. Then the trivial
extension of η to M is a ∂-closed (2p, 0)-current.

1The product η ∧R(ρi)∧Ωn−2 is well defined on the whole U , because R(ρi) vanishes
in a neighbourhood of Z.
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Proof: To prove Theorem 6.3, we could repeat the argument proving
the Skoda-El Mir theorem in the hypercomplex setting. However, it is much
easier to deduce Theorem 6.3 from the classical Skoda-El Mir. Consider the
(p, p)-form Rp,p(η) ∈ Λp,pI (M) obtained as

Rp,p(η)(x1, y1, ..., xp, yp) = η(x1, J(y1), ..., xp, J(yp)).

where xi, yi ∈ T 1,0(M) (see Subsection 4.1).
From Proposition 4.10, it follows that the (n+ p, n+ p)-form Rp,p(Ωn)∧

Rp,p(η) is positive in the usual sense if and only if η is positive in the
quaternionic sense, and closed if and only if ∂η = 0. Now, η is closed and
positive on M\Z, hence Rp,p(Ωn) ∧ Rp,p(η) is closed and positive on M\Z
(in the usual sense). Applying the Skoda-El Mir theorem, we obtain that a
trivial extension of Rp,p(Ωn)∧Rp,p(η) is closed on M . Applying Proposition
4.10 again, we find that the trivial extension of η toM is ∂-closed. We proved
Theorem 6.3.

Acknowledgements: This article appeared as a byproduct of a collab-
oration with Semyon Alesker on quaternionic Monge-Ampere equation.
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