Algorithmica (2012) 64:362-383
DOI 10.1007/s00453-012-9642-6

Improved Algorithms for Even Factors and
Square-Free Simple b-Matchings

Maxim A. Babenko

Received: 16 February 2011 / Accepted: 23 March 2012 / Published online: 19 April 2012
© Springer Science+Business Media, LLC 2012

Abstract Given a digraph G = (V G, AG), an even factor M C AG is a set formed
by node-disjoint paths and even cycles. Even factors in digraphs were introduced by
Geelen and Cunningham and generalize path matchings in undirected graphs.

Finding an even factor of maximum cardinality in a general digraph is known to
be NP-hard but for the class of odd-cycle symmetric digraphs the problem is polyno-
mially solvable. So far the only combinatorial algorithm known for this task is due to
Pap; its running time is O (n*) (hereinafter n denotes the number of nodes in G and
m denotes the number of arcs or edges).

In this paper we introduce a novel sparse recovery technique and devise an
O (n? logn)-time algorithm for finding a maximum cardinality even factor in an odd-
cycle symmetric digraph. Our technique also applies to other similar problems, e.g.
finding a maximum cardinality square-free simple b-matching.

Keywords Even factors - Odd-cycle symmetric graphs - Square-free simple
b-matchings - Alternating paths

1 Introduction

The notion of independent path matchings was introduced by Cunningham and
Geelen [5] in the context of the separation problem for the matchable set poly-
tope (which was earlier studied by Balas and Pulleyblank [2]). Finding an indepen-
dent path matching of maximum size was recognized as an intriguing example of a

Supported by RFBR grant 09-01-00709-a.

M.A. Babenko (X))

Dept. of Mechanics and Mathematics, Moscow State University, GSP-1, Leninskie Gory, Moscow
119991, Russia

e-mail: maxim.babenko @ gmail.com

M.A. Babenko
Yandex LLC, 16, Leo Tolstoy St., Moscow 119021, Russia

@ Springer

mailto:maxim.babenko@gmail.com

Algorithmica (2012) 64:362-383 363

graph-theoretic optimization problem that is difficult to tackle by purely combinato-
rial means. Two algorithms were given by Cunningham and Geelen: one relies on
the ellipsoid method [5], and the other is based on deterministic evaluations of the
Tutte matrix [6]. Later a rather complicated combinatorial algorithm was proposed
by Spille and Weismantel [17].

The notion of an even factor is a further generalization of path matchings [4, 7]. An
even factor is a set of arcs that decomposes into a node-disjoint collection of simple
paths and simple cycles of even lengths. Since cycles of length 2 are allowed, it is not
difficult to see that finding a maximum matching in an undirected graph G reduces to
computing a maximum even factor in the digraph obtained from G by replacing each
edge with a pair of oppositely directed arcs. On the other hand, no reduction from
even factors to non-bipartite matchings is known.

Finding a maximum cardinality even factor in a general digraph is known to be
NP-hard [4]. For the class of weakly symmetric digraphs, a min-max relation and
an Edmonds—Gallai-type structure were established by Cunningham and Geelen [7]
and by Pap and Szegd [16]. Later it was observed by Pap [14] that same arguments
apply to a slightly broader class of odd-cycle symmetric digraphs. Kobayashi and
Takazawa [12] pointed out a relation between even factors and jump systems and
showed that “odd-cycle symmetric digraphs” form a natural class of problem in-
stances.

The existence of a combinatorial solution to the maximum even factor problem in
an odd-cycle symmetric digraph remained open for quite a while. Recently Pap gave
adirect O (n*)-time algorithm [14, 15]. His method can be slightly improved to run in
O(n2(m+n logn)) time, as explained in Sect. 3. (Hereinafter n denotes for the num-
ber of nodes in G and m denotes the number of arcs or edges in G.) To compare: the
classical algorithm of Micali and Vazirani that computes a maximum non-bipartite
matching (which, as indicated above, is a special case of the maximum even factor
problem) runs in O (m./n) time [13]. It is tempting to design a faster algorithm for
the maximum even factor problem by applying ideas developed for matchings (e.g.
blocking augmentation [9]). There are, however, certain complications making even
the bound of O (mn) nontrivial.

To explain the nature of these difficulties let us briefly review Pap’s approach
(a more detailed exposition will be given in Sect. 3). It resembles Edmonds’ non-
bipartite matching algorithm, and executes a series of iterations. Each iteration tries
to increase the size of the current even factor M by one. At each iteration, a search for
an augmenting path P is performed. If no such path is found, then M is maximum.
Otherwise, the algorithm tries to apply P to M. If no odd cycle appears after the
augmentation, the iteration completes. Otherwise a certain contracting reduction is
applied to G and M.

Hence each iteration consists of phases and the number of nodes in the cur-
rent digraph decreases with each phase. Totally there are O (n) iterations and O (n)
phases during each iteration, which is quite similar to the usual blossom-shrinking
method. The difference is that during a phase the reduction may change the alternat-
ing reachability structure completely, so the next phase is forced to start looking for
P from scratch. (Compare this with Edmonds’ algorithm where a blossom contrac-
tion changes the alternating forest in a predicable and consistent way thus allowing
this forest to be reused over the phases.)

@ Springer

364 Algorithmica (2012) 64:362-383

This paper aims to overcome the above issue by introducing a novel sparse recov-
ery technique. Section 4 presents an O (n> logn)-time algorithm for the maximum
even factor problem. It is based on Pap’s method but grows an alternating forest in
a more careful fashion. When a contraction is made in the current digraph the for-
est gets destroyed. However we are able to restore it by running a sparse recovery
procedure that carries out a reachability search in a specially crafted digraph with
O (n) arcs in O (nlogn) time (where the logn-factor comes from manipulations with
balanced trees used for odd cycle testing).

Finally we extend our approach to the maximum square-free simple b-matching
problem. The latter reads as follows. Let G be an undirected bipartite graph with node
capacities b: VG — {1, 2}. One looks for a maximum cardinality simple b-matching
(i.e. a subset of edges M € EG such that each v € VG is incident to at most b(v)
edges of M) that contains no circuits of length 4. Hartvigsen [8] established a nice
characterization for this problem and also presented a rather complicated combina-
torial algorithm. Kirdly [11] gave another, non-algorithmic proof of the min-max
formula. Pap [15] devised a conceptually simpler combinatorial algorithm, which is
based on the above ideas of iterative augmentations and contractions. The latter al-
gorithm runs in O(mnz), and like one for even factors it suffers from the need to
recompute alternating forests. In Sect. 5.4 we demonstrate how sparse recovery helps
to reduce the complexity to O (n?) (matching that claimed in [8]).

The extended abstract [1] of this paper previously appeared at ISAAC 2010.

2 Preliminaries

We employ some standard graph-theoretic notation throughout the paper. For an undi-
rected graph G, we denote its sets of nodes and edges by VG and EG, respectively.
For a directed graph, we speak of arcs rather than edges and denote the arc set of G
by AG. A similar notation is used for paths, trees, and etc. We allow parallel edges
and arcs but not loops. As long as this leads to no confusion, an arc from u to v is
denoted by (u, v) and an edge connecting u and b by {u, v}.

A path or a cycle is called even (respectively odd) if is consists of an even (respec-
tively odd) number of arcs or edges. The following definition is crucial:

Definition 1 For a digraph G, a path-cycle matching is a subset of arcs M that is a
union of node-disjoint simple paths and cycles in G. When M contains no odd cycle
it is called an even factor. The size of M is its cardinality and the maximum even
factor problem consists in constructing an even factor of maximum size.

An arc (u, v) in a digraph G is called symmetric if (v, u) is also present in G. Fol-
lowing the terminology of [14], we call G odd-cycle symmetric (respectively weakly
symmetric) if for each odd (respectively any) cycle C, all arcs of C are symmetric.
As observed by Kobayashi and Takazawa [12], this symmetry is essential for the
tractability of the problem. It also provides a link between odd cycles (in digraphs)
and factor critical subgraphs (in undirected graphs) and makes uncontractions possi-
ble (see Lemma 1 below).

@ Springer

Algorithmica (2012) 64:362-383 365

For a digraph G and U C VG, the set of arcs entering (respectively leaving) U is
denoted by 52}(U) (respectively 8°Gu‘(U)). If G is undirected then 8 (U) denotes the
set of edges with exactly one endpoint in U. For a graph G (directed or undirected)
we write yg(U) to denote the set of arcs (or edges) with both endpoints in U and
G[U] to denote the subgraph of G induced by U, i.e. G[U] = (U, yg(U)). When G
is clear from the context it is omitted from notation.

To contract aset U C VG in a digraph G means to replace nodes in U by a single
composite node. Arcs in y (VG — U) are not affected, arcs in y (U) are dropped, and
arcs in 81(U) (respectively §°Ut(U)) are redirected so as to enter (respectively leave)
the composite node. The resulting graph is denoted by G/U. We identify arcs in
G /U with their pre-images in G. Note that G/U may contain multiple parallel arcs
but not loops. If G’ is obtained from G by an arbitrary series of contractions then
G'=G/Uy/.../U holds for a certain family of disjoint subsets Uy, ..., Uy C VG
(called maximum contracted sets).

Maximizing the size of an even factor M in a digraph G is equivalent to minimiz-
ing the deficiency def(G, M) := |V G| — |M|. The minimum deficiency of an even
factor in G is called the deficiency of G itself and is denoted by def(G).

To give the reader some initial insight to the class of related problems let us explain
the reduction from non-bipartite matchings to even factors. For this aim, let G be an
undirected graph where a maximum matching is requested. We construct a digraph

?I) by taking the node set of H and replacing each edge {u, v} by a pair of oppositely
directed arcs (u, v) and (v, u). Note that 8 is odd-cycle symmetric. Every matching
M in G generates an even factor Tl in 8 that consists of cycles of length 2 and
obeys |ﬁ| = 2|M|. Vice versa, let ﬁ be a maximum even factor in 8 It consists
of node-disjoint even cycles and even paths (odd paths cannot occur in ﬁ due to
its maximality). A trivial reduction transforms M to an even factor having the same

size and consisting only of cycles of length 2. This way, ﬁ gives rise to a maximum
matching M in G.

3 Naive Algorithm

Consider an odd-cycle symmetric digraph G. The algorithm for finding a maximum
even factor in G follows the standard augmentation scheme. Namely, it initially starts
with M = { and executes a series of iterations each aiming to increase |M| by one.
Each iteration invokes NAIVE-EVEN-FACTOR routine that, given an odd-cycle sym-
metric digraph G and an even factor M in G, either returns a larger even factor M+
or NULL indicating that M is already maximum.

3.1 Augmentations
Let us temporarily allow odd cycles and focus on path-cycle matchings in G. Con-
struct two disjoint copies of VG: vii={('|ve VG}and V2 :={v?|ve VG}.

For each arc a = (u, v) € AG add an ed§e {u', v2} (corresponding to a). Denote the
resulting undirected bipartite graph by G.

@ Springer

366 Algorithmica (2012) 64:362-383

Clearly a path-cycle matching M in G is characterized as follows: for each node
v € VG, M has at most one arc entering v and also at most one arc leaving v. Trans-
lating this to G one can readily see that M generates a matching M in G. Moreover,
this correspondence between matchings in G and path-cycle matchings in G is one-
to-one. A node u! (respectively u?) in G not covered by M is called a source (a sink,
respectively).

Given a digraph G and a path-cycle matching M in G, we turn G into a di-
graph Z(M) by directing edges {u!, v} that correspond to arcs (u,v) € M from
v? to u' and other edges from u! to v?.

Definition 2 A simple even path in 8(M) that starts in a source node is called M-
—_

alternating. A simple path in G (M) that starts in a source node and ends in a sink
node is called M-augmenting.

Clearly each M-augmenting path is odd. For a path P in 6(M), let A(P) denote

-
the set of arcs in G that correspond to arcs of P in G (M). Hereinafter A A B denotes
the symmetric difference of sets A and B. The next statements are well-known.

—_
Claim 1 M is a path-cycle matching of maximum size iff G (M) contains no M-
augmenting path.

Claim 2 [f P is an M-augmenting (respectively M -alternating) path in 6)(M),
then M’ := M A A(P) is a path-cycle matching with |M'| = |M| + 1 (respectively
|M'| = |M]).

-

The augmentation procedure (see Algorithm 1) constructs G (M) and searches
for an augmenting path P. In case no such path exists, the current even factor M
is maximum by Claim 1 (and also forms a maximum path-cycle matching), hence

—
the algorithm terminates. Next assume G (M) contains an augmenting path P.
Claim 2 indicates how a larger path-cycle matching M’ can be formed from M, how-
ever M’ may contain an odd cycle. The next definition focuses on this issue.

Definition 3 Given an even factor M, let P be an M-augmenting or an M -alternating
path. Then P is called feasible if M’ := M A A(P) is again an even factor.

If P is feasible, then NAIVE-EVEN-FACTOR exits with the updated even factor
M A A(P). Consider the contrary, i.e. P is not feasible. Since P is M-augmenting,
it must be odd, say it consists of 2k + 1 arcs. Construct a sequence of M -alternating
paths Py, ..., P, where P; is formed by taking the first 2/ arcs of P (0 <i <k). Also
set Porp:=Pand M; =M AA(P;) (0<i<k+1).

Then there exists an index i (0 <i < k) such that P; is feasible while P; 1 is not
feasible. In other words, M; is an even factor obeying def(G, M;) = def(G, M) and
M; 11 contains an odd cycle. Since M; and M, differ by at most two arcs, it can be
easily shown that an odd cycle in M, call it C, is unique (see [14]). Moreover, C
fits M;, that is, [M; N AC| = |V C| — 1 and §°"'(VC) N M; = . See Fig. 1(b) for an
example.

@ Springer

Algorithmica (2012) 64:362-383 367

Algorithm 1 NAIVE-EVEN-FACTOR(G, M)

: Search for an augmenting path P in 8 (M)
. if P does not exist then
return NULL
else if P exists and is feasible then
return M A A(P)
else [P exists but is not feasible]
Define M; <M A A(P;) fori =0,...,k+1
Find an index i such that M; is an even factor while M;_ 1 is not
Find the unique odd cycle C in M;
G <G/C,M' =M;/C
M’ < NAIVE-EVEN-FACTOR(G', M)
12: if M =NULL then [M' is maximum in G']

R A A Sl S s

_ =
= Q@

13: return NULL

14: else [M'is augmented in G’ to a larger even factor M/]

15: Undo the contractions and transform M to an even factor M+ in G
16: return M+

17: end if

18: end if

It turns out that when there exists an odd cycle fitting an even factor then a certain
optimality-preserving contraction is possible. As long as no confusion is possible, for
a digraph G and a cycle C in G, we abbreviate G/VC to G/C. Also for X € AG,
we write X/C to denote X \ yg(VC).

Claim 3 (Pap [14]) Let N be an even factor in G and C be an odd cycle that fits N.
Define G' :=G/C and N’ := N/C. Then G’ is an odd-cycle symmetric digraph and
N’ is an even factor in G'. Moreover, if N' is maximum in G', then N is maximum
inG.

Note that M is maximum in G if and only if M; is maximum in G. NAIVE-
EVEN-FACTOR contracts C in G. Let G’ := G/C and M’ := M;/C denote the re-
sulting digraph and the even factor. To check if M’ is maximum in G’ a recursive
call NAIVE-EVEN-FACTOR(G’, M’) is made (thus starting a new phase). If NULL is
returned, then M’ is a maximum even factor in G’, which implies by Claim 3 that
the initial even factor M was maximum in G. In this case NAIVE-EVEN-FACTOR
terminates returning NULL.

Suppose that the recursive call was able to turn M’ into a larger even factor M
in G'. One can transform M into an even factor of the same deficiency in G as
follows:

Lemma 1 (Pap [14]) Let C be an odd cycle in an odd-cycle symmetric digraph G.
Denote G' :== G/ C and let N' be some even factor in G'. Then there exists an even

factor N in G obeying def(G, N) = def(G’, N').

@ Springer

368 Algorithmica (2012) 64:362-383

Fig. 1 Preparing to contract an odd cycle. (a) Arcs of M are bold, others are dashed, grayed arcs corre-
spond to path P; . (b) Path P; is applied, arcs of M; are bold, others are dashed, grayed arcs indicate
the remaining part of P; |

Fig. 2 Possible configurations in appearing in the proof Lemma 1. Digraph G and an even factor N are
depicted. Arcs of N are bold, others are dashed. (a) Node z has an incoming arc a™ € N’ in G’ but no such
outcoming arcs. (b) Node z has an outcoming arc a~ € N’ in G’ but no such incoming arcs. (¢) Node z
has both an incoming arc a* € N’ and an outcoming arc a~ € N’ in H’. The subcase when no arc of N’
is incident to z in G is trivial and is thus omitted

Proof (Sketch) Let z be the composite node in G’ corresponding to C in G. Consider
the arcs of N’ incident to z in G’ and apply a simple case-splitting (see Fig. 2 for
examples). g

3.2 Complexity

Clearly the above schema leads to a polynomial time algorithm. Let us estimate its
complexity. There are O (n) iterations each consisting of O (n) phases (contractions).
To bound the complexity of a single phase note that it takes O (m) time to find an
augmenting path P (or figure out that it does not exist). We may construct path-cycle
matchings My, ..., My4+1 and decompose each of them into node-disjoint paths and
cycles in O(n?) time. Hence finding the index i and the cycle C takes O (n?) time.
Contracting C in G takes O(m) time. (After spending O (m) time looking for P
it is feasible to spend another O(m) time to construct G’ = G/C explicitly.) An
obvious bookkeeping allows to undo the contractions performed during the iteration
and transform the final even factor in the contracted digraph into an even factor the
initial digraph in O (m) time. Totally the algorithm takes O (n*) time.

@ Springer

Algorithmica (2012) 64:362-383 369

The above bound can be slightly improved as follows. Note that the algorithm
needs an arbitrary index i such that M; is an even factor and M, is not, i.e. i is
not required to be minimum. Hence we may carry out a binary search over the range
[0, k 4 1]. At each step we keep a pair of indices (I,) such that M; is an even factor
while M, is not. Replacing the current segment [/, r] by a twice smaller one takes
O (n) time and requires constructing and testing a single path-cycle matching M;
where t := | (I +r)/2]. This way, the O (n?) term reduces to O (n logn) and the total
running time becomes O (n”(m + nlogn)). The ultimate goal of this paper is to get
rid of the O (m) term.

4 Faster Algorithm
4.1 Augmentations

The bottleneck of NAIVE-EVEN-FACTOR is augmenting path computations. To ob-
tain an improvement we need better understanding of how these paths are calcu-
lated. Similarly to usual graph traversal algorithms we maintain a directed out-forest
F rooted at source nodes. Nodes belonging to this forest are called F-reachable.
At each step a new arc (u, v) leaving an F-reachable node u is scanned and is ei-
ther added to F (thus making v F-reachable) or skipped because v is already JF-
reachable. This process continues until a sink node is reached or no unscanned arcs
remain in the digraph.

Definition 4 Let G be a digraph and M be an even factor in G. An M-alternating
—_
forest F is a directed out-forest in G (M) obeying the following properties: (i) every

root is a source node in G (M) and vice versa; (ii) every path from a root to a leaf is
even.

The intuition behind the suggested improvement is to grow F carefully and to
avoid exploring infeasible alternating paths.

Definition S An M -alternating forest F is called feasible if every M -alternating path
in F is feasible. An M-alternating forest F is called complete if it contains no sink

node and for each arc (u, v) € E) (M), if u is F-reachable then v is also F-reachable.

We replace NAIVE-EVEN-FACTOR by a more sophisticated recursive procedure
called FAST-EVEN-FACTOR that obeys the following properties:

Lemma 2 FAST-EVEN-FACTOR gets an odd-cycle symmetric digraph G, an even
factor M in G, and an additional “sparsify” flag. It returns a digraph G obtained
from G by a series of contractions and an even factor M in G. Additionally it may
return an M-alternating forest F in G. Exactly one of the following cases applies:

(a) def(g, M) def(G, M) — 1 and F is undefined; or
(b) def(G, M) =def(G, M), M is maximum in G, M is maximum in G, and F is a
complete feasible M-alternating forest in G.

@ Springer

370 Algorithmica (2012) 64:362-383

Let us postpone the proof of Lemma 2 until the description of FAST-EVEN-
FACTOR is given (see the end of this subsection and also Sect. 4.2). Note that the
value of sparsify does not affect the public contract of FAST-EVEN-FACTOR. It is,
however, used to control its recursive behavior and to achieve a good running time
(see Sect. 4.3).

The algorithm performs iterations as follows. Given a current even factor M in G,
it calls FAST-EVEN-FACTOR(G, M, TRUE) and examines the result. If def(G, M) =
def(G, M) then by Lemma 2(b), M is a maximum even factor in G, the algorithm
stops. (Note that forest F, which is also returned by FAST-EVEN-FACTOR, is not used
here. Like “sparsify”, this forest is only needed due to the recursive nature of FAST-
EVEN-FACTOR.)

Otherwise def(G, M) = def(G, M) — 1 by Lemma 2(a); this case will be referred
to as a breakthrough. Applying Lemma 1, M is transformed to an even factor M+
in G such that def(G, M*) = def(G, M) = def(G, M) — 1. This completes the cur-
rent iteration.

It is clear that the algorithm constructs a maximum even factor correctly provided
that Lemma 2 holds. Let us explain how FAST-EVEN-FACTOR works (see Algo-
rithm 2 for a detailed pseudocode). During the course of its execution, FAST-EVEN-
FACTOR maintains an M -alternating forest F. It scans arcs of G in a certain order.
For each node u in G we keep a list L(«) of all unscanned arcs leaving u.

The following invariants are maintained during the execution of FAST-EVEN-
FACTOR:

(a) F is afeasible M-alternating forest;

(b) If an arc a = (u, v) is scanned, then either @ € M or both u' and v? are @))
JF-reachable.

At Step 1 forest F is initialized to contain all source nodes.
Consider an F-reachable node u! with L(u) # (). To enumerate unscanned arcs

—
leaving ul in G (M), we fetch an unscanned arc a = (u, v) from L). Ifa € M or

v? is F-reachable, then a is marked as scanned and another arc is fetched. (In the

former case a does not generate an arc leaving ul in G (M). In the latter case v is

already F-reachable. In both cases making a scanned preserves (1).)

Otherwise consider the arc a; := (u', v?) in 6 (M) and let Py denote the feasible
M -alternating path from a root of F to u'. Note that each node x2 in 6} (M) (forx €
V G) is either a sink or has a unique arc leaving x2. A single step occurs when v? is a
sink (Steps 8-9). The algorithm constructs an augmenting path P; = Py o a; leading
to v2. (Here L o Ly stands for the concatenation of L and L,.) If Pj is feasible, the
current even factor gets augmented according to Claim 2 and FAST-EVEN-FACTOR
terminates. Otherwise forest growing stops and the algorithm proceeds to Step 19 to
deal with a contraction.

A double step is executed when v? is not a sink (Steps 11-17). To keep all paths

leading to leaves of F even, we add arcs in pairs. Namely, there is a unique arc

_)
leaving vZin G (M), say ar = (2, whH (evidently (w, v) € M). Moreover, w! is not

a source node and (v2, w') is the only arc entering w!. Hence w! is not F-reachable.
If P;:= Pyoaj oas is feasible, then a; and a; are added to F thus making v? and
w! F-reachable.

@ Springer

Algorithmica (2012) 64:362-383 371

Algorithm 2 FAST-EVEN-FACTOR(G, M, sparsify)

1: Initialize forest F

2: while there exists an unscanned arc a = (4, v) € AG with ul e VF do

3: Fetch an unscanned arc a

4 if @ € M or v2 € V.F then mark a as scanned and continue [to Step 2]
5 a1 & (ul, v2)

6: Let Py be the even M -alternating path to ulin F [Py is feasible]

7

8

if v2 is a sink then [single step]
: Py &< Pyoay [P is augmenting]
9: if Pj is feasible then return (G, M A A(P;),NULL)

10: else [double step]

11: Letap = (2, w') be the unique arc leaving vZin 8(M) (w! ¢ VF]
12: Py < Pyoayoay [P;isan M-alternating]

13: if Pj is feasible then

14: Add nodes v2 and w! and arcs aj,ayto F

15: Mark a as scanned

16: continue [0 Step 2]

17: end if

18: endif

190 Mo<MAA(Py), M =M A A(Py)

20: Let C be the unique cycle in M|

21: Construct G, M’ from G, M by contracting C

22: if sparsify = FALSE then return FAST-EVEN-FACTOR(G’, M’, FALSE)

23: Construct the digraph H’ (see the text for an explanation)

24: (H,M ,F) < FAST-EVEN-FACTOR(H', M', FALSE)

25: Compare VH and VG;let Zy,...,Z; be maximal contracted sets and zp, ..., z; be
the corresponding composite nodes in H

2. G <=G/Zy/...]Z

27 if def(G', M) < def(G’, M) then return (G, M', NULL)

28: Mark as not scanned arcs of G belonging to M and arcs entering zp, ..., 2k

29: (G, M,F)< (G, M,F)

30: end while

31: return (G, M,F)

Otherwise a contraction is necessary. At this point we have a feasible M-
alternating path Py and an infeasible M-augmenting or M -alternating path P; (ob-
tained from Py by appending one or two arcs). Define My := M A A(Pp) and
M| :=M A A(Py). Let C denote the unique odd cycle in M. Now C fits My, hence
one can contract C and set G’ := G/C and M’ := My/C. If sparsify = FALSE, then
FAST-EVEN-FACTOR acts similar to NAIVE-EVEN-FACTOR, namely, it recurses to
G’, M’ (with sparsify = FALSE) and, thus, restarts the whole augmenting path com-
putation.

Let sparsify = TRUE. In this case the algorithm tries to recover some feasible M’-
alternating forest in G’. To accomplish this, a certain sparse digraph H’ containing
M’ is constructed (see below). Next FAST-EVEN-FACTOR is recursively called for
H', M’ (with sparsify = FALSE). The latter nested call may yield a breakthrough, that
is, find an even factor of a smaller deficiency. In this case the outer call terminates

@ Springer

372 Algorithmica (2012) 64:362-383

immediately. Otherwise by Lemma 2(b), the nested call returns a complete feasible
M -alternating forest 7 in H (which is obtained from H’' by contractions). This
forest is used by the outer call to continue searching for augmenting paths. It turns
out that nearly all arcs that were earlier fetched by the outer call need no additional
processing and may remain scanned w.r.t. the new, recovered forest. This way arc
scans are amortized.

Let us now describe how H’ is constructed. First take the node set of G, add all
arcs of M and all arcs (u,v) € AG such that (u', v?) € AF. Denote the resulting
digraph by H. Second, ensure that H is odd-cycle symmetric: if some arc (u, v) is
already added to H and the reverse arc (v, u) exists in G, then add (v, u) to H. Third,
set H := H/C. Note that H’ is a sparse spanning subgraph of G’ (i.e. VH' =V G/,
|AH’| = O(n)) and M’ is an even factor in H’'.

At Step 24 the algorithm recurses to FAST-EVEN-FACTOR(H', M', FALSE). Let
H and M be the resulting digraph and the even factor, respectively. Compare the
node sets of H and H. Clearly H' can be viewed as obtained from H by a series

of contractions (H/C being one of them). Let Zy, ..., Z; denote maximal disjoint
subsets of G such that H = H/Zi/.../Zk. Let z1, ..., zx denote composite nodes
of H that correspond to contracted subsets Z1, ..., Z. The algorithm applies these

contractions to G (rather than H) and constructs the digraph G =G /Z1/]...]Z.
Clearly M’ is an even factor in both G and H . If def(ﬁ/, M/) < def(H',M') =
def(G, M), then a breakthrough is reached, so FAST-EVEN-FACTOR terminates re-
turning G and M.

Otherwise the recursive call in Step 24 also produces a complete feasible forest F
for H and M. Recall that some arcs in G are marked as scanned. Since we identify
arcs of G with their pre-images in G, one may speak of scanned arcs in G To
ensure (1) the algorithm marks certain arcs a = (u, v) € AG as “not scanned”, i.e.
adds them back to their corresponding lists L(x). Namely, it resets marks for arcs
a € M that are present in G’ and for arcs that enter 71, ..., Zk- Finally, the algorithm
resets G := G , M := M, F := F and proceeds with growing F (using the adjusted
set of scanned arcs).

Suppose that FAST-EVEN-FACTOR had scanned all arcs of G and was unable to
reach a sink. Then the resulting forest F is both feasible (by (1)(a)) and complete
(by (1)(b)). In particular no augmenting path for M exists. By Claim 3 this implies
the maximality of M in G. The algorithm returns the current digraph G, the current
(maximum) even factor M, and also the forest F that certifies the maximality of M.

4.2 Correctness

The correctness of FAST-EVEN-FACTOR follows from Lemma 2, which, in turn, is a
direct consequence of invariant (1). In this subsection we focus on proving the latter.

First, we shall need some more convenient characterization of F-reachability.
Consider an odd-cycle symmetric digraph I and a node v € VI". Construct a new
odd-cycle symmetric digraph I" % v from I by adding a new node v’ and an arc
(v, V).

@ Springer

Algorithmica (2012) 64:362-383 373

Lemma 3 For I" and v € VI as above, either def(I" x v) = def(I") or def(I" xv) =
def(I") + 1.

Proof Each even factor N in I” is also an even factor in I" * v, hence def(I” x v) <
def(I") + 1. Also for an even factor N* in I" % v, define N := N*\ {(v,v")}. Then N
is an even factor in I" obeying |N| > |[N*| — 1. This implies def(I") < def(I" * v), as
required. g

Lemma 4 Let N be a maximum even factor in I and T be a feasible N -alternating
forest. If v! is T-reachable, then def(I" % v) = def(I").

Proof Consider the N-alternating path P from a root of 7 to v'. Since 7 is feasible,
N’ := N A A(P) is an even factor in I" and no arc of N’ leaves v. Now N* :=
N’ U {(v,v")} is an even factor in I" % v. Therefore def(I" x v) < def(I" * v, N*) =
def(I", N) = def(I"), which implies def(!” * v) = def(I") by Lemma 3. O

Lemma 5 Let N be a maximum even factor in I’ and T be a complete N -alternating
forest. va1 is not T -reachable, then def(I" x v) = def(I") + 1 and N is a maximum
even factorin I" % v.

Proof Consider the N-alternating forest 7* obtained from 7 by adding a new root
node (v')!. One can see that 7* is complete for N in I" % v. (Indeed, extending I
to I' * v adds to I" nodes (v')! and (v')? and an edge {v', (v')?} corresponding to
the arc (v, v’). Note that (v')! has no incident edges and v! is not 7 -reachable.) Now
Claim 1 implies that N is also maximum in I" * v, hence def(I” * v) =def(I") + 1,
as promised. g

Now consider the state of the algorithm right before Step 29. Let v be an arbitrary
nodein G.If ve VG — (Z1 U --- U Z;) then we say that v survives contractions.
Nodes surviving contractions are both present in G and G (and also in H and ﬁ,).

Lemma 6 Suppose that for v € VG, node v' is F-reachable in G. Let vy be the

. .= L=l . . .

image of vin G (and also in H) (i.e. vo = v if v survives contractions or vo = z; for
. . . = ==

some i otherwise). Then v(l) is F-reachable in H .

Proof The transformation of H into H' and of M into M can be viewed as follows:

(HM) (H.Mo) (H. M) (H' M)
I l I I @
(%, N% — (', N) > (I'"',N') > (I'', Nj)) > -+ — (I'*, N*¥)
Here I'0, ..., I'* are odd-cycle symmetric digraphs, N*, Né are even factors in I

obeying |[N'| = |Nj|. For each i there exists some odd cycle C' in I"' that fits N}
We inductively define "1 := "'/ C?, Nt := N[/ C'.

@ Springer

374 Algorithmica (2012) 64:362-383

Recall that the nested call to FAST-EVEN-FACTOR in Step 24 did not yield a
breakthrough, so M is maximum in H and Z is a complete M -alternating forest.

First assume that v survives contractions, i.e. vy = v. Suppose towards a contra-
diction that v} = v' is not F-reachable in H . By Lemma 5, M = N* is a maximum
even factor in H % v = I'* % v. Then by Claim 3, N(S)_1 is a maximum even factor
in I'*~! % v and hence so is N*~! (by the equality of sizes). Proceeding this way
in the backward direction we conclude that for all i =0,...,s, N ! is a maximum
even factor in I % v. In particular, NO = M is maximum in ' x v = H % v. Since
(v,v") ¢ M, M is also maximum in H and def(H % v, M) = def(H, M) + 1. This
contradicts Lemma 4 and the fact that v! is F-reachable.

Now let vg = z; for some i and suppose that v(l) = z,.l is not F-reachable in H .
Consider (2) and suppose that z; is a composite node in I"/ formed by contracting
an odd cycle C/~! in '/~ As shown earlier, N/ is a maximum even factor in
'/ xv. The latter, however, is false since C/~! fits Né - and therefore N/ has no arcs
leaving v (cf. Fig. 1(b) for an example). Hence N/ can be enlarged to N/ U {(v, v")}—
a contradiction. O

Lemma 7 Suppose that for v € VG that survives contractions, node v* is F-
reachable in G. Then v? is F-reachable in H .

Proof Since v? cannot be a source, it is reached by some arc (u!, v?) € AF. Here
u' is F-reachable and a = (u,v) ¢ M. Let ag = (uo, v) be the image of a under
contractions. According to Lemma 6 node u(l) is F-reachable. Observe thata € AH

and qg € AH' . If ap ¢ M, then v? is F-reachable (by completeness of F). Now

=/ . . = P~
assume ag € M . Then u(l) is not a source (since ag € M leaves ug) but is F-reachable

and is entered by a unique arc, namely (vz, u(l)). Hence v? must be F-reachable, as

required. g
Now everything is ready to complete the proof of correctness.

Lemma 8 Properties (1) are maintained throughout the execution of FAST-EVEN-
FACTOR.

Proof Property (1)(a) is clearly preserved. Changes to the set of scanned arcs in
Step 4 and Step 15 are consistent with (1)(b). It remains to prove that the latter is
maintained when FAST-EVEN-FACTORY tries to recover F and updates the set of
scanned arcs.

Consider the moment right before Step 29. Let a = (u, v) be an arbitrary arc in G.
We argue that either a is not marked as scanned, or a € M/, or both u! and v? are
F-reachable.

Indeed, consider a scanned arc a = (1, v) and let ag = (ug, vo) be its pre-image
in G. Here u = ug if ug survives contractions and u = z; if ug € Z; for some i. Since
all arcs entering z1, . .., zx are marked as not scanned in Step 28, v survives contrac-
tions and hence v = vg, so ag = (ug, v). Since the algorithm only decreases the set
of scanned arcs in Step 28, a@p must also be scanned in G. Clearly ag ¢ M since arcs

@ Springer

Algorithmica (2012) 64:362-383 375

belonging to M that are present in G’ were marked as not scanned. Therefore, both
u(l) and v? are F-reachable in G by (1)(b). Applying Lemma 6 to uo and Lemma 7

to v we see that both u and v are F-reachable. O
4.3 Implementation Details and Complexity

We employ arc lists to represent digraphs. When a subset U in a digraph I" is con-
tracted we enumerate arcs incident to U and update the lists accordingly. If a pair
of parallel arcs appears after contraction, these arcs are merged, so all the digraph
remains simple. The above contraction of U takes O(|V I"|-|U|) time. During FAST-
EVEN-FACTOR the sum of sizes of the contracted subsets telescopes to O(n), so
graph contractions take O(n?) time in total. A usual bookkeeping allows to undo
contractions and recover a maximum even factor in the original digraph in O (m)
time.

Let us explain how path feasibility checks, which are performed by FAST-EVEN-
FACTOR at Steps 9 and 13, can be made efficient. That is, given an even factor N
and a feasible N-alternating path Py we need to verify that an N-alternating or an
N-augmenting path P; (obtained from Py by appending one or two arcs) is feasible.
We make use of a certain data structure D that maintains N A A(Py) as a collection
of node-disjoint paths and cycles. The following operations are supported by D:

— INSERT(u, v): assuming that u is the end node of some path P, in D and v is the
start node of some path P, in D, add the arc (u, v) thus linking P, and P, or, in
case P, = P,, turning this path into a cycle;

— REMOVE(u, v): assuming that a = (u, v) is an arc belonging to some path or cycle
in D, remove a thus splitting the path into two parts or turning the cycle into a
path;

— IS-ODD-CYCLE(u, v): assuming that a = (u, v) is an arc belonging to some path
or cycle in D, check if a belongs to an odd cycle.

We make use of balanced search trees additionally augmented with SPLIT and
CONCATENATE operations (e.g. red-black trees or splay trees, see [3, 19]) to rep-
resent paths and cycles in D. This way, INSERT, REMOVE, and IS-ODD-CYCLE
take O(log|VI'|) time each. Now checking if P; is feasible is done by calling
INSERT(u, v) and, in case of a double step, REMOVE(w, v), and finally making
Is-ODD-CYCLE(u, v) request. If the latter indicates that P; is not feasible, the
changes in D are rolled back.

During FAST-EVEN-FACTOR(I", N, FALSE) we grow F in a depth-first fashion
and maintain the structure D corresponding to the current F-reachable node u! (i.e.
D keeps the decomposition of N A A(P) where P is the path in F from a root to u!).
When F is extended by arcs (u!, v?) and (v%, w!), w! becomes the new current node
and D is updated accordingly by the above INSERT(u, v) and REMOVE(w, v) calls.
When the algorithm backtracks from w' to u!, changes in D are reverted. This way,
each feasibility check costs O (log |V I'|) time.

Next, consider an invocation of FAST-EVEN-FACTOR(I", N, TRUE). The above
time bound of O (log |V I'|) per check is only valid if we grow F from scratch. How-
ever, the algorithm may reuse the forest that is returned by the nested FAST-EVEN-
FACTOR call in Step 24. This incurs an overhead of O(|VI'|log|V I'|) per forest

@ Springer

376 Algorithmica (2012) 64:362-383

recovery (this additional time is needed to traverse some arcs that are present in the
recovered forest F and update D accordingly). There are O (|V I"|) forest recoveries
during the call and the total overhead is O(|V I” |2 log |V I'|). This does not affect the
time bound of FAST-EVEN-FACTOR(I", N, TRUE).

Now consider an invocation FAST-EVEN-FACTOR(I, N, FALSE) and let us
bound its complexity (including recursive calls). The outer loop of the algorithm
(Steps 2-30) enumerates unscanned arcs. Since sparsify = FALSE, each arc can be
scanned at most once, so the bound of O (|AI'|) for the number of arc scans follows.
Reachability checks in Steps 9 and 13 cost O (log |V I'|) time. Constructing My, M1,
and C takes O(|VI'|) time. This way, FAST-EVEN-FACTOR(I", N, FALSE) takes
O((k+ 1)|AT'|log|VI'|) time, where k denotes the number of graph contractions
performed during the invocation.

Next, we focus on an invocation of FAST-EVEN-FACTOR(I", N, TRUE). More
than |AI"| arc scans are possible since forest recovery may produce new unscanned
arcs (Step 28). Note that forest recovery totally occurs O(|V I'|) times (since each
such occurrence leads to a contraction). During each recovery M generates O (|VI'])
unscanned arcs or, in total, O(|VF|2) such arcs for the duration of FAST-EVEN-
FACTOR. Also each node z; generates O (|V I'|) unscanned arcs (recall that we merge
parallel arcs and keep the current digraph simple). The total number of these nodes
processed during FAST-EVEN-FACTOR is O(|VI'|) (since each such node corre-
sponds to a contraction). Totally these nodes produce O(|V I |2) unscanned arcs.
Hence the total number of arc scans is O (|AL'| + |V |*) = O(VI|?).

Each feasibility check costs O(log|VI'|) time, or O(|V I |210g|VF |) in to-
tal. Finally, we must account for the time spent in recursive invocations during
FAST-EVEN-FACTOR(I', N, TRUE). Each such invocation deals with a sparse di-
graph and thus takes O((k + 1)|VI'|log|VI'|) time (where, as earlier, kK denotes
the number of contractions performed by the recursive invocation). The total number
of contractions is O(|V I'|), so the sum over all recursive invocations telescopes to
o(VI|*log|VTY)).

The total time bound for FAST-EVEN-FACTOR(/", N, TRUE) (including recursive
calls) is also O(|V I |2 log |V I'|). Therefore a maximum even factor in an odd-cycle
symmetric digraph can be found in O (n3logn) time, as claimed.

5 Extension to Square-Free Simple 2-Matchings

The presented sparse recovery approach looks rather generic and applies to other
problems that involve similar augmentation techniques. In this section we consider
square-free simple 2-matchings and give an improved version of Pap’s algorithm for
constructing one of maximum cardinality.

5.1 Notation and Definitions

From now on we consider an undirected bipartite graph G together with a fixed bi-
partition X 1Y = VG. Let G be endowed with node capacities b: VG — {1, 2}.
By a square we mean a simple circuit of length 4. The following is a counterpart of
Definition 1:

@ Springer

Algorithmica (2012) 64:362-383 377

Definition 6 Given G as above, a simple b-matching is a subset of edges M such that
|[M N&(v)| <b(v) for each v € VG. A simple b-matching is called square-free if it
does not contain (the edge set) of a square. The size of M is its cardinality and the
maximum square-free simple b-matching problem consists in finding a square-free
simple b-matching of maximum size.

Let the deficiency of a simple b-matching M in G be def(G,b, M) :=
Zveyb(v) — |M]|. The minimum of def(G, b, M) over all square-free simple b-
matchings M will be denoted by def(G, b).

Since b(v) is at most 2 for every node v, a simple b-matching decomposes into a
collection of node-disjoint paths and circuits (that must be even since G is bipartite).
The problem already looks non-trivial when b(v) = 2 for all v. We allow b(v) =1
since such nodes v eventually arise during contractions performed by the algorithm
(see below).

Like for even factors, given a simple b-matching M, one may consider the stan-
dard residual bipartite digraph 8(M), which captures information about possible
augmentations. Since G is bipartite, we no longer need to split nodes. Instead we
define Vg(M) :=VG.Eachedge e ={x, y} € EG (where x € X, y € Y) gives rise
to an arc (x,y) € AE(M) if e ¢ M and to an arc (y,x) € A_G)(M) if e e M. Set
cpy(v) :=|M N3&(v)| and call v € X (respectively v € Y) a source (respectively a
sink) if cpr(v) < b(v), i.e. v is not saturated by M w.r.t. capacities b.

We borrow the notions of M-alternating and M -augmenting paths (see Defini-
tion 2) and extend them to simple b-matchings. For an M-augmenting or an M-
alternating path P in 6(M), let E(P) be the set of edges of G that correspond to
arcs of P. This enables to speak of feasible M -alternating and M-augmenting paths
(cf. Definition 5):

Definition 7 Given a square-free simple b-matching M, let P be an M-augmenting
or an M -alternating path. Then P is called feasible if the simple b-matching M’ :=
M A E(P) is again square-free.

Now the optimality criterion (cf. Claim 1) and a counterpart of Claim 2 read as
follows:

%
Claim 4 M is a simple b-matching of maximum size iff G (M) contains no M-
augmenting path.

Claim 5 If P is an M-augmenting (respectively an M -alternating) path in Z;)(M),
then M' :== M A E(P) is a simple b-matching with |M'| = |M| + 1 (respectively
|M'| = |M]).

5.2 Contractions

Defining contractions for simple b-matchings is more delicate. First consider a square
Q in G. It may be viewed as an isomorphic copy of K> > induced by certain nodes

@ Springer

378 Algorithmica (2012) 64:362-383

--------0

Fig. 3 Contracting a square. (a) Edges of N are bold, others are dashed, the outline of Q is marked. (b)
Q is contracted, edges of N " are bold, others are dashed

{x1,x2, y1, y2} where x1,x2 € X, yi, 2 €Y (ie. EQ ={{x;,y;}1i=1,2, j=
1,2}). Suppose b(x;) = b(y;) =2 for all i. Then Q is said to fit a square-free simple
b-matching N if NN EQ = {{x1, y2}, {x2, y1}, {x2, y2}} and x is a source (w.r.t. N);
see Fig. 3(a).

To contract Q in G, one merges x; and x> and also y; and y; into composite
nodes x and y (respectively), removes the edges of Q from G, and finally redirects
edges incident to x; (respectively y;) to be incident to x (respectively y). One also
defines b'(x) :=b'(y) := 1 and b’ (v) := b(v) for all v € VG — V Q. This gives rise
to a new undirected bipartite graph G’ (denoted by G/ Q) and a simple 5'-matching
M’ := M\ EQ (denoted by M/Q); see Fig. 3(b). The properties of this contraction
procedure turn out to be analogous to those for even factors (see [15]; cf. Claim 3 and
Lemma 1):

Claim 6 Let N be a square-free simple b-matching in G and Q be a square that
fits N. Then for G', b’ and N' defined above, N' is a square-free simple b'-matching
in G'. Moreover, if N is maximum in G’, then N is maximum in G.

Lemma9 Let Q be a square in G and let N' be a square free simple b'-matching in
G’. Then there exists a square-free simple b-matching N in G with def(G,b, N) =
def(G’,b’, N).

Figure 4 demonstrates some cases arising in Lemma 9 during uncontraction of Q.
5.3 Naive Algorithm

One may solve the problem with an algorithm conceptually similar to that described
in Sect. 3. The algorithm (called NAIVE-SQUARE-FREE) performs a series of itera-
tions. On each iteration we are given a square-free simple b-matching and look for
an augmenting path P. The iterations terminate when no such path exists. If P exists
and is feasible then resetting M := M A E(P) increases the size of M. Otherwise (P
exists but is not feasible) a reduction is needed. We find the maximum prefix P’ of P
that is a feasible M -alternating path and reset M := M A E(P’). It can be shown [15]
that there exists a square Q fitting the current M. Set G' .= G/Q, M’ := M/Q and

@ Springer

Algorithmica (2012) 64:362-383 379

(b)

Fig. 4 Possible configurations appearing in the proof of Lemma 9. Graph G and a square-free simple
b-matching N are depicted. Edges of N are bold, others are dashed. (a) Node x has an incident edge
ex € N’ but y has no such edge. (b) Node y has an incident edge ey € N’ but x has no such edge. (c) Both
x and y have incident edges ey, ey € N " (respectively). The subcase when neither x nor y has an incident
edge of N’ in G’ is omitted due to its triviality

define b': VG’ — {1, 2} as explained above. Now in view of Claim 6 and Lemma 9
it remains to augment M’ in G’ (w.r.t. b').

To bound the complexity of NAIVE-SQUARE-FREE, observe that there are O (n)
iterations and O (n) phases (contractions) during each iteration. Computing P from
scratch takes O (m) time. Finally, checking P for feasibility and computing the maxi-
mum feasible M -alternating prefix of P takes O(n) time. (In contrast to even factors,
where checking for evenness of cycles forming a path-matching N is a non-local op-
eration that requires decomposing N, checking for absense of squares in M A E(P’)
is simpler and takes O (1) per each pair of consequent edges of P’.) Thus we get an
O (mn?)-time algorithm. To do better we need to apply sparsification as explained
below.

5.4 Faster Algorithm

As in Sect. 4 we need an explicit description of the forest-growing process. The
notions of M-alternating forest F, complete and feasible alternating forests, JF-
reachable, and F-unreachable nodes remain the same. (Note that they only depend
on Z})(M) but not on the underlying G.) From the high-level perspective the algo-
rithm (called FAST-SQUARE-FREE, see Algorithm 3 for a pseudocode) works similar
to FAST-EVEN-FACTOR. There are several noticeable differences, though.

First, G is undirected so FAST-SQUARE-FREE deals with edges of G rather than
arcs. Also nodes of G directly correspond to nodes of ?}) (M).

During recovery we construct a sparse spanning bipartite subgraph H' of G’ as
follows. First take the node set of G, add all edges of M, and edges {u, v} € EG such
that (u, v) € AF. Denote the resulting graph by H. Then define H' := H/Q thus ob-
taining a sparse spanning subgraph of G’ with a square-free simple »'-matching M’.

Denote by H and M a graph and a square-free simple E/-rnatching obtained
by recursing to FAST-SQUARE-FREE(H', b’, M’, FALSE). Compare of H' and H.
Let Q1, ..., Ok be squares contracted in H. (Unlike even factors where contractions
can be nested, these squares are always disjoint. Indeed, contractions only apply to
nodes with capacity 2 and produce nodes with capacity 1. This simplification does

@ Springer

380 Algorithmica (2012) 64:362-383

Algorithm 3 FAST-SQUARE-FREE(G, b, M, sparsify)
1: Initialize forest F
2: while there exists an unscanned edge e = {u, v} € EG withu € X, v €Y do
3: Fetch an unscanned edge e
4 if e € M or v € VF then mark e as scanned and continue [0 Step 2]
5: a1 < (u,v)
6: Let Py be the M-alternating path to u in F [Py is feasible]
7
8

if v is a sink then [single step]
: Py &< Pyoay [P is augmenting]
9: if P; is feasible then return (G, M A E(P;), NULL)

10: else [double step]

11: Let ay = (v, w) be the unique arc leaving v in 6)(M) [we¢ VF]
12: Py < Pyoayoay [Py is M-alternating]

13: if Pj is feasible then

14: Add nodes v and w and arcs ay, ap to F

15: Mark e as scanned

16: continue [0 Step 2]

17: end if

18: endif

190 My<MAE(Py), My < M A E(Py)
20: Let Q be the unique square in M

21: Construct G’, b’, M’ from G, b, M by contracting Q

22: if sparsify = FALSE then return FAST-SQUARE-FREE(G’, b’, M’, FALSE)
23: Construct graph H' (see the text for an explanation)

24: (H,b,M,F) < FAST-SQUARE-FREE(H’, b', M’, FALSE)

25: Compare VH and VG; let Qi,...,0Q0r be contracted squares and
(x1,¥1)s - .-, (xg, i) be the corresponding pairs of composite nodes in H (x; € X,
yi €Y)

2. G <G/Qy/.../0k

27: ifdef(G',b', M') < def(G', b, M’) then return (G',b', M',NULL)

28: Mark as not scanned edges of G belonging to M and edges incident to yq, ..., Yk
29: (G,b,M,F)«< (G, b, M,F)

30: end while

31: return (G,b, M,F)

not seem to help much, however.) Define G = G/Q1/.../Qrand let xq1, ..., x; €
X and yip,...,yx € Y be the composite nodes of H that correspond to contracted
squares Q1, ..., Q. Assuming that the deficiency check in Step 27 did not succeed,
the algorithm marks as “not scanned” edges of M that are still present in G’ and also
edges incident to yi, ..., yx. Then it continues to grow the M -alternating forest F.

5.5 Correctness
The correctness of FAST-SQUARE-FREE is implied by the following

Lemma 10 (Cf. Lemma 2) FAST-SQUARE-FREE gets an undirected graph G, node
capacities b: VG — {1, 2}, a square-free simple b-matching M in G, and an addi-

@ Springer

Algorithmica (2012) 64:362-383 381

tional “sparsify” flag. It returns an undirected graph G obtained Jfrom G by a series
of contractions, capacities b: VG — > {1, 2} and a simple square free b-matching M
in G. Additionally it may return an M-alternating forest F in G. Exactly one of the
following cases applies:

(a) def(g é E) def(G,b, M) — 1 and F is undefined; or

(b) def(G M) = def(G, b, M) M is maximum in G, M is maximum in G, and
Fisa complete feasible M-alternating forest in G.

The proof proceeds analogously to that of Lemma 2 and relies on the following
invariants that are maintained during the execution of FAST-SQUARE-FREE (cf. (1)):

(a) F is afeasible M-alternating forest;
(b) If anedge e = {u, v} withu € X, v €Y is scanned, then eithera e M or (3)
both u and v are F-reachable.

Property (3)(a) is obvious while (3)(b) will be established below. O

As in Sect. 4.2, we characterize the set of reachable nodes. For an undirected
bipartite graph I" with a bipartition X UY = VI, capacities b: VI" — {1, 2}, and
anode v € X, let I" % v denote the bipartite graph formed from I" by adding a new
node v’, connecting it to v, and setting b(v") := 1. (Obviously v’ goes to Y.)

The next statements are direct analogues of Lemmata 3, 4, and 5:

Lemma 11 For a bipartite graph I' and a node v as above, either def(I” * v, b) =
def(I", b) or def(I" % v, b) =def(I", b) + 1.

Lemma 12 Let N be a maximum square-free simple b-matching in I' and T be a
feasible N -alternating forest. If v € X is T -reachable then def(I” x v, b) = def(I", b).

Lemma 13 Let N be a maximum square-free simple b-matching in I' and T be
a complete N-alternating forest. If v € X is not T -reachable then def(I” * v, b) =
def(I", b) + 1 and N is a maximum square-free simple b-matching in I" x v.

Based on these results we now establish -reachability of certain nodes in G
Consider the state of the algorithm right before Step 29. Nodes in VG — (V Q1 U
-+ U V Qy) are said to survive contractions. These nodes are both present in G and

G.

Lemma 14 (Cf. Lemma 6) Suppose that a node v € X is F-reachable. Let vy be
the image of v in G (and also in ﬁ/) under contractions (i.e. vo = v if v survives
contractions or vy = x; for some i). Then vy is F-reachable.

The proof is parallel to that of Lemma 6. g

Lemma 15 (Cf. Lemma 7) Suppose that an F-reachable node v € Y survives con-
tractions. Then v is F-reachable in G .

@ Springer

382 Algorithmica (2012) 64:362-383

The proof proceeds similar to Lemma 7. Namely, since v € Y, it cannot be a
source, so v must be reached by some arc (u, v) € AF. Here u is F-reachable and
e={u,v} ¢ M. Let ey = {ug, v} be the image of e under contractions, i.e. ug = u
if u survives contractions and u(is the composite node containing u otherwise. In
both cases uq is F-reachable (cf. Lemma 14). Note that e € EH and ¢ € EH.If
ey ¢ ﬁ,, then v is F-reachable (by completeness of F).Leteg € M. Then U cannot
be a source. (This is where we distinguish ourselves from Lemma 7: eg is incident to
uo and the latter, being a composite node, has unit capacity.) Hence uq is F-reachable
and is entered by a unique arc, namely (v, ug). Therefore v must be F-reachable, as
required. g

Now Lemmata 14 and 15 imply that (3)(b) is preserved.
5.6 Complexity

The analysis from Sect. 4.3 extends to FAST-SQUARE-FREE in a straightforward
way. Also when the current square-free simple b-matching is altered by adding one
edge and (possibly) removing another, the new b-matching can be easily checked for
presence of squares in O (1) time. In particular, there is no need for a special data
structure for maintaining connected components of the current solution. This saves
O (log n)-factor in complexity so the whole algorithm runs in O (1) time.

6 Conclusions

We have presented the sparse recovery technique which enables to achieve a speed-
up in various algorithms that rely on augmenting paths and contractions. Certain re-
lated problems are still to be addressed. For example, the algorithm of Takazawa [18]
solves the weighted even factor problem in O (mn?) time and also involves recom-
puting the alternating forest from scratch on each phase. The maximum independent
even factor problem [10], which involves matroids, is also solvable by the methods
similar to those discussed above.

Acknowledgement The author is thankful to the anonymous referees for useful comments and sugges-
tions.

References

1. Babenko, M.: A faster algorithm for the maximum even factor problem. In: Proc. 21st International
Symposium on Algorithms and Computation, pp. 451-462 (2010)

2. Balas, E., Pulleyblank, W.: The perfectly matchable subgraph polytope of an arbitrary graph. Combi-
natorica 9, 321-337 (1989)

3. Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Introduction to Algorithms. McGraw-Hill Higher
Education, Boston (2001)

4. Cunningham, W.H.: Matching, matroids, and extensions. Math. Program. 91(3), 515-542 (2002)

5. Cunningham, W.H., Geelen, J.F.: The optimal path-matching problem. Combinatorica 17, 315-337
(1997)

6. Cunningham, W.H., Geelen, J.F.: Combinatorial algorithms for path-matching. Manuscript (2000)

@ Springer

Algorithmica (2012) 64:362-383 383

11.
12.

13.

16.

17.

18.
19.

. Cunningham, W.H., Geelen, J.F.: Vertex-disjoint dipaths and even dicircuits. Manuscript (2001)
. Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite graphs. J. Comb. Theory,

Ser. B

. Hopcroft, J.E., Karp, RM.: An n/2 algorithm for maximum matchings in bipartite graphs. SIAM J.

Comput. 2(4), 225-231 (1973)

. Iwata, S., Takazawa, K.: The independent even factor problem. SIAM J. Discrete Math. 22, 1411-

1427 (2008)

Kiraly, Z.: C4-free 2-factors in bipartite graphs. EGRES Technical Report TR-2001-13 (2001)
Kobayashi, Y., Takazawa, K.: Even factors, jump systems, and discrete convexity. J. Comb. Theory,
Ser. B 99(1), 139-161 (2009)

Micali, S., Vazirani, V.: An O (4/]V][-|E|) algorithm for finding maximum matching in general graphs.
In: Proc. 45st IEEE Symp. Foundations of Computer Science, pp. 248-255 (1980)

. Pap, G.: A combinatorial algorithm to find a maximum even factor. In: Proc. 11th Integer International

IPCO Conference on Programming and Combinatorial Optimization, pp. 66—80 (2005)

. Pap, G.: Combinatorial algorithms for matchings, even factors and square-free 2-factors. Math. Pro-

gram. 110(1), 57-69 (2007)

Pap, G., Szego, L.: On the maximum even factor in weakly symmetric graphs. J. Comb. Theory, Ser.
B 91(2), 201-213 (2004)

Spille, B., Weismantel, R.: A generalization of Edmonds’ matching and matroid intersection algo-
rithms. In: Proc. 9th International IPCO Conference on Integer Programming and Combinatorial Op-
timization, pp. 9-20 (2002)

Takazawa, K.: A weighted even factor algorithm. Math. Program., Ser. A, B 115(2), 223-237 (2008)
Tarjan, R.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia (1983)

@ Springer

	Improved Algorithms for Even Factors and Square-Free Simple b-Matchings
	Abstract
	Introduction
	Preliminaries
	Naive Algorithm
	Augmentations
	Complexity

	Faster Algorithm
	Augmentations
	Correctness
	Implementation Details and Complexity

	Extension to Square-Free Simple 2-Matchings
	Notation and Definitions
	Contractions
	Naive Algorithm
	Faster Algorithm
	Correctness
	Complexity

	Conclusions
	Acknowledgement
	References

