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Abstract We study the a priori semimeasure of sets of Pθ -random infinite sequences,
where Pθ is a family of probability distributions depending on a real parameter θ .
In the case when for a computable probability distribution Pθ an effectively strictly
consistent estimator exists, we show that Levin’s a priory semimeasure of the set of
all Pθ -random sequences is positive if and only if the parameter θ is a computable
real number. We show that the a priory semimeasure of the set

⋃
θ Iθ , where Iθ is

the set of all Pθ -random sequences and the union is taken over all algorithmically
non-random θ , is positive.

Keywords Martin-Löf random sequences · A priory semimeasure · Probabilistic
machines · Bernoully sequences · Parametric families of probability distributions ·
Algorithmic information theory · Turing degrees

1 Introduction

We use algorithmic randomness theory to analyze “the size” of sets of infinite se-
quences random with respect to parametric families of probability distributions. We
use Levin’s [16] a priory lower semicomputable semimeasure as the main tool for
this analysis.

Let a parametric family of probability distributions Pθ , where θ is a real number,
be given such that an effectively strictly consistent estimator exists for this family. The
Bernoulli family with a real parameter θ is an example of such family. Theorem 1
shows that Levin’s a priory semimeasure of the set of all Pθ -random sequences is
positive if and only if the parameter value θ is a computable real number.
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In this way, the a priory semimeasure of the set of all Pθ -random sequences is zero
for non-computable θ . As follows from Theorem 2 the set of Pθ -random sequences
have positive a priory semimeasure if these θ form a set of sequences Martin-Löf
random with respect to some computable prior.

We give in Appendix the simple proof of our previous result formulated in The-
orem 3 which says that Levin’s a priory semimeasure of the set of all infinite binary
sequences non-equivalent by Turing to Martin-Löf random sequences is positive. In
particular, these sequences are non-random with respect to each computable proba-
bility distribution.

We use this result to prove our main result—Theorem 4. This theorem shows that a
probabilistic machine can be constructed, which with probability close to one outputs
a random θ -Bernoulli sequence such that the parameter θ is not random with respect
to each computable probability distribution. This result can be interpreted such that
the Bayesian statistical approach is insufficient to cover all possible “meaningful”
cases for θ -random sequences.

This paper is an extended version of the conference paper [15].

2 Preliminaries

Let � be the set of all finite binary sequences, � be the empty sequence, and � be
the set of all infinite binary sequences. We write x ⊆ y if a sequence y is an extension
of a sequence x, l(x) is the length of x. For any ω ∈ �, ωn = ω1 · · ·ωn. A real-valued
function P(x), where x ∈ �, is called semimeasure if

P(�) ≤ 1,

P (x0) + P(x1) ≤ P(x)
(1)

for all x, and the function P is semicomputable from below; this means that the set
{(r, x) : r < P (x)}, where r is a rational number, is recursively enumerable. A defin-
ition of upper semicomputability is analogous.

Solomonoff [11] proposed ideas for defining the a priori probability distribution
on the basis of the general theory of algorithms. Levin [3, 16] gave a precise form
of Solomonoff’s ideas in a concept of a maximal semimeasure semicomputable from
below (see also Li and Vitányi [7], Sect. 4.5, Shen et al. [10]). Levin proved that there
exists a maximal to within a multiplicative positive constant factor semimeasure M

semicomputable from below, i.e. such that for every semimeasure P semicomputable
from below a positive constant c exists such that the inequality

cM(x) ≥ P(x) (2)

holds for all x. The semimeasure M is called the a priory or universal semimeasure.
For any semimeasure Q, its support set EQ is a set of all infinite sequences ω such

that Q(ωn) > 0 for all n, i.e., EQ = ⋃
Q(x)>0 �x .

A function P is a measure if (1) holds, where both inequality signs ≤ are replaced
on =. Any function P satisfying (1) (with equalities) can be extended on all Borel
subsets of � if we define P(�x) = P(x) in �, where x ∈ � and �x = {ω ∈ � :
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x ⊆ ω}; after that, we use the standard method for extending P to all Borel subsets
of �. By simple set in � we mean a union of intervals �x from a finite set.

A measure P is computable if it is, at one time, lower and upper semicomputable.
For technical reasons, for any semimeasure P , we consider the maximal measure

P̄ such that P̄ ≤ P . This measure satisfies

P̄ (x) = inf
n

∑

l(y)=n,x⊆y

P (y).

In general, the measure P̄ is non-computable (and it is not a probability measure). By
(2), for each lower semicomputable semimeasure P , the inequality cM̄(A) ≥ P̄ (A)

holds for every Borel set A, where c is a positive constant.
In the manner of Levin’s papers [4–6, 16] (see also [14]), we consider com-

binations of probabilistic and deterministic processes as the most general class of
processes for generating data. With any probabilistic process some computable prob-
ability distribution can be assigned. Any deterministic process is realized by means
of an algorithm. Algorithmic processes transform sequences generated by probabilis-
tic processes into new sequences. More precise, a probabilistic computer is a pair
(P,F ), where P is a computable probability distribution, and F is a Turing machine
supplied with an additional input tape. In the process of computation this machine
reads on this tape a sequence ω distributed according to P and produces a sequence
ω′ = F(ω) (a correct definition see in [4, 7, 10, 14]). So, we can compute the proba-
bility

Q(x) = P {ω ∈ � : x ⊆ F(ω)}
that the result F(ω) of the computation begins with a finite sequence x. It is easy to
see that Q(x) is a semimeasure semicomputable from below.

Generally, the semimeasure Q can not be a probability distribution on �, since
F(ω) may be finite for some infinite ω.

The converse result is proved in Zvonkin and Levin [16]: for every semimeasure
Q(x) semicomputable from below a probabilistic computer (L,F ) exists such that

Q(x) = L{ω|x ⊆ F(ω)},
for all x, where L(x) = 2−l(x) is the uniform probability distribution on the set of all
binary sequences.

Analogously, for any Borel set A ⊆ � consisting of infinite sequences, we con-
sider the probability

Q(A) = L{α ∈ � : F(α) ∈ A} (3)

of generating a sequence ω ∈ A by means of a probabilistic computer F . Obviously,
we have cM̄(A) ≥ Q(A) for all such A, where c is a positive constant.

Therefore, by (2) and (3) M(x) and M̄(A) define universal upper bounds of the
probability of generating x and ω ∈ A by probabilistic computers.

We distinguish between subsets of � of M̄-measure 0 and subsets of positive
measure M̄ . If M̄(A) = 0 then the probability of generating a sequence ω ∈ A by
means of any probabilistic computer is equal to 0.
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The simplest example of a set of M̄-measure 0 is A = {ω}, where ω is a non-
computable sequence. Indeed, if M̄{ω} > 0 then there exist a rational r > 0 such that
M(ωn) > r for all n. Obviously, there are only finite number of uncomparable strings
x such that M(x) > r . Then there exists an k such that ωk ⊆ x and M(x) > r imply
x ⊆ ω. We can compute each bit of ω by enumerating all such x.

The sets of M̄-measure 0 were described by Levin [4, 5] in terms of quantity of
information.

We refer readers to Li and Vitányi [7] and to Shen et al. [10] for the theory of
algorithmic randomness. We use the definition of a random sequence in terms of
universal probability. Let P be some computable measure in �. The deficiency of
randomness of a sequence ω ∈ � with respect to P is defined as

d(ω|P) = sup
n

M(ωn)

P (ωn)
, (4)

where ωn = ω1ω2 · · ·ωn. This definition leads to the same class of random sequences
as the original Martin-Löf [8] definition. Let RP be the set of all infinite binary se-
quences random with respect to a measure P

RP = {ω ∈ � : d(ω|P) < ∞}. (5)

We also consider parametric families of probability distributions Pθ(x), where θ is a
real number; we suppose that θ ∈ [0,1]. An example of such a family is the Bernoulli
family Bθ(x) = θk(1 − θ)n−k , where n is the length of x and k is the number of ones
in it.

We associate with a binary sequence θ1θ2 · · · a real number with the binary ex-
pansion 0.θ1θ2 · · ·. When the sequence θ1θ2 · · · is computable or random with respect
to some measure we say that the number 0.θ1θ2 · · · is computable or random with
respect to the corresponding measure in [0,1].

We consider probability distributions Pθ computable with respect to a parameter θ .
Informally, this means that there exists an algorithm enumerating all triples (x, r1, r2),
where x ∈ � and r1, r2 are rational numbers, such that r1 < Pθ(x) < r2. This algo-
rithm uses an infinite sequence θ as an additional input; if some triple (x, r1, r2) is
enumerated by this algorithm then only a finite initial fragment of θ was used in the
process of computation (for correct definition, see also Shen et al. [10] and Vovk and
V’yugin [12]).

Analogously, we consider parametric lower semicomputable semimeasures. It can
be proved that there exist a universal parametric lower semicomputable semimeasure
Mθ . This means that for each parametric lower semicomputable semimeasure Rθ

there exists a positive constant C such that CMθ(x) ≥ Rθ(x) for all x and θ .
The corresponding definition of randomness with respect to a family Pθ is ob-

tained by relativization of (4) with respect to θ

dθ (ω) = sup
n

Mθ(ω
n)

Pθ (ωn)

(see also [3]). This definition leads to the same class of random sequences as the
original Martin-Löf [8] definition relativized with respect to a parameter θ .
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For any θ , let

Iθ = {ω ∈ � : dθ (ω) < ∞}
be the set of all infinite binary sequences random with respect to the measure Pθ . In
case of Bernoulli family, we call elements of this set θ -Bernoulli sequences.

3 Randomness with Respect to a Parameter Family

We need some statistical notions (see Cox and Hinkley [2]). Let Pθ be some com-
putable parametric family of probability distributions. A function θ̂ (x) from � to
[0,1] is called an estimator. An estimator θ̂ is called strictly consistent if for each
parameter value θ for Pθ -almost all ω,

θ̂ (ωn) → θ

as n → ∞.
Let ε and δ be rational numbers. An estimator θ̂ is called effectively strictly con-

sistent if there exists a computable function N(ε, δ) such that for each θ for all ε

and δ

Pθ

{
ω ∈ � : sup

n≥N(ε,δ)

|θ̂ (ωn) − θ | > ε
}

≤ δ. (6)

The strong law of large numbers Borovkov [1] (Chap. 5)

Bθ

{

sup
k≥n

∣
∣
∣
∣
∣

1

k

k∑

i=1

ωi − θ

∣
∣
∣
∣
∣
≥ ε

}

<
1

ε4n

shows that the function θ̂ (ωn) = 1
n

∑n
i=1 ωi is a computable strictly consistent esti-

mator for the Bernoulli family Bθ .

Proposition 1 For any effectively strictly consistent estimator θ̂ ,

lim
n→∞ θ̂ (ωn) = θ

for each ω ∈ Iθ .

Proof Assume an infinite sequence ω to be Martin-Löf random with respect to Pθ

for some θ .
At first, we prove that limn→∞ θ̂ (ωn) exists. Let for j = 1,2, . . . ,

Wj = {α ∈ � : (∃n, k ≥ N(1/j,2−(j+1)))|θ̂ (αn) − θ̂ (αk)| > 1/j}.
By (6) for any θ , Pθ(Wj ) < 2−j for all j . Define Vi = ⋃

j>i Wj for all i. By de-

finition for any θ , Pθ(Vi) < 2−i for all i. Also, any set Vi can be represented as a
recursively enumerable union of intervals of type �x . To reduce this definition of
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Martin-Löf test to the definition of the test (4) define a sequence of uniform lower
semicomputable parametric semimeasures

Rθ,i(x) =
{

2iPθ (x) if �x ⊆ Vi ,
0 otherwise

and consider the mixture Rθ(x) = ∑∞
i=1

1
i(i+1)

Rθ,i(x).

Suppose that limn→∞ θ̂ (ωn) does not exist. Then for each sufficiently large j ,
|θ̂ (ωn) − θ̂ (ωk)| > 1/j for infinitely many n and k. This implies that ω ∈ Vi for all i,
and then for some positive constant c,

dθ (ω) = sup
n

Mθ(ω
n)

Pθ (ωn)
≥ sup

n

Rθ (ω
n)

cPθ (ωn)
= ∞,

i.e., ω is not Martin-Löf random with respect to Pθ .
Suppose that limn→∞ θ̂ (ωn) 
= θ . Then the rational numbers r1, r2 exist such that

r1 < limn→∞ θ̂ (ωn) < r2 and θ /∈ [r1, r2]. Since the estimator θ̂ is consistent, Pθ {α :
r1 < limn→∞ θ̂ (αn) < r2} = 0, and we can effectively (using θ ) enumerate an infinite
sequence of positive integer numbers n1 < n2 < · · · such that for

W ′
j =

⋃
{�x : l(x) ≥ nj , r1 < θ̂(x) < r2},

we have Pθ(W
′
j ) < 2−j for all j . Define V ′

i = ⋃
j>i W

′
j for all i. We have

Pθ(V
′
i ) ≤ 2−i and ω ∈ V ′

i for all i. Then ω can not be Martin-Löf random with respect
to Pθ . These two contradictions obtained above prove the proposition. �

The following theorem generalizes the simplest example of a set of M̄-measure 0
presented in Sect. 2. It can be interpreted such that Pθ -random sequences with “a pre-
specified” non-computable parameter θ can not be obtained in any combinations of
stochastic and deterministic processes.

Theorem 1 Assume a computable parametric family Pθ of probability distributions
has an effectively strictly consistent estimator. Then for each θ , M̄(Iθ ) > 0 if and only
if θ is computable.

Proof If θ is computable real number then the probability distribution Pθ is also
computable and by (2) cM̄(Iθ ) ≥ Pθ(Iθ ) = 1, where c is a positive constant.

The proof of the converse assertion is more complicated. Let θ̂ be an effectively
strictly consistent estimator for a computable parametric family Pθ .

Assume M̄(Iθ ) > 0. There exists a simple set V (a union of a finite set of intervals)
and a rational number r such that 1

2M̄(V ) < r < M̄(Iθ ∪V ). For any finite set X ⊆ �,
let X̄ = ⋃

x∈X �x .
Let n be a positive integer number. We compute a rational approximation θn of θ

up to 1
2n

as follows. Using the exhaustive search, we find a finite set Xn of pairwise
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incomparable finite sequences of length ≥ N(1/n,2−n) such that

X̄n ⊆ V,
∑

x∈Xn

M(x) > r,

|θ̂ (x) − θ̂ (x′)| ≤ 1

2n

(7)

for all x, x′ ∈ Xn. If any such set Xn will be found, we put θn = θ̂ (x), where x is the
minimal element of Xn with respect to some natural (lexicographic) ordering of all
finite binary sequences.

Let us prove that for each n some such set Xn exists. Since M̄(Iθ ∩ V ) > r , there
exists a closed (in the topology defined by intervals �x ) set E ⊆ Iθ ∩ V such that
M̄(E) > r . Consider the function

fk(ω) = inf

{

n : n ≥ k, |θ̂ (ωn) − θ | ≤ 1

4n

}

.

By Proposition 1 this function is defined and continuous on the set E and, since
E is compact, it is bounded on E. Hence, for each k, there exists a finite set
X ⊆ � consisting of pairwise incomparable sequences of length ≥ k such that E ⊆ X̄

and |θ̂ (x) − θ̂ (x′)| ≤ 1
2n

for all x, x′ ∈ X. Since E ⊆ X̄, we have
∑

x∈X M(x) > r .
Therefore, the set Xn can be found by exhaustive search.

Lemma 1 For any Borel set V ⊆ �, M̄(V ) > 0 and V ⊆ Iθ imply Pθ(V ) > 0.

Proof By definition of Mθ each computable parametric measure Pθ is absolutely
continuous with respect to the measure M̄θ , and so, we have representation

Pθ(X) =
∫

X

dPθ

dM̄θ

(ω)dM̄θ (ω), (8)

where dPθ

dM̄θ
(ω) is the Radon-Nicodim derivative; it exists for M̄θ -almost all ω.

By definition we have for M̄θ -almost all ω ∈ Iθ

dPθ

dM̄θ

(ω) = lim
n→∞

Pθ

M̄θ

(ωn) ≥ lim inf
n→∞

Pθ

M̄θ

(ωn) ≥ Cθ,ω > 0. (9)

By definition cθ M̄θ (X) ≥ M̄(X) for all Borel sets X, where cθ is some positive
constant (depending on θ ). Then by (8) and (9) the inequality M̄(X) > 0 implies
Pθ(X) > 0 for each Borel set X. �

We rewrite (6) in the form

En =
{

ω ∈ � : sup
N≥N(1/(2n),2−n)

|θ̂ (ωN) − θ | ≥ 1

2n

}

. (10)

By definition Pθ(En) ≤ 2−n for all n. We prove that Xn 
⊆ En for almost all n. Sup-
pose that the opposite assertion holds. Then there exists an increasing infinite se-
quence of positive integer numbers n1, n2, . . . such that Xni

⊆ Eni
for all i = 1,2, . . . .
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This implies Pθ(Xni
) ≤ 2−ni for all i. For any k, define Uk = ⋃

i≥k Xni
. Clearly, we

have for all k, M̄(Ūk) > r and Pθ(Ūk) ≤ ∑
i≥k 2−ni ≤ 2−nk+1. Let U = ⋂

Uk . Then

Pθ(U) = 0 and M̄(U) ≥ r > 1
2M̄(V ). From U ⊆ V and M̄(Iθ ∩ V ) > 1

2M̄(V ) the
inequality M̄(Iθ ∩ U) > 0 follows. Then the set Iθ ∩ U consists of Pθ -random se-
quences, Pθ(Iθ ∩ U) = 0 and M̄(Iθ ∩ U) > 0. This is a contradiction with Lemma 1.

Assume Xn 
⊆ En for all n ≥ n0. Let also, a finite sequence xn ∈ Xn is defined
such that

�xn ∩ (� \ En) 
= ∅.

Then from l(xn) ≥ N( 1
2n

,2−n) the inequality

∣
∣θ̂ (xn) − θ

∣
∣ <

1

2n

follows. By (7) we obtain |θn − θ | < 1
n

. This means that the real number θ is com-
putable. Theorem is proved. �

Let Q be a computable probability distribution on θs (i.e., on the set �). Then the
Bayesian mixture with respect to the prior Q

P(x) =
∫

Pθ(x) dQ(θ)

is also computable probability distribution.
Recall that RQ is the set of all infinite sequences Martin-Löf random with re-

spect to a computable probability measure Q. Obviously, P(
⋃

θ∈RQ
Iθ ) = 1, and then

M̄(
⋃

θ∈RQ
Iθ )) > 0. Moreover, it follows from Corollary 4 of Vovk and V’yugin [12]

Theorem 2 For any computable measure Q, a sequence ω is random with respect to
the Bayesian mixture P if and only if ω is random with respect to a measure Pθ for
some θ random with respect to the measure Q; in other words,

RP =
⋃

θ∈RQ

Iθ .

Notice that each computable θ is Martin-Löf random with respect to the com-
putable probability distribution concentrated on this sequence.

4 Randomness with Respect to Non-random Parameters

We show in this section that the Bayesian approach is insufficient to cover all possible
“meaningful” cases: a probabilistic machine can be constructed, which with proba-
bility close to one outputs a random θ -Bernoulli sequence, where the parameter θ is
not random with respect to each computable probability distribution.
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Let P (�) be the set of all computable probability measures on � and let

S =
⋃

P∈P (�)

RP

be the set of all sequences Martin-Löf random with respect to computable proba-
bility measures, where RP is the set of all P -random sequences (5). We call these
sequences—stochastic. Let S c be a complement of S —the set of non-stochastic se-
quences.

An infinite binary sequence α is Turing reducible to an infinite binary sequence β

if α = F(β) for some computable operation F ; we denote this α ≤T β . Two infinite
sequences α and β are Turing equivalent if α ≤T β and β ≤T α. Let

Cl(S) = {α : ∃β(β ∈ S & β ≤T α)}. (11)

The complement of the set (11), Cl(S)c = � \ Cl(S), contains all sequences non-
random with respect to all computable probability distributions, i.e., Cl(S)c ⊆ S c;
moreover, it contains all sequences which can not be Turing equivalent to stochastic
sequences. Also, no stochastic sequence can be Turing reducible to a sequence from
Cl(S)c .

V’yugin [13, 14] proved that M̄(Cl(S)c) > 0.1

Theorem 3 For any ε, 0 < ε < 1, a lower semicomputable semimeasure Q exists
such that Q̄(EQ) > 1 − ε and EQ ⊆ Cl(S)c .

For completeness of presentation we give in Appendix a new simplified proof of
this theorem.

We show that result of Theorem 3 can be extended to parameters of the Bernoulli
family.

Theorem 4 Let Iθ be the set of all θ -Bernoulli sequences. Then

M̄
( ⋃

θ∈Cl(S)c

Iθ

)
> 0.

In terms of probabilistic computers, for any ε, 0 < ε < 1, a probabilistic machine
(L,F ) can be constructed, which with probability ≥ 1 − ε generates an θ -Bernoulli
sequence, where θ ∈ Cl(S)c (i.e., θ is non-stochastic).

Proof For any ε > 0, 0 < ε < 1, we define a lower semicomputable semimeasure P

such that

P̄
( ⋃

θ∈Cl(S)c

Iθ

)
> 1 − ε.

The proof of the theorem is based on Theorem 3.

1Does Cl(S) = S holds is an open question.
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Let Q be the semimeasure defined in this theorem. For any ω /∈ EQ we have
Q(ωn) = 0 for all sufficiently large n. For the measure

R−(x) =
∫

Bθ(x) dQ̄(θ), (12)

where Bθ is the Bernoulli measure, we have R−(�) > 1 − ε by Theorem 3, and
R−(

⋃
θ∈Cl(S) Iθ ) = 0.

Unfortunately, we can not conclude that cM̄ ≥ R− for some constant c, since the
measure R− is not represented in the form R− = P̄ for some lower semicomputable
semimeasure P . To overcome this problem, we consider some semicomputable ap-
proximation of this measure.

For any finite binary sequences α and x, let B−
α (x) = (θ−)K(1 − θ+)N−K , where

N is the length of x and K is the number of ones in it, θ− is the left side of the
subinterval corresponding to the sequence α and θ+ is its right side. By definition
B−

α (x) ≤ Bθ(x) for all θ− ≤ θ ≤ θ+.
Let ε be a rational number such that 0 < ε < 1. Let Qs(x) be equal to the maximal

rational number r < Q(x) computed in s steps of enumeration of Q(x) from below.
Using Theorem 3, we can define for n = 1,2, . . . and for each x of length n a com-
putable sequence of positive integer numbers sx ≥ n and a sequence of finite binary
sequences αx,1, αx,2, . . . , αx,kx of length ≥ n such that the function P(x) defined by

P(x) =
kx∑

i=1

B−
αx,i

(x)Qsx (αx,i) (13)

is a semimeasure, i.e., such that condition (1) holds for all x, and such that

∑

l(x)=n

P (x) > 1 − ε (14)

holds for all n. These sequences exist, since the limit function R− defined by (12) is
a measure satisfying R−(�) > 1 − ε.

By definition the semimeasure P(x) is lower semicomputable. Then cM(x) ≥
P(x) holds for all x ∈ �, where c is a positive constant.

To prove that P̄ (� \ ⋃
θ Iθ ) = 0 we consider some probability measure Q+ ≥ Q.

Since (1) holds, it is possible to define some non-computable measure Q+ satisfying
these properties in many different ways. Define the mixture of the Bernoulli measures
with respect to Q+

R+(x) =
∫

Bθ(x) dQ+(θ). (15)

By definition R+(� \ ⋃
θ Iθ ) = 0. Using definitions (13) and (15), it can be easily

proved that P̄ ≤ R+. Then P̄ (� \ ⋃
θ Iθ ) = 0. By Theorem 3 Cl(S) ⊆ � \ EQ, and

then Q̄(Cl(S)) = 0. By (13) we have P̄ (
⋃

θ∈Cl(S) Iθ ) = 0. By (14) we have P̄ (�) >

1 − ε. Then P̄ (
⋃

θ∈Cl(S)c Iθ ) > 1 − ε. Therefore, M̄(
⋃

θ∈Cl(S)c Iθ ) > 0. �
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Theorem 4 can be easily extended for an arbitrary parametric family Pθ com-
putable with respect to a real parameter θ . We pass the details of computability with
respect to a real parameter θ .

In this case using continuity of Pθ with respect to the parameter θ , we can define
instead of B−

α (x) a rational approximation P −
α (x) of Pθ(x) from below such that (14)

holds. The corresponding measure P(x) is defined by (13), where B−
α (x) is replaced

with P −
α (x).

Moreover, we can strengthen this result replacing � \ Cl(S)c with an arbi-
trary Borel set A of parameters (where A ⊆ �) such that M̄(A) > 0. In this case
for any ε > 0, a lower semicomputable semimeasure Q exists such that Q̄(A) >

1 − ε/2. The proof is analogous to the proof of Theorem 4 with an exception that
Q̄(Cl(S)) = 0 is replaced with Q̄(� \ A) ≤ ε/2 and P̄ (

⋃
θ∈Cl(S) Iθ ) = 0 is replaced

with P̄ (
⋃

θ∈�\A Iθ ) ≤ ε/2.
Therefore, we have proved the following

Theorem 5 Assume a parametric family Pθ of probability distributions computable
with respect to a parameter θ is given. Let also for any θ , Iθ be the set of all se-
quences random with respect to a probability measure Pθ . Then for any Borel A ⊆ �,
if M̄(A) > 0 then M̄(

⋃
θ∈A Iθ ) > 0.

5 Conclusion

In this paper we have analyzed parametric probabilistic models in the algorithmic
theory framework. We used Levin’s a priory lower semicomputable semimeasure as
the main tool for this analysis.2

We say that a property of infinite sequences has no “empirical meaning” if Levin’s
a priory semimeasure of the set of all sequences possessing this property is zero.
Equivalently, any probabilistic computer can output a sequence possessing this prop-
erty only with probability 0.

Evidently, the a priory semimeasure of a set of infinite sequences Martin-Löf ran-
dom with respect to a computable measure is positive. We have proved that the a pri-
ory semimeasure of the set of P -random sequences is zero if this measure depends
on an individual non-computable parameter θ even if this measure is computable
with respect to θ . In this respect, the mathematical model of the biased coin with
“a prespecified” probability θ of head is meaningless when θ is a non-computable
real number. For example, a non-computable real number θ can be defined by means
of a mathematical theory. Non-computable parameters θ can have empirical mean-
ing only in their totality, i.e., as elements of some uncountable sets. For example,
Pθ -random sequences with non-computable θ can be generated by a Bayesian mix-
ture of these Pθ using a computable prior. In this case, evidently, the semicomputable

2In the algorithmic randomness framework, the problem of generating infinite sequences possessing a
given property using probabilistic computers was considered by Zvonkin and Levin in the survey [16]
(Sect. 4), where original results of Levin, Petri, Bardzin and Agafonov closely related to this work were
presented.
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semimeasure of the set of all sequences random with respect to this mixture is posi-
tive.

We have presented an example which shows that Bayesian approach is insufficient
to cover all possible “meaningful” cases for θ -random sequences. We have shown
that a probabilistic machine with probability close to 1 can generate θ -Bernoulli se-
quences, where θ is not only non-computable but cannot be Turing equivalent to
sequences Martin-Löf random with respect to a computable probability distribution.
This result can be considered as a counterexample for Bayesian approach to statistics.
This approach is based on assumption that parameters θ are random with respect to
some a priory probability distribution.

Acknowledgements This research was partially supported by Russian foundation for fundamental re-
search: 09-07-00180a and 09-01-00709a.

Appedix: Proof of Theorem 3

Recall that EQ is the support set of a semimeasure Q. In that follows for any ε > 0
we define a semicomputable semimeasure Q such that

(1) Q̄(EQ) > 1 − ε;
(2) for each ω ∈ EQ and for each computable operation F such that F(ω) is infi-

nite, the sequence F(ω) is not Martin-Löf random with respect to the uniform
probability measure L on �.

By Theorem 4.2 from [16] for each computable measure P on �, there exist two
computable operations F and G such that

(3) F(ω) ∈ � for each ω random with respect to L, and G(F(ω)) = ω;
(4) for each sequence ω random with respect to P (and such that P {ω} = 0), the

sequence G(ω) is random with respect to L.

By (1)–(4) each sequence ω ∈ EQ can not be Martin-Löf random with respect to any
computable probability measure P .

We will construct a semicomputable semimeasure Q as some sort of network flow.
We define an infinite network on the base of the infinite binary tree. This network has
no sink; the top of the tree (empty sequence) is the source.

Each x ∈ � defines two edges (x, x0) and (x, x1) of length one. In the con-
struction below we will add to the network extra edges (x, y) of length > 1, where
x, y ∈ �, x ⊆ y and y 
= x0, x1. By the length of the edge (x, y) we mean the number
l(y) − l(x). For any edge σ = (x, y) we denote by st(σ ) = x its starting vertex and
by ter(σ ) = y its terminal vertex. A computable function q(σ ) defined on all edges
of length one and on all extra edges and taking rational values is called a network if
for all x ∈ �

∑

σ : st(σ )=x

q(σ ) ≤ 1.

Let G be the set of all extra edges of the network q (it is a part of the domain of q).
By q-flow we mean the minimal semimeasure P such that P ≥ R, where the function
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R is defined by the following recursive equations

R(λ) = 1;
R(y) =

∑

σ : ter(σ )=y

q(σ )R(st(σ )) (16)

for y 
= λ. It is easy to see that this semimeasure P is lower semicomputable if q is
computable.

A network q is called elementary if the set of extra edges is finite and q(σ ) = 1/2
for almost all edges of unit length. For any network q , we define the network flow
delay function (q-delay function)

d(x) = 1 − q(x, x0) − q(x, x1).

The construction below works with all programs i computing the operations Fi(x).3

We define some function p(n) such that for each positive integer number m we have
p(n) = m for infinitely many n. For example, we can define p(〈m,k〉) = m and
p′(〈m,k〉) = k for all m and k, where 〈m,k〉 is some computable one-to-one enumer-
ation of all pairs of nonnegative integer numbers. Then for each step n we compute
〈i, s〉 = p(n), where i is a program and s is a number (we call s number of a session);
so, i = p(p(n)) and s = p′(p(n)).

Let a program i, a number s, finite binary sequences x and y, an elementary net-
work q , and a nonnegative integer number n be given. Define B(〈i, s〉, x, y, q,n) be
true if the following conditions hold

(i) l(y) = n, x ⊆ y;
(ii) d(yk) < 1 for all k, 1 ≤ k ≤ n, where d is the q-delay function and yk =

y1 · · ·yk ;
(iii) l(Fi(y)) > 〈x, s〉.
Let B(〈i, s〉, x, y, q,n) be false, otherwise. Define

β(x, q,n) = min
{
y : p(l(y)) = p(l(x)),B(〈p(p(l(x))),p′(p(l(x)))〉, x, y, q,n)

}

Here p(p(l(x))) is a program and p′(p(l(x))) is a number of session; min is consid-
ered for lexicographical ordering of strings; we suppose that min∅ is undefined.

Lemma 2 For each computable operation Fi and for each finite sequence x such
that F(ω) ∈ � for some infinite extension ω of x (i.e., x ⊆ ω), β(x, q,n) is defined
for all sufficiently large n such that p(p(n)) = i.

Proof The needed sequence y exists for all sufficiently large n, since l(Fi(ω
n)) >

〈x, s〉 holds for all sufficiently large n, p(n) = 〈i, s〉. �

3The existence of the effectively computable sequence {Fi } such that for each computable operation F ,
F = Fi for some i is proved in [9].
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The goal of the construction below is the following. Each extra edge σ will be as-
signed to some task number I = 〈i, s〉 such that p(l(st(σ ))) = p(l(ter(σ ))) = I . The
goal of the task I is to define a finite set of extra edges σ such that for each infinite
binary sequence ω one of the following conditions hold: either ω contains some extra
edge as a subword, or the network flow delay function d equals 1 on some initial frag-
ment of ω. For each extra edge σ added to the network q , B(I, st(σ ), ter(σ ), qn−1, n)

is true; it is false, otherwise. Lemma 5 shows that Q̄(EQ) > 1 − ε, where Q is the
q-flow and EQ is its support set.

Construction Let ρ(n) = (n+n0)
2 for some sufficiently large n0 (the value n0 will

be specified below in the proof of Lemma 5).
Using the mathematical induction by n, we define a sequence qn of elementary

networks. Put q0(σ ) = 1/2 for all edges σ of length one.
Assume n > 0 and a network qn−1 is defined. Let dn−1 be the qn−1-delay function

and let Gn−1 be the set of all extra edges. We suppose also that l(ter(σ )) < n for all
σ ∈ Gn−1.

Let us define a network qn. At first, we define a network flow delay function dn

and a set Gn.
Let w(I, qn−1) be equal to the minimal m such that p(m) = I and m > l(ter(σ ))

for each extra edge σ ∈ Gn−1 such that p(l(st(σ ))) < I .
The inequality w(I, qm) 
= w(I, qm−1) can be induced by some task J < I

that adds an extra edge σ = (x, y) such that l(y) > w(i, qm−1) and p(l(x)) =
p(l(y)) = J . Lemma 3 (below) will show that this can happen only at finitely many
steps of the construction.

The construction can be split up into two cases.

Case 1. w(p(n), qn−1) = n (the goal of this part is to start a new task I = p(n) or
to restart the existing task I = p(n) if it was destroyed by some task J < I at some
preceding step).

Put dn(y) = 1/ρ(n) for l(y) = n and define dn(y) = dn−1(y) for all other y. Put
also Gn = Gn−1.

Case 2. w(p(n), qn−1) < n (the goal of this part is to process the task I = p(n)).
Let Cn be the set of all x such that w(I, qn−1) ≤ l(x) < n, 0 < dn−1(x) < 1, the

function β(x, qn−1, n) is defined4 and there is no extra edge σ ∈ Gn−1 such that
st(σ ) = x.

In this case for each x ∈ Cn define dn(β(x, qn−1, n)) = 0, and for all other y of
length n such that x ⊆ y define

dn(y) = dn−1(x)/(1 − dn−1(x)).

Define dn(y) = dn−1(y) for all other y. We add extra edges to Gn−1, namely, define

Gn = Gn−1 ∪ {
(x,β(x, qn−1, n)) : x ∈ Cn

}
.

4In particular, p(l(x)) = I and l(β(x, qn−1, n)) = n.
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We say that the task I = p(n) adds the extra edge (x,β(x, qn−1, n)) to the net-
work and that all existing tasks J > I are destroyed by the task I .

After Cases 1 and 2, define for each edge σ of unit length

qn(σ ) = 1

2
(1 − dn(st(σ )))

and qn(σ ) = dn(st (σ )) for each extra edge σ ∈ Gn.
Using this construction, we define the network q = limn→∞ qn, the network flow

delay function d = limn→∞ dn, and the set of extra edges G = ⋃
n Gn.

The functions q and d are computable and the set G is recursive by their defini-
tions. Let Q denote the q-flow.

The following lemma shows that any task can add new extra edges only at finite
number of steps.

Let G(I) be the set of all extra edges added by the task I , w(I, q) =
limn→∞ w(I, qn).

Lemma 3 The set G(I) is finite and w(I, q) < ∞ for all I .

Proof Note that if G(J ) is finite for all J < I then w(I, q) < ∞. Then we must
prove that the set G(I) is finite for all I . Suppose that the opposite assertion holds.
Let I be the minimal number such that G(I) is infinite. By choice of I the sets G(J )

for all J < I are finite. Then w(I, q) < ∞.
By definition if d(ωm) 
= 0 then pm = 1/d(ωm) is a positive integer number. Be-

sides, if (ωn, y), (ωm,y′) ∈ G(I), where n < m and l(y) = m, then pn > pm. Hence,
for each ω ∈ � a maximal m exists such that (ωm,y) ∈ G(I) for some y or no such
extra edge exists. In the latter case put m = w(I, q). Define u(ω) = 1/d(ωm).

By the construction the integer valued function u(ω) is constant on the interval
�ωm . Hence, it is continuous in the topology generated by such intervals. Since �

is compact in this topology, u(ω) is bounded. Then for some m′, u(ω) = u(ωm′
) for

all ω. By the construction if any extra edge of I th type was added to G(I) at some
step then d(y) > d(x) holds for some new pair (x, y) such that x ⊆ y. This is a
contradiction if G(I) is infinite. �

An infinite sequence α ∈ � is called an I -extension of a finite sequence x if x ⊆ α

and B(I, x,αn,n) is true for almost all n.
A sequence α ∈ � is called I -closed if d(αn) = 1 for some n such that

p(n) = I , where d is the q-delay function. Note that if σ ∈ G(I) is some extra
edge then B(I, st(σ ), ter(σ ), n) is true, where n = l(ter(σ )).

Lemma 4 Assume for each initial fragment ωn of an infinite sequence ω some
I -extension exists. Then either the sequence ω will be I -closed in the process of
the construction or ω contains an extra edge of I th type (i.e. such that ter(σ ) ⊆ ω for
some σ ∈ G(I)).

Proof Assume a sequence ω is not I -closed. By Lemma 3 the maximal m exists
such that p(m) = I and d(ωm) > 0. Since the sequence ωm has an I -extension and
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d(ωk) < 1 for all k, by Case 2 of the construction a new extra edge (ωm,y) of I th
type must be added to the binary tree. By the construction d(y) = 0 and d(z) 
= 0 for
all z such that ωm ⊆ z, l(z) = l(y), and z 
= y. By the choice of m we have y ⊆ ω. �

Obviously, Q(y) = 0 if and only if q(σ ) = 0 for some edge σ of unit length
located on y (this edge satisfies ter(σ ) ⊆ y and d(st(σ )) = 1). Then the relation
Q(y) = 0 is recursive and EQ = � \ ⋃

d(x)=1 �x .

Lemma 5 It holds Q̄(EQ) > 1 − ε.

Proof We bound Q̄(�) from below. For any n, let qn be the network defined at
step n, Rn be defined by (16), and dn be the corresponding qn-delay function. If
w(p(n), qn−1) = n (i.e., Case 1 holds at step n) then

∑

l(u)=n

dn(u)Rn(u) = (n + n0)
−2

∑
Rn(u) ≤ (n + n0)

−2. (17)

Assume Case 2 holds at the step n and x ∈ Cn such that (x, y) ∈ G for some y,
l(y) = n. Since by the construction dn(y) = 0,

∑

l(z)=n,x⊆z

dn(z)Rn(z) ≤ dn−1(x)

(1 − dn−1(x))

∑

l(z)=n,x⊆z,z 
=y

Rn(z). (18)

We have
∑

l(z)=n,x⊆z,z 
=y

Rn−1(z) ≤ (1 − dn−1(x))Rn−1(x). (19)

By the construction Rn(z) = Rn−1(z) for z such that l(z) = n, x ⊆ z, z 
= y. Then
∑

l(z)=n,x⊆z

dn(z)Rn(z) ≤ dn−1(x)Rn−1(x). (20)

By definition
∑

(n + n0)
−2 ≤ ε. After that, using (17) and (20) we can prove by the

mathematical induction on n that

Q̄(�) = inf
n

∑

l(u)=n

Q(u) ≥ inf
n

∑

l(u)=n

R(u) ≥ 1 − ε.

Lemma is proved. �

Lemma 6 For any infinite sequence ω ∈ EQ and for any computable operation F

if the sequence F(ω) is infinite then it is not Martin-Löf random with respect to the
uniform probability distribution.

Proof Assume that ω is an infinite sequence and F is a computable operation such
that F(ω) is infinite. Then Fi = F for some i. Define

Us =
⋃{

�β(x,qn−1,n) : x ∈ Cn,p(n) = 〈i, s〉},
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where Cn is the set from Case 2 of the construction. By definition

L(Us) =
∑

x∈Cn

2−〈x,s〉 ≤ 2−cs

for some positive constant c, and Fi(ω) ∈ ⋂
s Us . Therefore, the sequence F(ω) is

not Martin-Löf random. Lemma 6 and Theorem 3 are proved. �
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