
Linear logic with idempotent exponential

modalities: a note

Sergey Slavnov
National Research University Higher School of Economics, Moscow

sslavnov@yandex.ru

September 10, 2014

Abstract

In this note we discuss a variant of linear logic with idempotent expo-
nential modalities. We propose a sequent calculus system and discuss its
semantics. We also give a concrete relational model for this calculus.

1 Introduction

It is well known that the exponential modality in linear logic is “not canon-
ical”, in the sense that it is not uniquely determined by the logic rules. In
concrete words, we can introduce several different copies of exponential connec-
tives, obeying the same rules, but nothing implies then that the connectives are
equivalent. On the semantic side, this means that a model of multiplicative-
additive linear logic (i.e. a ∗-autonomous category with products) may possess
several non-equivalent structures modeling the exponential fragment.

In general, we may say that the exponential fragment is understood some-
what worse, at least on the semantic side, than the multiplicative-additive and
multiplicative linear logic (MALL and MLL). Indeed, we know so many mod-
els of these systems; we know concrete and abstract models, some complete ones,
some intuitive ones. We also know some abstract constructions for producing
these models. On the other hand, models of exponentials are rare, sometimes
incorrect (this is often the case for interpretations based on the linear algebra
and functional analysis setting), and arguably we have little understanding of
how do these models arise.

Finally, some alternative exponentials are considered in literature, for exam-
ple in bounded linear logic.

These lengthy remarks were to give some motivation for the topic of this
paper, that is, to try convincing the reader that studying some non-standard
exponentials might be of interest. Specifically, we are considering linear logic

1

with idempotent exponentials. This idea came to the author mainly from se-
mantic considerations of relational models; it seems that in this setting a possi-
bility of such an idempotent version is suggested rather naturally. On the other
hand, highly informal and partial “quantum-mechanical” interpretations of LL,
discussed sometimes in literature, also may suggest idempotent exponentials;
exponential modality may be tentatively understood as denoting some sort of
a “classical limit” or a “classicality property”. This point of view is taken in
the work of Peter Selinger and Benôıt Valiron on quantum lambda calculus [8],
where the typing system is based on linear logic.

Despite these considerations, as far as the standard linear logic is concerned,
models with idempotent exponentials are degenerate and seem rather marginal.
It may be interesting, thus, to search for a non-standard variant of LL, where
this idempotency is required by the structure; a version of linear logic where
iterated exponentials are equivalent. This is the matter we deal with in this
paper. We propose the system of idempotent linear logic (IdLL) and discuss its
semantics.

A subtle point, here, is that, on the level of provability, already the standard
LL proves that the formulas !A and !!A are equivalent. Accordingly, our system
of IdLL coincides with LL on this level; it has the same set of provable formulas.
The difference between the two systems is on the level of proofs. This feature
seems to us rather amusing.

Finally, let us note that the systems of deep inference for linear logic explicitly
use idempotent exponentials; see [3] (this was pointed out to the author by A.
Guglielmi). It would be interesting to establish some connections of this work
with deep inference. However, at the moment, the very question of identity
(equality) of proofs in deep inference seems far from being settled. Hence it
is not quite clear how to compare systems of deep inference and other logical
systems on the level of proofs (which is the only level in which our system differs
from the ordinary linear logic). Yet, understanding relationship of our system
of idempotent linear logic with deep inference systems of linear logic seems a
promising direction of thought.

2 Linear Logic, comonads etc

We assume that the reader is familiar with linear logic (LL) as well as with its
categorical interpretation. For an introduction to the subject see, for example,
[2] and [7].

In order to fix the terminology we recall that, semantically, linear logic de-
scribes a ∗-autonomous category, the ∗-autonomous structure being given by
multiplicative connectives and the operations of linear negation and linear im-
plication. The ∗-autonomous structure corresponding to the full linear logic
carries also products and coproducts, given by the additive connectives.

In the following we agree that a ∗-autonomous structure on the category

2

C is specified by the monoidal (“tensor”) product ⊗, with the monoidal unit
1, the internal homs functor (, and the dualizing object ⊥. Other relevant
constructions, such as duality (.)∗, we understand as derived. In particular,
A∗ = A (⊥. (We choose a star to denote duality in the models, because it
seems to us more consistent with the general mathematical practice. However,
for duality of LL formulas, we preserve the traditional notation (.)⊥.)

To keep with linear logic notation, we denote product on a ∗-autonomous
category as & and the corresponding neutral object as ⊤. The coproduct struc-
ture, then, is derived from duality.

As for the exponential fragment, which interests us most in the current paper,
its categorical formalization has some variations, which have been discussed
in literature; see [7] for a survey. Basically, the !-modality corresponds to a
monoidal comonad, that is to say a comonad ! satisfying

!(A&B) ∼=!A⊗!B, !⊤ ∼= 1. (1)

(See [6] for a text-book definition and discussion of comonads.)
We take a popular view that linear logic !-modality is a monoidal comonad

coming from the following construction.
Let C = (C,⊗,1,(,⊥,&,⊤) be a ∗-autonomous category with products,

and K = (K,×, ∗) be a category with products and the neutral object ∗ .
Let F : C → K and G : K → C be adjoint functors with the property that
F (⊤) ∼= {∗}, F (A&B) ∼= F (A)×F (B) and G(∗) ∼= 1, G(A×B) ∼= G(A)⊗G(B).
Then the composite functor G ◦ F : C → K is a monoidal comonad on C. The
exponential !-modality is usually interpreted as a comonad of this form.

(That the composition of two adjoint functors is a comonad is well known;
see [6], 6.1. Since the functor F preserves products, and the functor G takes
products to tensor products, it follows that this comonad is monoidal.) Con-
structions of this sort are known in the current literature on the subject as
linear-nonlinear models, these were introduced in [1].

We are going to discuss the special setting when the above monoidal comonad
is idempotent. That is, we have a ∗-autonomous category C = (C,⊗,1,(,⊥)
with products (&,⊤) and a monoidal comonad ! : C → C as above, with the
corresponding comonadic natural transformations δ :! →!!, ϵ :! → Id, such that
the natural transformation δ :! →!! is an isomorphism.

As far as linear logic is concerned, this setting is, indeed, special. Usually,
models of LL discussed in literature are not idempotent. And, of course, the
system LL itself, seen as a category, does not belong to this setting. However,
as we are trying to show below, this special structure can be captured in a
self-consistent proof-system, which we call idempotent linear logic (IdLL). It
turns out also that this system has a very simple concrete model in the setting
of totality spaces. We think therefore that the structure of idempotent comonad
on a ∗-autonomous category might be of some interest.

3

3 Sequent calculus IdLL

The language of idempotent linear logic (IdLL) coincides with that of lin-
ear logic. Formulas are built from positive and negative literals, respectively,
p0, . . . , pn, . . . and p⊥0 , . . . , p

⊥
n , . . ., by means of the multiplicative and additive

connectives ⊗, ℘, &, ⊕ and the exponential modalities ! and ?. Linear negation
A⊥ of the formula A is defined inductively by

(p⊥)⊥ = p, (X ⊗ Y)⊥ = X⊥℘Y ⊥, (X℘Y)⊥ = X⊥ ⊗ Y ⊥,

(X&Y)⊥ = X⊥ ⊕ Y ⊥, (X ⊕ Y)⊥ = X⊥&Y ⊥,

(!A)⊥ =?A⊥, (?A)⊥ =!A⊥.

Linear implication is defined by

A (B = A⊥℘B.

Notation !nA and ?nA, as usual, stands for iterated modalities, that is for the
formula A preceded by n !’s or ?’s.

The sequent calculus for IdLL coincides with that of LL on the level of
multiplicative-additive connectives:

⊢ A,A⊥ (Identity),
⊢ Γ, A ⊢ A⊥,∆

Γ ⊢ ∆
(Cut),

⊢ Γ, A,B,∆

⊢ Γ, B,A,∆
(Exchange),

⊢ Γ, A ⊢ B,∆

⊢ Γ, A⊗B,∆
(Times),

⊢ Γ, A,B,∆

⊢ Γ, A℘B,∆
(Par),

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A&B,∆
(With),

⊢ Γ, A

⊢ Γ, A⊕B
or

⊢ Γ, B

⊢ Γ, A⊕B
(Plus),

but somewhat differs for the exponential fragment. The rules are:

⊢ Γ, ?A, ?A

⊢ Γ, ?A
(Contraction),

⊢ Γ

⊢ Γ, ?A
(Weakening),

and

⊢ Γ, A

⊢ Γ, ?nA
if the main connective of A is not ? (n−Dereliction),

⊢?A1, . . . , ?Ak, A

⊢?A1, . . . , ?Ak, !nA
if the main connective of A is not ! (n− Promotion).

4

Thus IdLL differs from LL only in the rules of Dereliction and Promotion
for introducing exponential connectives. Recall that for LL we have the rules

⊢ Γ, A

⊢ Γ, ?A
(Dereliction),

⊢?A1, . . . , ?Ak, A

⊢?A1, . . . , ?Ak, !A
(Promotion).

Furthermore, it can be seen very easily that, on the level of provability, the
two systems simply coincide, i.e. IdLL and LL have the same sets of provable
sequents.

Indeed, n-Promotion and n-Dereliction are admissible in LL as iterations of
Promotion and Dereliction, respectively. On the other hand, IdLL obviously
derives the sequents ⊢?nA, !mA⊥ for all n,m > 0, and, with the use of Cut, this
allows us to emulate Promotion and Dereliction in this system. Typically, if
A =?nA′ is a formula, having ? as its main connective, where A′ does not start
with ?, and we have an IdLL-derivation of ⊢ Γ, A, i.e. of ⊢ Γ, ?nA′, then by
cutting this sequent with ⊢!n(A′)⊥, ?n+1A′ we derive ⊢ Γ, ?n+1A′, i.e. ⊢ Γ, ?A,
as if we had Promotion. The case of Dereliction is treated identically. Let us
write down this simple conclusion as a theorem.

Theorem 1 The systems LL and IdLL have the same sets of provable sequents.

The next observation is that IdLL is cut-free. Essentially, cut-elimination
algorithm for IdLL is the same as for LL. When the cut formulas are of the
form A =?nA′, A⊥ =!n(A′)⊥, with A′ not starting with ?, we should treat the
initial segment of ?’s (!’s) as a single main connective.

Theorem 2 IdLL enjoys cut-elimination.

Proof The cut-elimination algorithm and its correctness proof can be taken
verbatim from [4], with words Dereliction and Promotion replaced with n-
Dereliction and n-Promotion, respectively, and, accordingly, ? and ! replaced
with ?n and !n.

Now, having established the cut-elimination property, we can compare IdLL
with LL not only on the level of provability, but on the level of proofs. In fact
it is easy to see that IdLL has strictly fewer cut-free proofs: for the literal p
there is only one way to derive ⊢?np⊥, !np without Cut in IdLL (n-Dereliction
followed by n-Promotion), which is not at all the case for LL.

Concretely, now we can say in some precise sense that IdLL treats formu-
las ??A and ?A as isomorphic, and similarly with !. (This justifies the title
idempotent.)

Let π1 and π2 be IdLL proofs of the sequents ⊢??A, !A⊥ and ⊢?A, !!A⊥;
the first proof is obtained from the Identity axiom by 2-Dereliction followed by

5

1-Promotion, the second one, by 1-Dereliction followed by 2-Promotion. We can
put the two proofs together and then apply the Cut-rule to their conclusions in
two ways: the pair of cut-formulas being either !!A⊥/??A or !A⊥/?A. Thus we
obtain a proof of ⊢?A, !A⊥ and a proof of ⊢??A, !!A⊥. However it is immediate
that, after cut-elimination, both proofs normalize to corresponding Identity ax-
ioms. In other words, from the categorical point of view, when proofs are seen
as morphisms, it turns out that the above proofs π1 and π2 are mutually inverse
and establish an isomorphism ?A ∼=??A. Thus we can claim that the system
IdLL gives an accurate sequent calculus axiomatization for the above defined
structure of ∗-autonomous category with an idempotent comonad.

Theorem 3 The category of formulas and cut-free IdLL proofs is ∗-autonomous
with an idempotent comonad induced by the !-connective.

4 Idempotent comonad on totality spaces

In this Section we discuss Loader’s totality spaces (see [5]), a very well known
and, in some sense, very natural model of linear logic, similar to Girard’s co-
herence spaces. It turns out that totality spaces provide a concrete model of
idempotent comonadic structure.

We use the following definitions. A pre-totality space A is a pair A =
(|A|, Atot), where |A| (base of A) is a set, and Atot ⊆ 2|A|. The elements of
Atot are called total sets of A.

The dual A∗ of A is the pre-totality space A∗ = (|A|, A∗
tot), where A

∗
tot ⊆ 2|A|

consists of all subsets r ⊆ |A|, satisfying the condition: ∀s ∈ Atot the set r ∩ s
is a singleton.

A totality space A as a pre-totality space coinciding with its bidual (i.e.,
having the same total sets), A = A∗∗. A standard observation is that the dual
of a pre-totality space is a totality space. The total sets for A∗ are called cototal
for A.

We define the following operations on totality spaces, corresponding to mul-
tiplicative and additive connectives of LL (i.e. to the ∗-autonomous structure).

The tensor product A⊗B of two totality spaces A and B has the set |A|×|B|
as its base, and total sets of the form r × s, where r ∈ Atot, s ∈ Btot. It can be
shown (see [5]) that the totality spaceA⊗B is well-defined, i.e A⊗B = (A⊗B)∗∗.
Note that

(A⊗B)tot ∼= Atot ×Btot. (2)

The cotensor product A⊗B of two totality spaces A and B is defined simply
as the dual A℘B = (A∗ ⊗B∗)∗.

The additive operations (product and coproduct) of A and B have the dis-
joint union of |A| and |B| as their bases. Total sets of A&B are disjoint unions
of total sets of A and B, whereas total sets of A⊕B are total sets of A and total

6

sets of B. It is easy to see that the two operations are dual: (A&B)∗ = A∗⊕B∗

and (A⊕B)∗ = A∗&B∗. Note also that

(A&B)tot ∼= Atot ×Btot. (3)

The category Tot has totality spaces as its objects, and total sets of A (
B = A∗℘B as morphisms between A and B, the composition being that of
relations. The category Tot is known to be ∗-autonomous (with monoidal units
1 = ⊥ = ({∗}, {{∗}})).

Finally let us define idempotent exponentials on Tot.

Definition 1 For a totality space A let !A be the totality space with the base
Atot, whose total sets are all singletons.

It is straightforward that the dual (!A)∗ is the pair ((Atot, {Atot})), and
!A =!A∗∗, so this is indeed a totality space.

Note that it immediately follows from (2) and (3) that

!(A&B) ∼=!A⊗!B. (4)

The operation is clearly idempotent: !A ∼=!!A. Let us show that it is indeed
a comonad.

We have the (cartesian closed) category Sets of sets and functions. To
every set S we can associate a discrete totality space Dis(S) with base S and
all singletons as total sets. For any function f : S → T , its graph grapf(f) is a
relation in S×T . Moreover, for any x ∈ S, this relation has exactly one point in
the intersection with the set {x}×T (this is a fancy way to say that f is total and
single-valued). Since the above {x} × T is the most general form of a total set
in Dis(S)⊗ (Dis(T))∗, it follows that graph(f) is total in (Dis(S)∗)℘Dis(T) =
Dis(S) (Dis(T), i.e. a morphism between corresponding objects in Tot.
In other words, we have the functor Dis : Sets → Tot (since composition,
obviously, is preserved). Note also that the functor preserves monoidal structure:
Dis(S × T) = Dis(S)⊗Dis(T), Dis({∗}) = 1.

We have another functor in the opposite direction. It associates to each
object A of Tot the set of total sets of A, and to each morphism ϕ between
totality spaces A and B the obvious function between Atot and Btot, induced
by composition with ϕ. (In fact, this functor is just the Yoneda embedding
Tot(1, .).) Let us call this functor Y. Note that the functor preserves the
product structure: Y(A&B) = Y(A)×Y(B), Y(1) ∼= ({∗}).

Now we claim that the functorsDis andY are adjoint. Since our exponential
! is just their composition, this implies that it is a comonad.

Indeed, let A be a totality space and S be a set. Any morphism ϕ : Dis(S) →
A in Tot determines a (total, single-valued) function from Dis(S)tot to Atot.
However, total sets of Dis(S) are just elements of S, i.e. Dis(S)tot naturally
identifies with S, whereas the set Atot is Y(A). Thus the Tot-morphism ϕ

7

determines a function, i.e. a Sets-morphism S → Y(A), and we have the map
Tot(Dis(S), A) → Sets(S,Y(A)).

On the other hand, for a function f : S → Atot, consider the relation f̂ =
{(s, a)|s ∈ S, a ∈ |A|, s.t. a ∈ f(s)}. This relation is total in Dis(S) (A.
Indeed, any cototal set α in Dis(S) (A is of the form α = {s} × τ , where

s ∈ S and τ ⊆ |A| is cototal in A. Then the intersection f̂ ∩α = {s}× (f(s)∩τ)

is a singleton because f(s) is total in A. Thus f̂ is a morphism in Tot, and we
have the map Sets(S,Y(A)) → Tot(Dis(S), A). It is immediate that this map
is inverse to the one defined in the preceding paragraph.

Thus, the functors Y and Dis are adjoint, hence ! = Dis ◦Y is a comonad.
Moreover, the functor Y sends product in Tot to product in Sets, and Dis
sends product in Sets to tensor product in Tot. Thus ! sends product in Tot
to tensor product, hence it equips each object !A with the comonoid structure
with respect to tensor product induced by the comonoid structure of A with
respect to the product. In other words, we can conclude with the theorem:

Theorem 4 The functor ! is an idempotent comonoidal comonad on the cate-
gory Tot.

References

[1] Nick Benton. A Mixed Linear and Non-Linear Logic: Proofs, Terms and
Models. Proceedings of Computer Science Logic 94, Kazimierz, Poland. Vol-
ume 933 of Lecture Notes in Computer Science, Springer Verlag. June 1995

[2] J.-Y. Girard, Linear logic: its syntax and semantics, in J.-Y.Girard, Y.Lafont
and L.Regnier, eds. Advances in Linear Logic, 1-42, Cambridge University
Press, 1995, Proc. of the Workshop on Linear Logic, Ithaca, New York, June,
1993.

[3] Alessio Gugliemi and Lutz Strassburger, Non-commutativity and MELL in
the calculus of structures, in Laurent Fribourg editor, Computer Science
Logic, CSL 2001, vol. 2142 of LNCS, pp. 54-68, Springe-Verlag, 2001.

[4] Patrick Lincoln, John Mitchell, Andre Scedrov, Natarajan Shankar, Deci-
sion problems for propositional linear logic. In Proc. 31st IEEE Symp. on
Foundations of Computer Science, pages 662-671, 1990

[5] R. Loader, Linear logic, totality and full completeness, in Proceedings of the
Ninth International Symposium on Logic in Computer Science, IEEE Press,
1994.

[6] S. Mac Lane, Categories for the working mathematician, Springer-Verlag,
1971

8

[7] Paul-André Melliès, Categorical semantics of linear logic in Interactive Mod-
els of Computation and Program Behaviour, Panoramas et Synthèses 27,
Société Mathématique de France 1196, 2009

[8] Peter Selinger and Benôıt Valiron, A lambda calculus for quantum compu-
tation with classical control, Mathematical Structures in Computer Science
16(3):527-552, 2006

9

