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Computation of the first Stiefel-Whitney class for the

variety MR
0,n

∗

N. Ya. Amburg, E. M. Kreines

ITEP-TH-33/14

Abstract

We compute the class Wn−4(MR
0,n) which is Poincaré dual to the first Stiefel-

Whitney class for the variety MR
0,n in terms of the natural cell decomposition of MR

0,n

.

1 Introduction

Let MR
0,n be the Deligne-Mumford compactification of the moduli space of algebraic

curves of genus 0 with n marked and numbered points. In [1, 5, 6] topology of this
variety is studied. Many topological and algebraic characteristics of this variety are
investigated. In particular, the structure of the cell decomposition is introduced. By
means of this cell decomposition Euler characteristics of the variety is computed and
Betti numbers are found.

This paper is devoted to the investigations of the first Stiefel-Whitney class for the

variety MR
0,n. More precisely, we provide a natural geometric interpretation of the

class Wn−4(MR
0,n), which is Poincaré dual to the first Stiefel-Whitney class of MR

0,n in

terms of the natural cell decomposition of MR
0,n.

The main result of the paper is the proof of the following two statements.

Theorem 1.1. Let n ≥ 5, MR
0,n be the real moduli space of algebraic curves of the

genus 0 with n marked and numbered points, say {1, 2, . . . , n}. Let MR
0,n be its Deligne-

Mumford compactification. We consider the cell decomposition of MR
0,n, defined in the

Construction 2.3. Then the class Wn−4(MR
0,n) (which is Poincaré dual to the first

Stiefel-Whitney class of MR
0,n) consists exactly from those cells of co-dimension 1, that

satisfy the condition: irreducible component of the curve which contains at most one
point from the set {1, 2, 3} contains an odd number of points from the set {1, 2, . . . , n}.

Corollary 1.2. Let n ≥ 6 be even and let MR
0,n be the Deligne-Mumford compactifi-

cation of the moduli space of algebraic curves of genus 0 with n marked and numbered

points. We consider the cell decomposition of MR
0,n, defined in the Construction 2.3.

Then the class Wn−4(MR
0,n) consists exactly from the cells of co-dimension 1, such that

each irreducible component of the curve contains an odd number of the marked points.

∗The work of the first author is partially supported by the grants NSh-1500.2014.2, RFBR 13-02-00478.
The work of the second author is partially supported by the grant RFBR 12-01-00140
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The first Stiefel-Whitney class of this variety was firstly computed in [3]. In this
work we point out another representative for the class which is Poincaré dual to the first

Stiefel-Whitney class of MR
0,n. The advantage of our method is the direct application

of the corresponding cell decomposition structure. We provide easy combinatorial and
geometric characterization of cells which provides the possibility to determine if the
cell lies in the class under consideration or not.

Further we plan to apply the obtained characterization for geometric interpretation

of generators and relations in the cohomology algebra H∗(MR
0,n,Q). We are going to

prove their close connections with those that where find by Keel [2] in the complex
case and to point out the principal difference with the complex case.

Our work is organized as follows: Section 2 contains necessary definitions and

detailed description of the cell decomposition of the variety MR
0,n. This theory is

illustrated by the description of the cell decomposition of MR
0,5, which includes the

number of cells, adjacency types, graphic illustration of the adjacency. Section 3 is
devoted to the computation of the first Stiefel-Whitney class separately for n = 5 and
n ≥ 6.

2 Deligne-Mumford compactification of the

space MR
0,n

2.1 Stable curves

Following the paper [1], we define real stable curves as “cacti-like” structures, i.e. 3-
dimensional “trees” (in the graph theoretical sense), consisting of flat circles with the
points {1, 2, . . . , n} on them:

Definition 1. [4]
A stable curve of genus 0 with n marked points over the field of real numbers R is

a finite union of real projective lines C = C1 ∪ C2 ∪ . . . ∪ Cp with n different marked
points z1, z2, . . . , zn ∈ C, if the following conditions hold.

1. For each point zi there exists the unique line Cj, such that zi ∈ Cj.

2. For any pair of lines Ci ∩ Cj is either empty or consists of one point, and in the
latter case the intersection is transversal.

3. The graph corresponding to C (the lines C1, C2, . . . , Cp correspond to the vertices;
two vertices are incident to the same edge iff corresponding lines have non-empty
intersection) is a tree.

4. The total number of special points (i.e. marked points or intersection points)
that belong to a given component Cj is at least 3 for each j = 1, . . . , p.

We say that p is the number of components of the stable curve.

Definition 2. Let C = (C1, C2, . . . , Cp, z1, z2, . . . , zn) and C ′ =
(C ′

1, C
′
2, . . . , C

′
p, z

′
1, z

′
2, . . . , z

′
n) be stable curves of genus 0 with n marked and

numbered points. C and C ′ are called equivalent if there exists an isomorphism of
algebraic curves f : C → C ′ such that f(zi) = z′i for all i = 1, . . . , n.
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Figure 1: A stable curve over R of genus 0 with 9 marked points

2.2 Moduli space MR
0,n

Definition 3. Let n ≥ 3. Deligne-Mumford compactification of the moduli space of

genus 0 real algebraic curves with nmarked points MR
0,n is the set of equivalence classes

of the genus 0 stable curves with n marked points defined over R.

Theorem 2.1. [5] Let n > 4. Then the space MR
0,n is a non-orientable compact variety

of real dimension dim(MR
0,n) = n− 3.

2.3 Cell decomposition of MR
0,n

Remark 2.2. There exists a natural structure of cell decomposition for the space

MR
0,n. This structure is described for example in the works [5, 6].

Construction 2.3. [5, 6] Description of the cell decomposition of the com-

pactified space MR
0,n. Following [5], let us consider a right n-gon, possibly, with

several non-intersecting diagonals. We label different cells of the moduli space MR
0,n

by such n-gons, sides of which correspond to the marked points and are labeled by
z1, . . . , zn. Here, the polygons which can be transformed to each other by the dihedral
group action label the same cell. The cells of the maximal dimension are labeled by
n-gons without diagonals. The cells of codimension 1 are labeled by n-gons with one
diagonal. Note that these cells consist exactly of 2-component stable curves. The cells
of codimension 3, i.e., that correspond to 3-component curves, are labeled by n-gons
with 2 diagonals. In general, a cell of codimension k is labeled by an n-gon M with
k diagonals. These diagonals divide M into k + 1 polygons M1, . . . ,Mk+1. The edges
of M1, . . . ,Mk+1, which are the edges of M , are labeled by the points marking the
components of the curve. Note that the condition 3 guarantees that different diagonals
do not intersect outside the vertices of M . The condition 4 guarantees that each of the
polygons M1, . . . ,Mk+1 has at least 3 sides, i.e., it is a polygon.

Following [5], we denote by GL(n, k) the set of n-gons with k non-intersecting di-
agonals and labels z1, . . . , zn on the edges.

Definition 2.4. A twist ofM ∈ GL(n, k) along a diagonal d is the n-gonM ′ ∈ GL(n, k),
obtained from M by cutting M along d, then 180◦ rotation of one (any one) of the
parts relative to the axis orthogonal to d in the plane of the n-gon, and gluing the
obtained two parts along d.

3



Remark 2.5. Let M ′ be the twist of M , let labels of the sides of M be or-
dered as z1, . . . , zn, and let the sides marked by z1, . . . , zk be separated by d
from the sides marked by zk+1, . . . , zn. Then the sides of M ′ have ordered labels
z1, . . . , zk, zn, zn−1, . . . , zk+1.

Construction 2.6. [5, 6] Description of the cell decomposition of the com-

pactified space MR
0,n. Prolongation. Let polygons M and M ′ ∈ GL(n, k) can be

transformed to each other by the series of twists. Then M and M ′ mark the same cell.

Remark 2.7. Special charm of this construction is that marked points and singular
points (the points of intersection of different components of a curve) do not have
principal differences. Namely, both of them are denoted by edges of a polygon. Also,
each component Ci of the curve (as well as a connected union of several components)
is denoted by a polygon. This polygon marks the cell of the cell decomposition (for
the moduli space of a smaller dimension), which contain Ci.

Example 2.8. Cell decomposition of MR
0,n contains (n−1)!

2 cells of the maximal di-
mension n− 3.

Example 2.9. MR
0,4 is a circle consisting of 3 cells of the dimension 1 and 3 cells of

the dimension 0. Figure 2 represents the cell decomposition of MR
0,4. Nearby each cell

we provide its “typical” representative, i.e., one of the stable curves which constitute
this cell.
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Figure 2: MR
0,4.
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2.4 Cell decomposition of the variety MR
0,5

By Example 2.8 found cell decomposition of MR
0,5 consists of 12 cells of the maximal

dimension. Each cell is labeled by a pentagon. The cell labeled by the pentagon with
sides marked by the symbols 1, 2, 3, 4, 5 is represented at Figure 4. All curves which are
in this cell have the form shown at Figure 4 inside the pentagon. Outside the pentagon
the stable curves are shown that are obtained by moving to each of the boundaries.
At the Figure 3 two cells of codimension 1 are shown. The cell marked by the letter A
corresponds to the lower edge of the pentagon drawn at Figure 4. The cell marked by
B corresponds to the next edge in the counterclockwise order.

A) B)

5

1

23

4

2

3

45

1

Figure 3: Forms of the boundary cells

Two adjoint cells are shown at Figure 5. Adjoining between all 12 cells is shown at
Figure 6.

3 Stiefel-Whitney class of MR
0,n

3.1 Some general remarks

Remark 3.1. We use the following theorem in order to compute the homological class

Wn−4, which is Poincaré dual to the first Stiefel-Whitney class of the variety MR
0,n.

For the computations we use introduced structure of the natural cell decomposition of

MR
0,n.

Theorem 3.2. [8, p. 119], [9, 3] Let M be a smooth compact variety without a
boundary, K be a cell decomposition of M , kj ⊂ K denote the cells of the maximal
dimension d. Let us fix the orientation on the cells of maximal dimension kj . Then
homological class dual to the first Stiefel-Whitney class of M can be represented in the
form

Wd−1(M) =

(

1

2

∑

∂kj

)

mod 2. (3.1)

The main idea of the proof of Theorem 1.1 is to introduce global coordinates on
the moduli space MR

0,n which determine the orientation in each cell. Certainly, these
coordinates can be prolonged till the boundary for some cells, but not all cells. If the

5
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Figure 4: One of cells of MR
0,5.

introduced coordinates can not be prolonged till the boundary, we introduce some other
coordinates, which can be prolonged till that boundary, and compute the Jacobian of
the transition functions between different coordinates. Then we can determine if two
adjoint cells induce the same orientations on their common boundary, or the opposite
ones. If two adjoint cells induce the opposite orientations on their common boundary,
then their influences in the formula (3.1) annihilate each other. Otherwise, we add the
influences. Then after dividing by 2 and considering the result modulus 2 we get that

the cell is in the class Wn−4(MR
0,n) with the coefficient 1. So, the cell is in Wn−4(MR

0,n)
iff it is a common boundary of two cells of the maximal dimension, which have the
same orientations (in the global coordinates determined in the open part of the moduli
space).

We are going to realize this program.

In order to find the first Stiefel-Whitney class of the variety MR
0,n we fix one of the

possible orientations for the maximal dimension cells of the space MR
0,n.

Definition 3.3. A coordinate map on the space MR
0,n is the map ϕ : MR

0,n → Rn−3.

Let (P1(R), z1, . . . , zn) ∈ MR
0,n, zi ∈ P1(R), i.e., we consider 1-component curve,

which is a projective line, with n marked points on it. Since the points z1, . . . , zn ∈
P1(R) are determined up to the linear-fractional transformation, we can and we do fix
z1 = 0, z2 = 1, z3 = ∞.We define

ϕ(P1(R), z1, . . . , zn) = (z4, . . . , zn).

The chosen system of coordinates (z4, . . . , zn) in a cell or several cells of the space MR
0,n

we call the parametrization of these cells.

We fix the standard orientation of the space Rn−3. This determines the orientation
on the cells of the maximal dimension. In the chosen parametrization we can easily
see the boundaries of the cells shown at Figure 8, which correspond to the gluing of

6
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Figure 5: Two adjoint cells of MR
0,5.

the points marked by i and j, where 1 ≤ i ≤ n, 4 ≤ j ≤ n, i.e., the boundaries drawn
at Figure 9.

Lemma 3.4. For all n ≥ 5 and for all i, j, 1 ≤ i ≤ n, 4 ≤ j ≤ n the cells Kij|l1...ln−2
,

drawn at Figure 9, are not in the class Wn−4(MR
0,n).

Proof. For all i, j, 1 ≤ i ≤ n, 4 ≤ j ≤ n, the cells of the maximal dimension having
the cell at Figure 9 as their common bound induce the opposite orientations on this
cell. Hence, by Theorem 3.2 the common boundary Kij|l1...ln−2

is included to the sum

(3.1) twice with the opposite signs, hence, it is not in the class Wn−4(MR
0,n).

3.2 Computation of W1(MR
0,5)

By Lemma 3.4 it remains to consider the cells of codimension 1 of the form

ji
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Figure 6: MR
0,5

where 1 ≤ i, j ≤ 3.
We start with i = 1, j = 2.

Lemma 3.5. The boundary cell labeled by the pentagon

4

3

21

5

K12|345

is in the class W1(M
R
0,5).

Proof. 1. Let us consider the coordinates on MR
0,5 which can be prolonged to this

boundary. To do this, similarly with Definition 3.3 we construct an appropriate co-
ordinate map ̟1 : MR

0,5 → R2. Let (P1(R), y1, . . . , y5) ∈ MR
0,5 be a point of the

moduli space MR
0,5. Let us consider a parametrization of the curve P1(R) such that

y3 = ∞, y4 = 0, y5 = 1. We set ϕ1(P1(R), y1, . . . , y5) = (y1, y2).
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0,5

• • • • •

ji

1 ≤ i ≤ n,
4 ≤ j ≤ n., where

Figure 8: A cell of the maximal dimension

We now find the transition function from the coordinates (z4, z5) to the coordinates
(y1, y2). To do this, we write z- and y-coordinates on P1(R) for each of the 5 marked
points and find the rational-fractional transformation, which maps the coordinates to
each other. The condition of the coordinate changing has the form

i 1 2 3 4 5
z − coordinates 0 1 ∞ z4 z5
y − coordinates y1 y2 ∞ 0 1

We are looking for the linear-fractional transformation of the form f(t) = at+b
ct+d

.
We have: f(z3) = f(∞) = ∞, which implies c = 0, d = 1. Further, substituting

the known values we get

f(z4) = 0 =
az4 + b

cz4 + d
= az4 + b,

f(z5) = 1 =
az5 + b

cz5 + d
= az5 + b.

Then a = 1
z5−z4

, b = z4
z4−z5

. We obtain,

f(t) =
z4 − t

z4 − z5
.

Therefore,

y1 = f(0) =
z4

z4 − z5
and y2 = f(1) =

z4 − 1

z4 − z5
.

2. Let us consider two cells of maximal dimension, such that the cell K12|345 is
their common boundary. Orientations of these maximal dimension cells provided by

9
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ji

1 ≤ i ≤ n,
4 ≤ j ≤ n., where

Figure 9: Cells Kij|l1...ln−2

the standard orientation of the plane (y1, y2) are opposite and thus induce opposite
orientations on K12|345. We have to understand if the orientations of these two cells
provided by the orientation of the plane (z1, z2) are the same or opposite. Thus we have
to check if the orientation of the maximal dimension cells provided by the orientation
of (y1, y2) coincides with the orientation provided by the orientation of (z4, z5).

We compute the Jacobian of coordinate change from (z4, z5) to (y1, y2):

J = det

(

∂y1
∂z4

∂y1
∂z5

∂y2
∂z4

∂y2
∂z5

)

.

Direct computations which we omit to shorter the text show that

J = det

(

−z5
(z4−z5)2

z4
(z4−z5)2

1−z5
(z4−z5)2

1+z4
(z4−z5)2

)

=
1

(z4 − z5)4
(z5 − z4).

3. The cell K12|345 is the common boundary of the following two cells:

4

3

21

5

4

3

12

5

These cells correspond to the following orders of the marked points:

• • • • •
z4 z5 0 1 ∞

• • • • •
0 1 z5 z4 ∞

correspondingly.
4. So, we have that z4 < z5 < 0 for the cell marked by the left pentagon, and

1 < z5 < z4 < ∞ for the cell marked by the right pentagon. Then for the left cell
we get J > 0, and for the right one J < 0. Since in the parametrization (y1, y2)
these cells have opposite orientations, and the Jacobians have the opposite signs, we
get that in the parametrization (z4, z5) these cells have the same orientation. Hence,

the cell K12|345 is included twice to the expression for W1(MR
0,5). Multiplying the sum

of boundary cells by 1
2 we get that the cell K12|345 goes with the coefficient 1, which

remains fixed modulus 2. Therefore, the class W1(MR
0,5) contains the cell labeled by

the pentagon K12|345.

Lemma 3.6. Boundary cells labeled by the pentagons

10
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K12|435 K12|354

are in the class W1(MR
0,5), which is Poincaré dual to the first Stiefel-Whitney class of

MR
0,5.

Proof. 1. Our proof is similar to the proof of Lemma 3.5 and we use the coordinates
(y1, y2) on MR

0,5 introduced in that proof. The cell labeled by K12|435 is the common
bound of the cells labeled by the pentagons

3

4

21

5

3

4

12

5

The value of the Jacobian for the change of coordinates from (z4, z5) to (y1, y2) by
Lemma 3.5 is equal to J = z5−z4

(z4−z5)4
. For all elements of these two cells we have the

following order of points on curves:

• • • • •
z5 z4 0 1 ∞

• • • • •
0 1 z4 z5 ∞

So, for the cell marked by the left pentagon we get J < 0, and for the right one:
J > 0. Since in the coordinates (y1, y2) these cells have opposite orientations, in the
coordinates (z4, z5) they have the same orientation. Hence their common bound, i.e.,

the cell labeled by K12|435, is in the class W1(MR
0,5).

2. Similarly, for the cell labeled by K12|354 the Jacobian value is the same, however
the points on the curves in the corresponding cells of the maximal dimension are ordered
as follows:

• • • • •
z5 z4 0 1 ∞

• • • • •
0 1 z4 z5 ∞

Thus, for one of them we get J < 0, and for another one J > 0. Since in the
coordinates (y1, y2) these cells have opposite orientations, we get that in the coordinates
(z4, z5) they have the same orientation. Hence their common bound, i.e., the cell labeled

by K12|354, is in the class W1(MR
0,5).

Lemma 3.7. The boundary cells labeled by the pentagons

4

5

31

2

5

4

31

2

2

5

31

4

K13|542 K13|452 K13|524

are in the class W1(MR
0,5).
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Proof. 1. For the investigation of these 3 cells we consider new coordinates on
MR

0,5. As in Definition 3.3 we construct the coordinatization map ϕ2 : MR
0,5 →

R2. Let (P1(R), x1, . . . , x5) ∈ MR
0,5 be a point of the moduli space MR

0,5. We
choose the parametrization x of P1(R) such that x2 = 0, x4 = 1, x5 = ∞ and set
ϕ2(P1(R), x1, . . . , x5) = (x1, x3).

Let us find the expression for the coordinates (x1, x3) via the coordinates (z4, z5).
To do this, we set to each of the marked points i its x-coordinates and z-coordinates
on P1(R). Then we will find the rational-fractional function which maps z-coordinates
to x-coordinates. The condition is

i 1 2 3 4 5
x− coordinate x1 0 x3 1 ∞
z − coordinate 0 1 ∞ z4 z5

.

We find rational-fractional transformation f(t) by the conditions f(1) = 0, f(z4) =
1, f(z5) = ∞. Then

f(t) =
z4 − z5
z4 − 1

·
t− 1

t− z5
.

Hence in this case the Jacobian of the coordinate change is equal to

J = det

(

z5−1
z5(z4−1)2

−z4
(z4−1)z2

5
z5−1

(z4−1)2
1

1−z4

)

=
(1− z5)(z5 − z4)

(z4 − 1)3z25
.

2. The cell labeled by K13|542 is the common boundary of the cells labeled by:

4

5

31

2

4

5

13

2

The following variants of marked point order correspond to these cells:

• • • • •
0 1 z4 z5 ∞

• • • • •
0 z5 z4 1 ∞

Then 0 < 1 < z4 < z5 < ∞, hence, J < 0 for the cell labeled by the left pentagon.
Also 0 < z5 < z4 < 1 < ∞ and J > 0 for the cell labeled by the right pentagon. As in

the previous lemmas we get that the cell labeled by K13|542 is in the class W1(MR
0,5).

4. Similarly, the cell labeled by K13|452 is the common boundary of the cells labeled
by

5

4

31

2

5

4

13

2

i.e., the cells containing curves with the following order of the marked points

• • • • •
0 1 z5 z4 ∞

• • • • •
0 z4 z5 1 ∞

12



correspondingly.
Then J > 0 for the cell labeled by the left pentagon and J < 0 for the cell labeled

by the right pentagon. Hence, the cell marked by K13|452 is in the class W1(M
R
0,5).

5. Finally, the cell labeled by K13|524 is the common boundary of two cells, each of
them consists of the curves with the following order of marked points:

• • • • •
0 z4 1 z5 ∞

• • • • •
0 z5 1 z4 ∞

correspondingly.
Then J > 0 for the cell represented on the left-hand side and J < 0 for the cell

represented on the right-hand side. Therefore, the cell labeled by K13|524 is in the class

W1(MR
0,5).

Lemma 3.8. All three boundary cells labeled by the pentagons with the diagonal cutting
the sides marked by 2 and 3, i.e., labeled by the pentagons of the form

5

4

32

1

4

5

32

1

1

5

32

4

K23|451 K23|541 K23|514

are in the class W1(MR
0,5).

Proof. 1. Points of these three cells are the stable curves such that the marked points
with labels 2 and 3 are on the separate component. Thus to investigate these cells we
have to consider the coordinates on MR

0,5 in which gluing of the points z2 and z3 can
be seen. For this similar to Definition 3.3 we construct the coordinatization map ϕ3 :
MR

0,5 → R2. Let (P1(R), u1, . . . , u5) ∈ MR
0,5 be an element of the moduli space MR

0,5.
We choose the parametrization u on the curve P1(R) such that u1 = 0, u4 = 1, u5 = ∞.
Let us set ϕ3(P1(R), u1, . . . , u5) = (u2, u3).

To find the transition functions from (z4, z5) to (u2, u3), we write the correspondence
between different coordinates of the points:

point i 1 2 3 4 5
u− coordinate 0 u2 u3 1 ∞
z − coordinate 0 1 ∞ z4 z5

.

Then the corresponding linear-fractional transformation has the form

f(t) =
z4 − z5

z4

t

t− z5

and one can easily write the explicit formulas for u2 and u3 as the functions of z4, z5.
Therefore, the Jacobian of this change of the coordinates has the form

J = det

(

z5
(1−z5)z24

z4−1
z4(1−z5)2

z5
z2
4

−1
z4

)

=
z5(z5 − z4)

z34(1− z5)2
.

2. The cell labeled by K23|451 is the common boundary of the two cells labeled by

13



5

4

32

1

5

4

23

1

These cells correspond to the following orders of marked points on the curves:

• • • • •
z4 z5 0 1 ∞

• • • • •
0 z5 z4 1 ∞

Then z4 < z5 < 0 < 1 < ∞, hence, J < 0 for the cell labeled by the left pentagon,
and 0 < z5 < z4 < 1 < ∞, J > 0 for the cell labeled by the right pentagon. As in the

previous cases we get that the cell labeled by K23|451 is in the class W1(M
R
0,5).

4. Similarly, the cell labeled by K23|541 is the common bound of the cells labeled
by

4

5

32

1

4

5

23

1

These cells correspond to the following orders of marked points on the curves:

• • • • •
z5 z4 0 1 ∞

• • • • •
0 z4 z5 1 ∞

Then J < 0 for the cell labeled by the left pentagon, and J > 0 for the cell labeled

by the right pentagon. Thus, the cell labeled by K23|541 is in the class W1(MR
0,5).

5. Finally, the cell labeled byK23|514 is the common bound of the cells which consist
of the curves with the following order of marked points:

• • • • •
z5 0 z4 1 ∞

• • • • •
z4 0 z5 1 ∞

Then J > 0 for the cell represented on the left figure, and J < 0 for the cell
represented on the right figure. Hence, the cell labeled by K23|514 is in the class

W1(MR
0,5).

Corollary 3.9. Poincaré dual to the first Stiefel-Whitney class of MR
0,5, the class

W1(MR
0,5) contains all cells labeled by the pentagons of the form

ij

where 1 ≤ i, j ≤ 3, and only these cells.

14



3.3 Computation of Wn−4(MR
0,n) for n ≥ 6

In this section we introduce special coordinates, which provide the possibility to in-
vestigate the situation nearby some interesting for us boundaries. In order to do this
we draw the curve P1(R) in the form of hyperbola xy = ε. Approaching the boundary
correspond to taking the limit ε → 0 under the fixed coordinates x or y of marked
points on the curve. Going to the boundary transforms the hyperbola to a pair of
intersecting lines. As local coordinates in a neighborhood of the boundary we use the
parameter ε, x-coordinates of the points with positive x-coordinates, and y-coordinates
for the points with negative y-coordinates. Coordinates of some 4 points we fix, then
the rest n− 4 points and ε provide exactly the required n− 3 coordinates. Below, see
the formulas (3.2) and (3.3), we show that for sufficiently small ε 6= 0 the Jacobian of
the corresponding transition function can not be zero, thus this parametrization indeed
provides local coordinates on MR

0,n.

Definition 4. Let us define the coordinates in the following way. Let the boundary
under consideration is labeled by the polygon Kl1,...,lm|k1,...,kn−m

, which is drawn at the
middle part of Figure 10. This boundary is a common boundary of the cells labeled
by the polygons Kl1,...,lm,k1,...,kn−m

and Kl1,...,lm,kn−m,...,k1 , drawn on the left side and
the right side at Figure 10, correspondingly. The cell labeled by Kl1,...,lm,k1,...,kn−m

is
parametrized by ε > 0 and corresponds to the hyperbola lying in the intersection of
right and upper semi-planes and in the intersection of left and lower semi-planes at
Figure 12. Similarly, the cell labeled by Kl1,...,lm,kn−m,...,k1 is parametrized by ε < 0
and corresponds to the hyperbola lying in the intersection of right and lower semi-
planes and in the intersection of left and upper semi-planes at Figure 12. We choose 2
points in each of two parts of the polygon Kl1,...,lm|k1,...,kn−m

, separated by the diagonal.
We denote the chosen points by li1 , li2 and kj1 , kj2 , correspondingly. Let us fix their
coordinates: abscissas x(li1) = 1, x(li2) = 2 and ordinates y(kj1) = −1, y(kj2) = −2.
Then the coordinates in the neighborhood of this boundary are the list of abscissas of
the points {l1, . . . , lm} \ {li1 , li2}, the list of ordinates of the points {k1, . . . , kn−m} \
{kj1 , kj2} and the value of the parameter ε.

1l

il

mll

il 1
il 2

1k
1k 1k

n−mkn−mkn−mk

il

1l ml

il 1

il 2

xy=ε

ε<0

1 2

ε>0ε=0

j2
k j1

k
j2

k
j1

k
j2

k

j1
k

1l

il
il il

m

Figure 10: xy = ε

Remark 3.10. Note that the points li1 , li2 kj1 , kj2 are not necessary neighbour, the
first, the last, etc., there are no restrictions on their positioning on the polygon, except
that the first and the second pairs are divided by the diagonal.
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Lemma 3.11. Let σ ∈ S3 be a permutation of the points 0, 1, and ∞. Let ϕσ :
MR

0,n → Rn−3 be a coordinatization map, constructed similarly to Definition 3.3 in the

following way. If (P1(R), w1, . . . , wn) ∈ MR
0,n is a point of the moduli space MR

0,n, and
parametrization on the curve P1(R) is chosen in such a way that w3 = σ(∞), w2 =
σ(1), w1 = σ(0), then ϕσ(P1(R), w1, . . . , wn) = (w4, . . . , wn). Let the orientation of all
cells is provided by the standard orientation of the space Rn−3 = {(w4, . . . , wn)}.

Then either the orientation of all cells induced by the coordinates ϕσ coincides
with the orientation of these cells induced by the coordinates ϕ or for all cells these
orientations are opposite.

Proof. All permutations of the values 0, 1, ∞ on the projective line P1(R) are com-
positions of the transformations f1(t) = 1 − t and f2(t) = 1

t
. Hence change of the

coordinates z to the coordinates w are compositions of the maps zi → 1 − wi for all
i = 4, . . . , n and zi →

1
wi

for all i = 4, . . . , n. Since these transformations are diagonal,
the corresponding Jacobians are

J1 =

n
∏

k=4

∂(1− zk)

∂zk
= (−1)n−3

and

J2 =

n
∏

k=4

∂( 1
zk
)

∂zk
=

n
∏

k=4

−1

z2k
= (−1)n−3

n
∏

k=4

1

z2k
.

So, in both cases orientation does not depend on the cell, but depends on the oddity
of n. If n is even, then change of the coordinates converts the orientation of any cell
to the opposite one. If n is odd then the orientation of any cell remains the same.

Composition of transformations corresponds to the multiplication of the Jacobians,
hence in all the cases either the change of the coordinates changes orientation of all
cells or it leaves orientations of all cells fixed.

3.3.1 The case when the points 1, 2, 3 are in the same component of

the boundary

In this case corresponding cells and coordinates on them are shown at Figure 11, 12
and 13.

ill

2 3

1

jk

j2
k j1

k

jk

j2
k

j1
k

il

jk

j2
k

j1
k

xy=ε

ε=0
ε>0ε<0

1

2 3
2 3

1

i

Figure 11: xy = ε
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1

l

j2
k

jk

il

j2
k

j1
kj

i

k

jk

1
2

3

xy=ε

ε>0

ε=0

3 ε<0
1

2

Figure 12: xy = ε

Lemma 3.12. Let n ≥ 6 and all three points 1, 2, 3 are in one component of the

boundary. Then corresponding cell is in the class Wn−4(MR
0,n) if and only if the com-

ponent of the boundary which does not contain the points 1, 2, 3, contain odd number
of the marked points.

Proof. Up to the rename of the marked points we can and we do assume that li1 , li2 ∈
{1, 2, 3}. Applying Lemma 3.11 we can set li1 = 1, li2 = 2. Then we denote li3 = 3
for some i3. Hence we obtain that abscissas of the points 1 and 2 are equal to 1 and
2, correspondingly. We denote the abscissa of the point 3 by x3 and abscissas of the
points li ∈ {l1, . . . , lm} \ {1, 2, 3} by xli . Here m ≥ 3 by the assumptions of the lemma
asserting that the points 1,2 and 3 lie in one component.

Also we denote the ordinates of the points kj ∈ {k1, . . . , kn−m} \ {k1, k2} by ykj .
Let us find the transition functions from the chosen coordinates x, y, ε to the

coordinates z introduced in Definition 3.3.
Point-wise the change of coordinates looks as follows:

i 1 2 3 ... li ... kj ... kj1 kj2

z−coordinates 0 1 ∞ ... zli ... zkj ... zkj1
zkj2

x−coordinates 1 2 x3 ... xli
... ε

ykj

... −ε − ε
2

y−coordinates ε ε
2

ε
x3

... ε
xli

... ykj ... −1 −2

We are looking for the linear-fractional transformation f(t) = at+b
ct+d

which maps

x-coordinates of the points 1, 2 and 3 to their z-coordinates. Then f(t) = (2−x3)
t−1
t−x3

.
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Figure 13: xy = ε

We compute the Jacobian of the change of the coordinates ε, xli , ykj by the coordi-
nates z4, . . . , zn, writing rows and columns of the matrix of partial derivatives in the fol-
lowing order. The rows zk1 , zk2 , zl1 , . . . , zlm , zk1 , . . . , zkn−m

(without zli1 , zli2 , zli3 , zkj1 ,
zkj2 ). The columns: ε, x3, xl1 , . . . , xlm , yk1 , . . . , ykn−m

(without xli1 , xli2 , ykj1 , ykj2 ,

which are fixed, and xli3 which is in the second column). Note that
∂zli
∂xls

= 0 if s 6= i,

∂zli
∂ykt

= 0 for all i and t,
∂zkj
∂xls

= 0 for all j and s. Also
∂zkj
∂ykt

= 0 if t 6= j.

Then the Jacobi matrix of change of the coordinates has the following block-
triangular form:

F =





F1 O1 O2

X1 D1 O3

X2 O4 D2



 ,

where

F1 =





∂zkj1
∂ε

∂zkj1
∂x3

∂zkj2
∂ε

∂zkj2
∂x3



 ,

O1, O2, O3, O4 are the zero matrices of the sizes 2 × (m − 3), 2 × (n − m − 2),
(m− 3)× (n−m− 2) and (n−m− 2)× (m− 3), correspondingly,

X1 and X2 are unknown matrices of sizes (m− 3)× 2 and (n −m− 2) × 2, corre-
spondingly,

18



D1 is a diagonal (m − 3) × (m − 3)-matrix of partial derivatives
∂zli
∂xli

, and D2 is a

diagonal (n−m− 2)× (n−m− 2)-matrix of partial derivatives
∂zkj
∂ykj

.

Then Jacobian J = detF = detF1 · detD1 · detD2. Let us compute each factor
separately.

1. Determinant of the matrix F1.

J1 = detF1 = det

(

−(2−x3)(1−x3)
(ε+x3)2

−(ε+1)(ε+2)
(ε+x3)2

−(2−x3)(2−2x3)
(ε+2x3)2

−(ε+2)(ε+4)
(ε+2x3)2

)

=

=
(2− x3)(1 − x3)(ε+ 2)

(ε+ x3)2
(ε+ 2x3)

2 det

(

1 ε+ 1
2 ε+ 4

)

=
(2− x3)(1− x3)(4− ε2)

(ε+ x3)2
(ε+ 2x3)

2.

2. Diagonal entries of D1 and D2.

Since zli = (2− x3) ·
xli

−1

xli
−x3

, we get
∂zli
∂xli

= (2− x3)(x3 − 1) · −1
(xli

−x3)2
. Similarly,

zkj = (2− x3) ·

ε
ykj

− 1

ε
ykj

− x3
,

hence,
∂zkj
∂ykj

= ε(2− x3)(x3 − 1) · 1
(ε−ykjx3)2

. Determinant of the product of D1 and D2

is the product of all found values.
Then

J = J1 detD1 detD2 = (2− x3)
n−2(x3 − 1)n−2(−1)m+1εn−m−2 · J2, (3.2)

where

J2 =
4− ε2

(ε+ x3)2(ε+ 2x3)2

m
∏

i=4

1

(xli − x3)2

∏

j∈{1,...,n−m}\{j1,j2}

1

(ε− ykjx3)
2
.

Note that in the neighborhood of ε = 0 it holds that J2 > 0, so this factor does not
fluent on the sign of the Jacobian.

It follows from the formula (3.2) that if (n−m) is even, then Jacobian J does not
change the sign while ε goes from ε < 0 to ε > 0. If (n−m) is odd, then changes.

Let (n−m) be even, i.e., there is an even number of marked points in the component
of the boundary which does not contain the points 1, 2, 3. The cells of maximal
dimension corresponding to ε > 0 and ε < 0 have opposite orientations. Hence arguing
as in the proof of Lemma 3.5 we obtain that in the coordinates (z4, . . . , zn) these cells
have opposite orientations. Therefore, their common boundary is included twice into

the expression for Wn−4(MR
0,n) and with the opposite signs, hence its influence is zero.

Let now (n − m) be odd, i.e., there is an odd number of marked points in the
component of the boundary which does not contain the points 1, 2, 3. The cells of
maximal dimension corresponding to ε > 0 and ε < 0 have opposite orientations. Hence
we obtain that in the coordinates (z4, . . . , zn) these cells have the same orientations,
since the sign of J is changed in the point ε = 0. Therefore, their common boundary is

included twice with the same sign into the expression for Wn−4(M
R
0,n). After dividing

by 2 and taking the result modulus 2 we get that the common boundary of these two

cells is in the class Wn−4(MR
0,n). This concludes the proof of the lemma.
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3.3.2 The case when the points 1, 2, 3 are in the different components

of the boundary

The case under consideration is presented at Figure 14.
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=−2

3

k
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j

2

y

x

xy=ε

=1

l
1

Figure 14: xy = ε

Lemma 3.13. Let n ≥ 6 and only two of the points 1, 2, 3 are in the same component

of the boundary K. Then K is in the class Wn−4(MR
0,n) if and only if there are odd

number of marked points on the component of K which contains the third point from
the set {1, 2, 3}.

Proof. Applying Lemma 3.11, up to the rename of the marked points we can and we
do set li1 = 1, li2 = 2, and kj1 = 3. Then we obtain that the abscissas of the points 1
and 2 are 1 and 2, correspondingly, and the ordinate of the point 3 is −1. We denote
the abscissas of the points li ∈ {l1, . . . , lm} \ {1, 2} by xli , here m ≥ 2. Let us denote
ordinates of the points kj ∈ {k1, . . . , kn−m} \ {kj1 , kj2} by ykj .

We find the transition functions from the chosen coordinates x, y, ε to the coordi-
nates z, introduced in Definition 3.3.
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Point-wise the change of coordinates looks as follows:

i 1 2 3 ... li ... kj ... kj2

z−coordinates 0 1 ∞ ... zli ... zkj ... zkj2

x−coordinates 1 2 −ε ... xli
... ε

ykj

... − ε
2

y−coordinates ε ε
2
−1 ... ε

xli

... ykj ... −2

We are looking for the linear-fractional transformation f(t) = at+b
ct+d

which maps
x, y, ε-coordinates of the points 1, 2 and 3 to their z-coordinates. Then f(t) = (2 +
ε) t−1

t+ε
.

We compute the Jacobian of the change of the coordinates ε, xli , ykj by the coordi-
nates z4, . . . , zn, writing rows and columns of the matrix of partial derivatives in the
following order. The rows: zkj2 , zl1 , . . . , zlm , zk1 , . . . , zkn−m

(without zli1 , zli2 , zkj1 ,
zkj2 ). The columns: ε, xl1 , . . . , xlm , yk1 , . . . , ykn−m

(without xli1 , xli2 , ykj1 , ykj2 , which

are fixed). As in the previous lemma we note that
∂zli
∂xls

= 0 if s 6= i,
∂zli
∂ykt

= 0 for all i

and t,
∂zkj
∂xls

= 0 for all j and s, also
∂zkj
∂ykt

= 0 if t 6= j. Then the Jacobi matrix of this

change of the coordinates is triangular with zeros above the diagonal:

F =

(

∂zkj2
∂ε

0
∗ D

)

,

where ∗ denotes unknown elements of the first column, the first row is zero, except the
entry in the position (1, 1), and D is a diagonal (n− 4)× (n− 4) matrix. First (m− 2)

diagonal entries of D have the form
∂zli
∂xli

, next (n−m− 2) entries have the form
∂zkj
∂ykj

.

Let us compute all the factors separately:

1.
∂zkj2
∂ε

= 4−ε2

ε2
.

2.
∂zli
∂xli

= (2+ε)(1+ε)
(xli

+ε)2
.

3.
∂zkj
∂ykj

= − (2+ε)(1+ε)
ε(ykj+1)2

.

Then

J = (−1)n−m−1 1

εn−m
(2 + ε)n−4(1 + ε)n−4

m
∏

i=3

1

(xli − ε)2
·

∏

j∈{1,...,n−m}\{3,j2}

1

(1 + ykj)
2
.

(3.3)
Note that in the neighborhood of ε = 0 the sign of the Jacobian is determined by the
factor 1/εn−m only.

Formula (3.3) implies that if (n−m) is even, then the Jacobian J does not change
the sign going from ε < 0 to ε > 0, and if (n−m) is odd then J changes the sign.

Thus, repeating the arguments at the end of Lemma 3.12 we obtain that if (n−m)

is even K is not in the class Wn−4(MR
0,n), and if (n−m) is odd, then K is in this class,

as required.

Consequent application of these lemmas concludes the proof of Theorem 1.1.
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