
 Procedia Engineering 69 (2014) 1286 – 1295

Available online at www.sciencedirect.com

1877-7058 © 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of DAAAM International Vienna
doi: 10.1016/j.proeng.2014.03.121

ScienceDirect

24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013

Dataflow Computing and Its Impact on Automation Applications

Peter Panfilova,*, Sergey Salibekyanb
aMinistry of Economic Development, 1st Tverskaya-Yamskaya St. 1,3, Moscow 125993, Russian Federation

bNational Research University – Higher School of Economics, Myasnitskaya St. 20, Moscow 101000, Russian Federation

Abstract

Developing efficient, scalable and reconfigurable supervisory control and data acquisition (SCADA) systems presents a unique
set of challenges inherent in the development of distributed computer architectures, algorithms, protocols and procedures for
large-scale networked industrial automation applications. A research project on dataflow automation system architecture is
presented exploring the research and engineering issues related to the development of computer architecture for the next
generation distributed supervision and control systems that exploits and leverages dataflow computation model. Major focus of
research is on new object-attribute architecture of dataflow computing environment which is particularly suitable for the design
and implementation of reconfigurable scalable heterogeneous distributed applications in industrial automation area. The state-of-
the-art in the application of the dataflow model of computation is accompanied with description of software tools developed for
programming, simulation, debugging and test of automation applications that follow the object-attribute dataflow model.
© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of DAAAM International Vienna.

Keywords:industrial automation; dataflow; controlflow; parallel processing; multiprocessing; heterogeneous system; distributed
controlapplication; object-attribute architecture

1. Introduction

The current state of industrial automation technology is such that the supervision and control of complex plants
cannot be achieved without considerable costs in terms of hardware infrastructure and software development.
Modern industrial SCADA installations represent heterogeneous parallel and distributed processing platforms that
demonstrate complex real-time and asynchronous behavior at large scale. Efficient design of such systems requires

* Corresponding author. Tel.: +43-650-531-3133.

E-mail address: panfilov@miem.edu.ru

© 2014 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of DAAAM International Vienna

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.03.121&domain=pdf

1287 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

the use of appropriate models of parallel computations to provide efficient mechanisms for data and program
abstraction, computations parallelization and dynamic (re)allocation to available computing resources, such as those
provided by the dataflow model of computations.

The dataflow program execution model is an alternative to the control flow execution model exemplified by von
Neumann computer architecture. An important advantage of dataflow computation paradigm over the control flow
paradigm is that it constitutes a powerful model of parallel computation. There are two major problems associated
with von Neumann (stored-program) computer architecture that prevents from efficient multiprocessing and
distributed computing application development. These are memory latency and synchronization overhead [1]. The
dataflow computer architectures tackle these with inherently powerful model of parallel computation. Unlike
controlflow model that uses the program counter as a special point of control of a conventional sequential computer,
the dataflow model describes computation in terms of locally controlled "triggering" events each corresponding to
the launch of computation in a dedicated functional unit (FU). The dataflow model does not imply a limit on the size
or complexity of functional units; it can be represented by a single instruction, or a sequence of instructions. A
functional unit operation is triggered when all the input data it requires is available. In a dataflow execution, many
FUs may be ready to execute simultaneously (locally controlled by their operand availability), and thus these FUs
represent many asynchronous concurrent computation events.

First works on dataflow computer architecture dated back to the early 1970s dealt with the use of dataflow
program graphs to represent and exploit the parallelism in programs [2, 3, 4]. In computer architecture, dataflow
program graphs were originally applied to computer architecture design as a machine-level program representation,
while in concurrency theory dataflow concepts were extensively used for modeling parallel software. Multithreaded
architectures, popular nowadays, can be considered as having dataflow roots from this early research. The ability of
the dataflow model to tolerate latency, by switching dynamically between ready computation threads, and to support
low overhead distributed synchronization in hardware, has made it the candidate of choice for what has later been
called "latency tolerant" architectures and applications.

A dataflow computation model [5] influences many areas of computer science and engineering research and
development from processor design and high level logic design to signal processing, multithreaded architectures and
distributed computing, from programming languages and parallel compilation to programming of systolic and
reconfigurable processors.

Deploying dataflow computing in the industrial automation arena presents challenges in three key areas: parallel
processing, scalability, and heterogeneous computing. The first of these is the need to efficiently support parallel
processing in large-scale networked industrial automation environment. The second is the need to ensure scalability
in the face of continuously evolving industrial distributed supervision and control projects. The third is that,
increasingly, these solutions are being deployed in environments that are heterogeneous by its nature, and that need
to reconfigure to minimize infrastructure costs. This paper reviews the recent developments in the area of
reconfigurable heterogeneous distributed computing for automation (supervision and control) application. The first
section review the state-of-the-art of the dataflow computing as it is manifested in new object-attribute approach to
the dataflow computation model implementation. The second section proposes the object-attribute dataflow model as
a programming model for reconfigurable computing in automation application. The third section describes software
tools that allows for easy and intuitive programming and debugging of dataflow automation applications.

2. Object-Attribute Dataflow Computing Concept

In this section, we present a new computer architecture that belongs to the dataflow class (that is, computations in
a system are data-driven) and that was introduced in early 2000s under the names of attribute or A-architecture and
object-attribute or OA architecture [6-8]. Dataflow control in the OA-architecture is provided, firstly, by a new way
of machine algorithm description (OA-programming language instructions are used mainly for description of data
circulating in a computer system) and, secondly, by different (internal) organization of the functional unit operation
to realize computations (arithmetic, logical, etc., operations). A functional unit (FU) in OA-architecture receives
information pairs(not instructions) each of which is essentially a collection of data and a tag/attribute describing it.
In early OA literature [6] such a tag/attribute was also frequently referred to as a milli-instruction. Hence follows the
another name for the proposed architecture –milli-instruction architecture.

1288 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

There are several notions in the foundation of the OA-architecture of dataflow computer system. These are as
follows.

An information pair (IP) (attributed data) – a set of a computation load (data or references to data) and a
tag/attribute (unique identifier) as a description of the load. For example, let us consider an information pair

{TemperatureRoom=19},

where “=” is a sign which shows that the attribute is coupled to the tag.

Milli-command or milli-instruction or milli-operation (mOp) is an IP, where tag refers to the mechanism of data
processing by the FU.

A capsule is a set of IPs that describe an object. The capsule can be used for data abstraction. Each IP in capsule
corresponds to specific feature of the described object. Capsule is loaded to the RAM of the computing node. For
example, a Box object can be represented with a following capsule:

{Object=box, Material=cardboard, HeightInCentimeters=20, WidthInCentimeters=50, DepthInCentimeters=40}.

A functional unit (FU) is a virtual (implemented in software) or an actual (hardware) data processing unit. The

FU has internal registers (the set of registers is called a context of the FU in the rest of paper) and can execute some
set of milli-commands, described by an algorithm of unit performance.

Fig. 1. Object-Attribute Dataflow Computer System Concept.

By using information pairs grouped into capsules one can describe different objects, specify algorithms of
computational loads, and construct complex abstract models of sophisticated controlled objects or plants. The
similar options are implemented in object-oriented programming (OOP), which is popular nowadays.

In order to realize a model that describes complex object or plant, it suffices to set a pointerto a random access
memory (RAM) location where the capsule that describes another object is stored. For instance, the following
structure is possible:

Object{Name = “PlantElectricalAppliance”, Rooms = RoomsPlant}
RoomsPlant{PumpingRoom=PumpingRoomEquipment, Process=ProcessEquipment}
PumpingRoomEquipment{PumpDrainage=PumpDrainageState}
Substation{Transformer1=Transf1State,Transformer2=Transf2State}
PumpDrainageState{OnOff=Yes}
Transf1State{VoltageVolts=220,CurrentAmperes=50,TemperatureDegrees=25}
Transf2State{ VoltageVolts=360,CurrentAmperes=60,TemperatureDegrees=23},

where “{…}” is a notation for a capsule; and “=” is a sign to couple attribute to a tag of load (data or a data pointer).
Here before the sign “{“, there is a capsule name, which specifies a pointer to a RAM location of the capsule.

1289 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

By applying capsules and load and pointers, one can describe any object (as in OOP) of any complexity; such
informational structures are not specified in the program code beforehand, but rather generated during program
execution according to the algorithm tailored in the FU implementation. This way, a computer system can create
OA-structures that describeobject which is unknown to a programmer beforehand by forming capsules and
specifying pointers between them, which considerably enhances automation system flexibility and makes it
“intelligent”. Such structure is called an object-attribute tree or abstraction tree, since in most of cases a meaningful
description of a sophisticated object appears to be a hierarchical structure represented as a tree graph (Fig. 2).

Fig. 2. Abstraction Tree of the Object-Attribute Architecture.

2.1. Object-Attribute Computer System

A dataflow computer system of the OA-architecture is comprised of multiple functional units interconnected via
a common data-attribute bus (Fig. 3). Data transfers in a bus appears in the form of information pairs, where
attribute is described by an operand attached to it as a (computational) load, and both a data and a pointer to data or
capsule can be an operand. This kind of attribute is called “milli-instruction”, since it defines an instruction on the
operation to be carried out on the data withfunctional unit. Being grouped into capsules, milli-instructions are easily
embedded into an abstraction tree and turn it from a structure with passive descriptors of an automation object/plant
into a semantically rich knowledge base with flexible responses to any event registered in a system.

Fig. 3. The Conceptual Object –Attribute Architecture of a Distributed Dataflow Computer System.

LOAD

Attribute

CAPSULE

VARIABLE

Pointer

1290 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

A State Machine functional unit in an OA computer system serves for execution of the machine algorithm. A
computing sequence in an OA computer system is defined in the form of a capsule, for instance:

{Adder1.FirstSummand = 10,
Adder1.SecondSummand = 15,
Adder.Result = SumVariable},

where identifier for a certain functional unit is before the dot and a milli-instruction to be executed by this FU is
after the dot.

The State Machine FU contains a register where a pointer to the capsule with a sequence of the milli-instructions
(a milliprogram) and a pointer to the information pair being sent to the bus at this moment are stored. The State
Machine FU sequentially issues milli-instructions from the capsule that contains the milli-program to the bus. For
example, in order to output results of computations of the IntegerALU FU to the console (display it on the screen),
one should set the following milli-program:

{IntALU.ResultYield=temp, Console.Output=temp(0)},

where temp(0) is address of the load of milli-instruction (Fig. 4) and the parentheses contain an initial value
recorded in the load.

During the first cycle the head of the State Machine issues milli-instruction {IntALU.ResultYield=temp} to the
bus. The bus receives milli-instruction and sends it to the IntegerALU FU, which records result of computations to
the temp location. Then result of computations of the IntegerALU FU is recorded to theload of the next information
pair. During the next cycle the head of the State Machine moves to the next milli-instruction, which load has a value
having been recorded during the previous cycle and intended to be the output to the console. The State Machine FU
issues this milli-instruction with the load to the bus, and the OutputConsole FU outputs this value to the screen (Fig.
4).

Fig. 4. An Example of the State Machine FU’s Performance: a Console Output Operation.

In order to make an unconditional branch, the State Machine FU executes the Branch milli-instruction: the head

moves to the address recorded in the load of the milli-instruction. There are special milli-instructions for
implementation of a conditional branch such as DetermineAddrConditionalBranch, BranchOnTrue, and

1291 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

BranchOnFalse. The first milli-instruction allows for loading address of a conditional branch into the internal
register for it in the State Machine FU. The load of the other two milli-instructions contains a logical variable
specifying a condition for branching. If the variable in the load of BranchOnTrue has value “True”, then the head of
the State Machine starts fetching milli-instructions by the address being stored in the address register of the
conditional branch. Otherwise a branch does not occur and the head moves to the another milli-instruction location
during the next cycle. If the load of BranchOnFalse contains “False”, the branch is carried out in much the same
way. For example, the following fragment of a milli-program returns the message whether the value in the
accumulator of the IntegerALU FU is positive or negative:

{SM.Addr.Log.Branch.Set =MarkNegative
IntALU.AccumulSet = Variable,
IntALU.Subtract=0,
IntALU.FlagLessThanZeroPut=temp, IntALU.BranchOnFalse = temp(False),
OutputConsole.Output =“Positive value”,
SM.Stop,
MarkNegative[OutputConsole.Output =“Negative value”]},

where IntALU.FlagLessThanZeroPut is a milli-instruction to set the flag of the negative result; “[…]” is a notation
for an informational pair (identifier before square brackets appears to be a notation for this informational pair); and
MarkNegative[…] is a RAM location address of the informational pair.

2.2. OA-Programming Model

Nowadays object-oriented languages can create programming models that function only in one computer. There
exist means for object parameters transmission in Corba and DCOM computer networks, but implementation of a
programming model which would work as single whole on several computing nodes interconnected by a network of
any topology has never been realized up to now. The OA architecture offers a solution to this issue.

For making a description of performance of a distributed OA model, it is necessary to understand the way
abstract data synthesis is carried out in the OA architecture. The synthesis begins with so-called atoms (elementary
abstractions). In the context of automation systems an atom is a signal captured from a sensor and supplied with an
attribute by which data is identified in an OA system (Fig. 1). For instance,

{“The temperature in room no.1”=22},
{“The flow of water in the central piping”=12.4},
{“Actuation of the fire detector in the hall”=False}, etc.

A virtual DataAcquisitionUnit takes a sensor reading, assigns a proper attribute or milli-instruction to it, and

produces the obtained informational pair to the bus. The bus transmits the informational pair to the corresponding
functional unit, which is to process it. Upon atoms receipt certain functional units of the OA system conduct their
analysis and synthesis of the capsules that describe higher-order abstractions and control signals for the equipment.
For example, fire detectors, registering inflammation in a room, issue the following milli-instructions for the
functional unit controlling a certain room (FireControl):

{FireControl.ReceiveSignal={FireDetectorNumber=N}},

where the name (identifier) of the FU is before the dot (FireControl) and a field after dot is a command for the FU
(ReceiveSignal), N is a fire detector number, and a capsule as an informational pair payload may be defined by the
following structure: Attribute={a list of informational pairs included in the capsule}.

Having received the milli-instructions, the FireControl FU determines the room on fire from the detector number
and gives the following milli-instruction for displaying:

1292 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

{Display.Output={RoomNumber=M, Status=“Warning”}}.

If the FireControl FU receives a message on actuation of another detector in room M, then it generates the

following abstractions:

{Display.Output={RoomNumber=M, Status=“Fire”},
FireExtinguishingSystem={RoomNumber=M, Instruction=Activate}}.

Virtual FUs, participating in abstraction synthesis, and capsules, resulted from that synthesis, may be located in

the random access memory of several computing nodes (computers or controllers) interconnected with a computer
network or other data communication links. Having obtained a synthesized abstraction, a FU transmits it to the
higher level in the informational tree located either in its computing node's RAM or in the RAM of other computing
node (Fig. 5). A programming model of a controlled plant appears to be a single whole for a programmer; and only
some program sections are highlighted with special OA language constructions identifying the computing nodes for
storing the functional units and capsules being synthesized in the random access memory. There is a computer,
realizing a system operator’s Automated Workplace (AWP) software, at the top of the abstraction tree. And a
AWP’s graphical interface is also organized on the basis of the OA architecture (graphical elements on the screen
can be realized as the above mentioned virtual units with the milli-instructions of changing color, changing
visibility, etc.). This makes it possible to get rid of a cumbersome OPC interface used for integration of an
automation system and a SCADA software [5].

Fig. 5. Abstraction Tree Distribution among Computing Nodes).

A programmer writes a milliprogram for automation and visualization of data obtained in a unified programming

environment and can realize it as an all-in-one entity (in modern distributed automation systems programs are
individually created for each node). And only at an automation object parts of an OA programming model are
distributed among different computing nodes: a program is loaded on the main computing machine (host computer),
and then the required parts of the model are automatically distributed from the host among the other computing
nodes of the automation system.

CENTRALCOMPUTI
NG

NODE

COMPUTING
NODE

SOURCE OF
ATOMS

KEY
ABSTRACTION

1293 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

3. Object-Attribute Dataflow Automation System Design

Let us consider an automation system’s OA computing environment debugging procedure. A programmer runs a
developed software model of an automation object on his/her computer: all the virtual functional units and capsules
are created in the random access memory of one computing device. Then, in order to emulate signals which are
expected to be coming from the sensors, the programmer specifies milli-instruction or information pair or a set of
milli-instructions/information pairs, issues them on the OA computing environment bus, and watches responses
from the computing environment to the incoming data. A computing environment response can be traced through
the milli-instructions exchanged between the FUs of the OA computing environment (in a real object sensors are the
information pair suppliers: they read data and add the corresponding attributes to them). Modeling of behavior of
more complicated control objects or plants requires development of milli-instruction sequences, determination of
time of informational pair arrival into a system emulator, and creation of special software models emulating
equipment behavior (equipment models change the state depending on informational pairs, which describe output
signals of an automation system).

For instance, when modeling fire extinguishing system operation, it is possible to specify the milli-instruction
with the following attached capsule

{FireControl.ReceiveSignal={FireDetectorNumber=N}}

and produce it to the bus, and then watch a reaction from the system via the console displaying milliinstructions in
the bus. If the console has the capsule

{Display.Output={RoomNumber=M, Status=“Warning”}},

it means that the FireControl unit has come into action properly (it has determined a room number with the detector
by the detector number and forwarded the “Warning” status message to the output device).

Then it is possible to send the following information structure to the bus:

FireControl.ReceiveSignal={FireDetectorNumber=N2}.

If the detector is in room M, then the FireControl FU is to produce:

{Display.Output={RoomNumber=M, Status=“Fire”},
FireExtinguishingSystem={RoomNumber=M,Instruction=Activate}}.

If there is no informational pair expected on the bus, then it means that the program contains a bug.
Object-attribute simulation modeling of automation system operation has some advantages ensured by the OA

architecture. They are as follows:

- There is a possibility of the offline simulation (without the need of using real equipment in simulation testbed)
and debugging of distributed automation systems.

- There is no need to describe informational structures in advance (as it is the case with data structures and
objects in OOP): every structure can be composed “on the fly” in the OA language, which considerably simplifies
simulation process.

- There is a possibility of saving test cases in text files without special editing programs.
- During simulation there is a possibility of tracking not only external reactions of an automation system (that is,

displaying messages for a system operator and issuing control signals for the equipment) but the internal logic of a
program execution if necessary, since a bus shows messages between the functional units implementing a system
performance algorithm.

1294 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

- Viewing of simulation results is very convenient: in order to extract the needed information from the bus data
stream, different filters are utilized; they sort out and display only those informational pairs which meet the desired
conditions.

- The process of simulation modeling is clearly arranged: all the signals read from sensors are supplied with an
attribute which is displayed as an identifier. This helps to easily find out what parameters are “injected” in the
system during simulation and what control signals will be produced by the system to the “outside world”. Similarly,
entire information structures to be synthesized during modeling can be easily identified by tags.

- The abstraction tree mechanism makes it possible to carry out development and modeling not only of a whole
program but its sections: for instance, a code only for the bottom level of abstractions tree (synthesis from
informational atoms) is first created, and then simulation starts and information structures to be produced to a higher
level are determined. After that a program for the next abstraction level is developed and simulation of two levels
simultaneously is conducted, etc. It is possible to carry out a top-down software development, when the top
abstraction level is first written, with a lower abstraction level being simulated by a stub as its information provider.

3.1. Object-Attribute Automation System Architecture Implementation

Functional units in an automation system are divided into two large classes. They are units for data exchange
with “the outside world” (sensor readers, control signal output devices, etc.) and units for implementation of a
system operation algorithm (adders, multipliers, memory management units, data storage cells, etc.) (Fig. 6).

A bus, by means of which a functional units carry out milli-instruction exchange, may be realized either in
software (a virtual bus) or in hardware (internal processor bus, a switch line on a printed circuit board, a local area
network, a modem or a wireless communication link, etc.), which permits creation of a distributed automation
systems of any topology.

Fig. 6. An example of the object-attribute automation system implementation.

Functional units can be both hardwired and softwired (virtual functional units, VFUs). Hardware

implementations of the OA architecture in the form of special-purpose processors, PLCs or electronic devices are
under development. Currently, most of experimental developments, debugging and test of pilot systems of an OA
architecture are being carried out on the basis of its software implementation. It permits implementation of a virtual
OA machine in a computer system of a traditional (von-Neumann) architecture, which considerably reduces costof
development and test of research prototypes.

1295 Peter Panfi lov and Sergey Salibekyan / Procedia Engineering 69 (2014) 1286 – 1295

In order to build unified OA programming environment on all the FUs in a system, a programmer must write the
code for realization of virtual FU's logic and the virtual data&attribute bus (DABus) FU code for data exchange
between the FUs. During system execution the virtual FUs run on all the computers with the AWP software and on
PLCs and carry out computations and data exchange between them. Compatibility of different hardware platforms is
achieved due to the fact that logic of virtual FUs is independent on computing node architecture.

Unified OA programming environment is created in the following way: an OA computing environment is
launched and interfaces for exchanging data between neighboring nodes are adjusted on each computing node. Then
an executable program is loaded on the host computer, and software modules of the OA model are automatically
distributed among all the computing nodes of a distributed automation system, and all the system starts up.

An OA automation system can operate with minimum overheads on any hardware platforms like it is with the
Java language: in order to transfer an OA program to another platform, a programmer must write the code for this
platform to implement operation algorithms for all the types of functional units.

4. Conclusion

As a model of computation, dataflow has a great potential for distributed industrial automation applications. It
has been used as a concept for computer architecture, as a model of parallel processing in software, as a highlevel
design model for high-performance parallel computer hardware. It has demonstrated its flexibility and efficiency at
representing computation in diverse application areas from processor design to development of heterogeneous
reconfigurable distributed computing applications.We believe that the dataflow model is not only stillrelevant in
many computing research areas, but also that industrial automation area is among application areas that can benefit
from this model. Our experiments with OA-architecture of the dataflow computing environment in supervision and
control applications demonstrates great potential of dataflow model in this area.

For the future developments of the OA-architecture presented in this paper we plan the realization of a distributed
version of the OA-platform and implementation of a PLC-based OA-platform with experimental testing of their
capabilities within typical automation systems is anticipated in near future. Object-attribute programming
environment improvement is conducted towards creation of an index-based addressing system (it enables extension
of address space of the OA environment to several computing nodes), as well as the implementation of mechanism
of capsule transfer between computing nodes. Also an implementation of functions for the OA-software upload and
for automatic distribution among computing nodes of the automation system is underway now, and an extension of
the OA-programming language capabilities is planned. The activities associated with creation of a test bed for
debugging and test of the object-attribute dataflow (software and hardware) applications, as well as the development
of benchmark automation applications, such as fire alarm systems and systems for automated fire extinguishing,
room access control, room climate control, and conveyor product quality control, are planned in near term.

References

[1] Arvind , R.A. Iannucci, A critique of multiprocessing von Neumann style, Proc. of the 10th annual international symposium on Computer
architecture, June 13-17, 1983, Stockholm, Sweden, pp. 426-436. [DOI:10.1145/800046.801684]

[2] A. L. Davis, R. M. Keller, Data flow program graphs, IEEE Computer. Vol. 15. No. 2. February, 1982. pp. 26-41.
[3] J.B. Dennis, First version of a data-flow procedure language, Proc. of the Colloque sur la Programmation, Paris, France, April 9-11. Lecture

Notes in Computer Science, vol. 19, Springer-Verlag: Berlin, New York, 1974, pp. 362-376.
[4] G. Kahn, The semantics of a simple language for parallel processing, J.L. Rosenfeld (Ed.), Information Processing 74, Proc. of the IFIP

Congress 74, North Holland, Amsterdam (1974), pp. 471–475.
[5] Data flow computing: theory and practice / edited by John A. Sharp. Ablex Publishing Corp. Norwood, NJ, USA, 1992.
[6] S.M. Salibekyan, Principles of milliinstruction architecture as a basis for development of high-performance computer systems, Automation

and Modern Technologies (Avtomatizatsiya i Sovremennye Tekhnologii), No. 5, 2002. (in Russian)
[7] S.M. Salibekyan, P.B. Panfilov, Object-attribute architecture is a new approach to object systems design, Information Technologies,

No.2(186)/2012, pp.8-13. (in Russian)
[8] S.M. Salibekyan, P.B. Panfilov. Object-attribute architecture for design and modeling of distributed automation systems, Automation and
Remote Control, Vol.73, No.3/March 2012, pp.587-595.[DOI: 10.1134/S0005117912030174]

