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Abstract

The 2D Euler equations with periodic boundary conditions and extra linear dissipative term Ru, R > 0 are considered and the
existence of a strong trajectory attractor in the space L∞

loc(R+,H1) is established under the assumption that the external forces have
bounded vorticity. This result is obtained by proving that any solution belonging the proper weak trajectory attractor has a bounded
vorticity which implies its uniqueness (due to the Yudovich theorem) and allows to verify the validity of the energy equality on the
weak attractor. The convergence to the attractor in the strong topology is then proved via the energy method.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

On considère les équations d’Euler bi-dimensionnelles avec des conditions aux limites périodiques et un terme dissipatif Ru,
R > 0, supplémentaire et on montre l’existence de l’attracteur trajectoriel fort dans l’espace L∞

loc(R+,H1) sous l’hypothèse que
les forces extérieures ont un rotationnel borné. Ce résultat est obtenu en démontrant que toute solution appartenant à un attracteur
trajectoriel faible convenable a un rotationnel borné, ce qui entraîne son unicité (par le théorème de Yudovich) et permet de vérifier
la validité de l’égalité d’énergie sur l’attracteur faible. La convergence vers l’attracteur dans la topologie forte est alors obtenue par
la méthode d’énergie.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the present paper, we study the attractors for the 2D Euler system,

∂tu + (u,∇x)u + Ru + ∇xp = g, divu = 0, (1.1)
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containing the additional dissipative term Ru and equipped by the periodic boundary conditions. These equations
describe, for instance, a 2-dimensional fluid moving on a rough surface and are used in geophysical models for large-
scale processes in atmosphere and ocean. The term Ru parameterizes the main dissipation occurring in the planetary
boundary layer (see, e.g., [24]; see also [6] for the alternative source of damped Euler equations).

The mathematical features of these and related equations are studied in a number of papers (see, for instance,
[3,5,7,16–18,26]) including the analytic properties (which are very similar to the classical Euler equations without
dissipative term, see [4,19,20,30] and references therein), stability analysis, vanishing viscosity limit and various
attractors.

Remind that, in contrast to the Navier–Stokes equations, the considered damped Euler system is hyperbolic
(and is invertible in time), so one cannot expect any smoothing properties in a finite time. In addition, up to the
moment, the questions related with smoothness of solutions of that equations are still badly understood. In a fact, to
the best of our knowledge, only the modifications of the classical Yudovich result on the global existence of smooth
solutions with possible double exponential growth in time are available in the literature and that is clearly insufficient
for the attractors theory. Thus, it seems extremely difficult/impossible to obtain the asymptotic smoothing properties
for that equations which are crucial for the classical theory of the attractors (see [1,28] and references therein). By this
reason, only the existence of the attractor(s) in a weak topology has been verified before [16,5,7].

Another essential problem with the Euler equations is related with uniqueness. Indeed, the uniqueness result is
known only for the solutions with bounded vorticity (due to Yudovich, see [32,34]) and is not known in the natural
phase spaces H or H1. So, for studying the long-time behavior in that spaces one has to deal either with the multi-
valued semigroups [16] or with the so-called trajectory approach and trajectory attractors [5,7].

The main aim of the present paper is to verify the existence of the (trajectory) attractor for the damped equation
in the phase space H1 in a strong topology. The main difficulty here is, of course, to establish the asymptotic
compactness. In order to gain it, we first construct the “usual” weak trajectory attractor and verify (using the maximum
principle for the vorticity equation) that any solution, belonging to the attractor, has a bounded vorticity. To this
end we use a slightly different (in comparison with [7] and [8–10]) construction of the trajectory attractor. Namely
(following [35], see also [21]), a weak solution u(t) of the damped Euler equations is included in the trajectory phase
space of the problem if and only if it can be obtained as a vanishing viscosity limit of the corresponding solutions
of the Navier–Stokes equations. One of the advantages of this construction is that now every weak solution can be
approximated by the regular ones and the justification of the maximum principle for such solutions (for the vorticity
equations) becomes immediate.

As a result, following Yudovich (see [32]), we obtain the uniqueness on the (weak trajectory) attractor and this
allows to establish the energy equality for the solutions belonging to the attractor. This equality is obtained from the
corresponding energy inequality using the trick with reversing time (analogously to [15]).

Finally, we prove the desired asymptotic compactness using the so-called energy method (see [14,22] for the
applications of this method to usual attractors; [2,23] for the multi-valued semigroups and [11,13] for the trajectory
attractors). Trivial, but fruitful observation (in comparison with the previous works) which allows to obtain the result
is that the energy equality is factually necessary on the attractor only (and it is sufficient to have the energy inequality
outside of the attractor).

The paper is organized as follows. The existence of a weak vanishing viscosity solutions for the damped Euler
equation as well as the construction of a weak trajectory attractor is given in Section 1. The boundedness of the
vorticity on the attractor is verified in Section 2. Moreover, for the convenience of the reader, we reproduce the
proof of the Yudovich uniqueness theorem here. Finally, the energy equality on the weak trajectory attractor and the
existence of the attractor in a strong topology is proved in Section 3.

To conclude, we note that we consider the periodic boundary conditions only for simplicity. The difference with
the case of a general bounded domain is only that one should equip the approximating Navier–Stokes problems by the
proper boundary conditions in order to avoid the boundary layers. In contrast to that, the choice of the relatively strong
phase space H1 is crucial for us. Indeed, although one can construct the weak trajectory attractors in weaker (and, in a
sense, more natural) phase space H (e.g., using the concept of the so-called dissipative solution of the Euler equation
for the vanishing viscosity limit of the proper Navier–Stokes solutions, see [19]), we do not know how to establish
the strong convergence to that attractor as well as how to verify that it coincides with the attractor constructed in the
phase space H1. By this reason, we do not develop this theory here.
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2. Dissipativity and weak trajectory attractor

In this section, we construct the so-called weak trajectory attractor for the 2D damped Euler system:{
∂tu + (u,∇x)u + Ru + ∇xp = g,

divu = 0, u|t=0 = u0,
(2.1)

in the domain Ω := [−π,π]2 with periodic boundary conditions and with the external force g ∈ W 1,∞(Ω). The
attractors for that system in the weak topology of the appropriate phase space have been already studied in the
literature (see [16,5,7]). However, in order to be able to verify the attraction property in the strong topology, we
need to use (following to [35]) a slightly different construction of the trajectory attractor which allows to consider
only the solutions of (2.1) which can be approximated by the smooth solutions of the Navier–Stokes system:{

∂tu + (u,∇x)u + Ru + ∇xp − ν�xu = g,

divu = 0, u|t=0 = u0
(2.2)

as ν → 0. Although we do not know whether or not the other solutions of the damped Euler system (2.1) exist, the
vanishing viscosity approach not only looks more natural from the physical point of view, but also allows us to avoid
a rather delicate problem of justification of the asymptotic L∞-estimates for the vorticity equation,

∂tω + (u,∇x)ω + Rω = curlg, (2.3)

where ω := curlu = ∂x2u1 − ∂x1u2.
As usual, we denote by Wl,p = Wl,p(Ω), 1 � p � ∞, the Sobolev space of space-periodic distributions whose

distributional derivatives up to order l belong to Lp . The Hilbert spaces Wl,2 will be often denoted by Hl . Finally, we
use the notations Hl for the closed subspace of [Hl]2 generated by the divergence free vector fields. Since the norms
in Hl and [Hl]2 coincide, we will write ‖u‖Hl instead of ‖u‖Hl .

We start with reminding the well-known uniform (with respect to ν → 0) H1-estimates for the solutions of the
Navier–Stokes problem (2.2). Note that, in contrast to the classical case R = 0, for R > 0, we need not the assumption
that the initial data u0 and external forces g have zero mean.

Proposition 2.1. Let R,ν > 0 and u0 ∈ H1. Then, problem (2.2) possesses a unique strong solution
u ∈ C([0, T ],H1) ∩ L2([0, T ],H2) and the following dissipative estimate holds:∥∥u(T )

∥∥2
H 1 �

∥∥u(S)
∥∥2

H 1e
−R(T −S) + R−1‖g‖2

H 1

(
1 − e−R(T −S)

)
, (2.4)

where T � S � 0.

Indeed, the dissipative estimate (2.4) follows immediately by multiplications of (2.2) by u and �xu (the inertial
term vanishes since we are in the 2D case with periodic boundary conditions) and the uniqueness is also standard, see
e.g., [28,30] for the details.

The obtained estimate (2.4) allows us to pass to the limit ν → 0 and construct a solution of the limit Euler equation.
To be more precise, we define the solution u of the Euler equations (2.1) via this procedure.

Let Θ
w,loc
+ be the local weak-star topology in the space L∞

loc(R+,H1). By definition, a sequence vn(t) → v(t)

(n → ∞) in the topology Θ
w,loc
+ , if, for every T > 0, vn(t) ⇁ v(t) (n → ∞) ∗-weakly in L∞(0, T ;H1).

Definition 2.2. A function u ∈ Fb+ := L∞(R+,H1) is a solution of the damped Euler equation (2.1) with u0 ∈ H1 if
it solves (2.1) in the sense of distributions and there exists a sequence νn → 0 and a sequence uνn of strong solutions
of the approximate Navier–Stokes system (2.2) with ν = νn such that

u = Θ
w,loc
+ − lim

n→∞uνn. (2.5)

Note that the convergence (2.5) implies in a standard way the weak-star convergence of ∂tu
νn in L∞

loc(R+,H−1)

(see [7,8]) and this gives the strong convergence in Cloc([0,∞),H). Thus, any solution u of the Euler equation is
weakly continuous with values in H1 (u ∈ C([0, T ],H1

w)) and, for any T � 0, we have the weak convergence,

uνn(T ) ⇁ u(T ), (2.6)
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in the space H1. It is however important that we do not require the strong convergence uνn(T ) → u(T ) in H1 even
for T = 0.

The following standard proposition gives the existence of a solution thus defined.

Proposition 2.3. Under the above assumptions, for any u0 ∈ H1, there exists at least one solution u of the damped
Euler equation (2.1).

Proof. Indeed, let uν(t), ν → 0, be the solutions of the approximate Navier–Stokes problems (2.2) such that
uν(0) ⇁ u0 as ν → 0 (in particular, we may set uν(0) = u0). Then, due to the dissipative estimate (2.4), uν are
uniformly bounded in Fb+ and, since the unit ball of Fb+ is compact in the local weak-star topology (of Θ

w,loc
+ ,

see [25]), there exists a sequence νn → 0 and a function u ∈ Fb+ such that (2.5) holds. In addition, using that ∂tu
νn are

uniformly bounded in L∞(R+,H−1), we conclude that uνn → u strongly in Cloc(R+,H). This strong convergence,
together with the weak-star convergence (2.5), is clearly enough in order to pass to the limit νn → 0 (in the sense of
distributions) in Eqs. (2.2) and verify that the obtained function u solves indeed the limit Euler problem (2.1). �

In order to write out the analogue of the dissipative estimate (2.4) for the limit Euler equations (2.1), it is convenient
to introduce (following to [35]) the so-called M-functional on the solution u:

Mu(t) := inf
{

lim inf
n→∞

∥∥uνn(t)
∥∥

H 1, u = Θ
w,loc
+ − lim

n→∞uνn

}
, (2.7)

where the external infinum is taken over all possible sequences of solutions of the approximate Navier–Stokes system
which converge as νn → 0 to the given solution u of the limit Euler equation. The next proposition collects some
simple properties of the introduced functional.

Proposition 2.4. Let u be a solution of the Euler problem and let Mu(t) be the associated M-functional. Then

1) ‖u(t)‖H 1 � Mu(t), for all t ∈ R+;
2) The following analogue of the dissipative estimate holds:[

Mu(T )
]2 �

[
Mu(S)

]2
e−R(T −S) + R−1‖g‖2

H 1

(
1 − e−R(T −S)

)
, (2.8)

where T � S � 0;
3) MT (h)u(t) � Mu(t + h), for all h � 0, where (T (h)u)(t) := u(t + h);
4) The functional Mu(0) is weak lower semi-continuous with respect to u, i.e., if un be a sequence of solutions of

Eq. (2.1) (in the sense of Definition 2.2) such that u = Θ
w,loc
+ − limn→∞ un and the sequence Mun(0) is bounded,

then u is also a solution of (2.1), and

Mu(0) � lim inf
n→∞ Mun(0). (2.9)

Proof. For the convenience of the reader, we briefly remind the proof of that assertions (see [35] for more details).
Indeed, the first assertion is immediate (since the norm ‖·‖H 1 is weakly lower semi-continuous and the convergence

uνn to u in Θ
w,loc
+ implies the weak convergence uνn(t) → u(t) for every t). To prove the second one, we note that,

due to the energy equalities for the approximating Navier–Stokes problems, we have:∥∥uνn(T )
∥∥2

H 1 �
∥∥uνn(S)

∥∥2
H 1e

−R(T −S) + R−1‖g‖2
H 1

(
1 − e−R(T −S)

)
, (2.10)

for any approximating sequence uνn . By the definition of the M-functional, for any ε > 0, we may find the
approximating sequence uνn such that

lim inf
n→∞

∥∥uνn(S)
∥∥

H 1 � Mu(S) + ε.

Passing to the limit n → ∞ in (2.10), we have:[
Mu(T )

]2 � lim inf
n→∞

∥∥uνn(T )
∥∥2

H 1 �
[
Mu(S) + ε

]2
e−R(T −S) + R−1‖g‖2

H 1

(
1 − e−R(T −S)

)
,

and since ε is arbitrary, this gives the desired inequality (2.8).
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The third assertion is also evident since the infinum in the definition of MT (h)u(t) is taken over the larger set of
admissible approximating sequences than the infinum in the definition of Mu(t + h).

Let us prove the forth assertion (which is, in a sense, the most important for the attractor theory). Indeed, since
Mun(0) is bounded, from (2.8) we conclude that the sequence Mun(t) is bounded for every t � 0. Moreover, since
every un is a solution of Eq. (2.1), there exists a sequence u

νk
n of solutions of the Navier–Stokes problems (2.2) such

that νk = νn,k → 0 as k → ∞, and

un = Θ
w,loc
+ − lim

k→∞uνk
n .

Without loss of generality, we may assume that, in addition,∣∣Mun(0) − ∥∥uνk
n (0)

∥∥
H 1

∣∣ � 1/n, νk � 1/n, (2.11)

for all k ∈ N and, passing to the subsequence in n if necessary, we may suppose also that

M0 := lim inf
n→∞ Mun(0) = lim

n→∞Mun(0).

Now, we only need to extract from the two-parametric sequence {uνk
n }k,n∈N the one-parametric sequence which will

converge to the limit function u. To this end, we use the fact that the topology of Θ
w,loc
+ is metrizable on every bounded

set of Fb+, see [25]. Indeed, since the sequence Mun(0) is bounded, according to (2.8), Mun(t) is uniformly bounded
in n and t . Thus, due to the first property of Proposition 2.4, the sequence un is bounded in Fb+. Let ρ be such that
all un belong to the closed ρ-ball Bρ of Fb+ and let d(·,·) be a metric on the ball B2ρ which metrizes the topology

of Θ
w,loc
+ on that ball. Then, obviously, u ∈ Bρ ⊂ B2ρ and, we may also assume that u

νk
n belong to B2ρ for all n and

k (the sequence u
νk
n (0) is uniformly bounded in n and k thanks to (2.11) and the fact that Mun(0) is bounded, this

together with estimate (2.10) give the uniform boundedness of u
νk
n (t) with respect to n, k and t). Thus,

lim
n→∞d(u,un) = 0, lim

k→∞d
(
un,u

νk

n

) = 0

for every n. So, for every n ∈ N, we may find k = k(n) such that d(un,u
νk(n)
n ) � 1/n. Then, due to the triangle

inequality, we have d(u,u
νk(n)
n ) → 0 as n → ∞ and, therefore,

u = Θ
w,loc
+ − lim

n→∞u
νk(n)
n .

Moreover, due to (2.11), νk(n) → 0 as n → ∞, so (analogously to Proposition 2.3) u is a solution of the Euler
equation (2.1), and

Mu(0) � lim
n→∞

∥∥u
νk(n)
n (0)

∥∥
H 1 = M0.

Proposition 2.4 is proved. �
Remark 2.5. It would be nice to have the lower semi-continuity (2.9) not only for t = 0, but for any t � 0. However,
the proof given above fails in that situation. Indeed, replacing t = 0 by arbitrary t in (2.11), we will obtain the uniform
boundedness of uνk

n (t) and, in order to verify that u
νk
n are bounded in Fb+, we need the control of u

νk
n (0). In the situation

of [35] (where the approximating equations were also hyperbolic) this boundedness was easy to verify just using the
energy estimate with reversed time. But in our situation, the approximating equations are parabolic and the uniform
boundedness at time moment t does not imply boundedness at t = 0. So, we do not know whether or not (2.9) holds
for t 
= 0. Fortunately, the lower continuity at t = 0 is enough for what follows.

We are now ready to construct the trajectory phase space, the trajectory semigroup and the kernel associated with
the damped Euler equation (2.1).

Definition 2.6. Let K+ ⊂ Fb+ be the set of all solutions of (2.1) (in the sense of Definition 2.2) which correspond to
all u0 ∈ H1 and let T (h) : K+ → K+, h � 0 be the translation semigroup ((T (h)u)(t) := u(t + h)). Then, we will
refer to K+ and T (h) : K+ → K+ as a trajectory phase space and a trajectory dynamical system associated with the
dissipative Euler equation respectively.
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In addition, we endow the set K+ by the topology induced by the embedding K+ ⊂ Θ
w,loc
+ and will say that a

subset of trajectories B ⊂ K+ is bounded (M-bounded) if

MB(0) := sup
u∈B

Mu(0) < ∞. (2.12)

Note that a set B ⊂ K+ is M-bounded if there is a number ρ such that for every u ∈ B there exist a sequence
uνn of solutions on the NS-system such that ‖uνn(0)‖H1 � ρ and uνn → u (νn → 0+) in Θ

w,loc
+ . In particular, any

M-bounded set B ⊂ K+ is bounded in the norm Fb+. The converse statement, a priori, may not hold, i.e. boundedness
(in Fb+ ) of a set B ⊂ K+ may not imply the M-boundedness (to be more precise, it is not known).

Definition 2.7. A kernel K ⊂ L∞(R,H1) of the damped Euler equation (2.1), by definition, consists of all complete
(defined for all t ∈ R) bounded solutions of (2.1) which can be obtained as a weak limit of the appropriate solutions of
the Navier–Stokes problems (2.2) as ν → 0. Namely, u ∈ K if and only if there exist a sequence νn → 0, a sequence
of times tn → −∞, and a bounded sequence of the initial data ξn ∈ H1, ‖ξn‖H 1 � C such that the corresponding
solutions uνn of the Navier–Stokes problems (2.2) on the time intervals [tn,∞) and with the initial data uνn(tn) = ξn

converge weakly-star in L∞(R,H1) to the complete solution u considered.

We now remind the definition of the associated trajectory attractor (see [8] for the detailed exposition).

Definition 2.8. A set Atr ⊂ K+ is a (weak) trajectory attractor associated with the damped Euler equation (= global
attractor for the trajectory dynamical system (T (h),K+)) if the following conditions are satisfied:

1) Atr is compact in K+ and is M-bounded;
2) It is strictly invariant: T (h)Atr = Atr , h > 0;
3) It attracts the images of bounded (M-bounded) sets as h → ∞, i.e., for every B bounded in K+ and every

neighborhood O(Atr) of Atr (in the topology of Θ
w,loc
+ ) there exists H = H(B,O) such that

T (h)B ⊂ O(Atr), ∀h � H.

The next theorem which establishes the existence of the above defined attractor and gives some description of its
structure can be considered as the main result of this section.

Theorem 2.9. Let the above assumptions hold. Then, the damped Euler equation (2.1) possesses a trajectory attractor
Atr ⊂ Fb+ and the following description holds:

Atr := Πt�0K, (2.13)

where K is the kernel in the sense of Definition 2.7.

Proof. According to the general theory (see [8,21]), we only need to check that the trajectory dynamical system is
continuous and that it possesses a compact and M-bounded absorbing set. The continuity is obvious since T (h) are
simply shift operators and they are continuous on Θ

w,loc
+ . In addition, estimate (2.8), guarantees that the set,

B := {
u ∈ K+,

[
Mu(0)

]2 � 2R−1‖g‖2
H 1

}
,

will be an absorbing set for the semigroup T (h) acting on K+. Moreover, this set is even semi-invariant. Indeed, due
to Proposition 2.4,

[
MT (h)u(0)

]2 �
[
Mu(h)

]2 �
[
Mu(0)

]2
e−Rh + R−1‖g‖2

H 1

(
1 − e−Rh

)
� 2R−1‖g‖2

H 1e
−Rh + R−1‖g‖2

H 1

(
1 − e−Rh

) = R−1‖g‖2
H 1e

−Rh + R−1‖g‖2
H 1 � 2R−1‖g‖2

H 1,

for all u ∈ B and, therefore, T (h)B ⊂ B. Thus, we only need to check that this set is compact.
Since, due to inequality (2.8), the set B is bounded in Fb+ and, therefore, precompact in Θ

w,loc
+ , we need to prove

that if un ∈ B and u = Θ
w,loc
+ − limn→∞ un, then u ∈ B as well. But this fact follows immediately from the forth

assertion of Proposition 2.4.
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Thus, all assumptions of the abstract attractor existence theorem are satisfied and, therefore, the weak trajectory
attractor exists. The description (2.13) is a standard corollary of the fact that Atr is factually an ω-limit set of B. �
3. Additional regularity and uniqueness on the attractor

In this section, we first verify that the vorticity ω(t) is uniformly bounded on the trajectory attractor Atr and then
using that fact and following the Yudovich technique, we establish that the solution of the Euler equation is unique on
the attractor. This fact will be used later in order to establish the energy equality on the attractor.

The following theorem gives the additional regularity of the solutions belonging to the attractor.

Theorem 3.1. Let the assumptions of Theorem 2.9 hold. Then, for every u ∈ K, the associated vorticity
ω = ∂x2u1 − ∂x1u2 belongs to L∞(R × Ω) and the following estimate holds:∥∥ω(t)

∥∥
L∞(Ω)

� R−1‖g‖W 1,∞ (3.1)

for all t ∈ R.

Proof. The proof is essentially based on the maximum principle for the vorticity equation and on the description of
K obtained in Theorem 2.9. Namely, let u ∈ K be arbitrary and let νn → 0, tn → −∞ and uνn(t) be the sequence of
solutions of the Navier–Stokes system which approximates u. Then, the associated vorticities ωn := curluνn solve the
following equations:

∂tωn − νn�xωn + (
uνn,∇x

)
ωn + Rωn = curlg, ωn(tn) = ω0

n, (3.2)

and ‖ω0
n‖L2 � C (uniformly with respect to n). Let us fix also arbitrary T ∈ R. Then, from the convergence un → u,

we know also that

ωn(T ) ⇁ ω(T ) (3.3)

weakly in L2(Ω). Thus, we only need to split ωn(T ) on the L∞ and decaying parts. Indeed, let ωn(t) := Un(t)+Vn(t),
where Un(t) solves

∂tUn − νn�xUn + (
uνn,∇x

)
Un + RUn = 0, Un(tn) = ω0

n, (3.4)

and the reminder Vn satisfies:

∂tVn − νn�xVn + (
uνn,∇x

)
Vn + RVn = curlg, Vn(tn) = 0. (3.5)

Note that, in contrast to the limit case νn = 0, Eqs. (3.4) and (3.5) are parabolic if νn > 0 and we have enough
regularity to verify the uniqueness. In particular, clearly, ωn,Un,Vn ∈ L2(0, T ,H 1) and the equations can be
understood as equalities in L2(0, T ,H−1). Thus, the key multiplication of (3.4) (or (3.5)) by Un (resp. Vn) is justified.

Applying now the comparison principle for second order parabolic equation (3.5), we see that∥∥Vn(T )
∥∥

L∞ � R−1‖curlg‖L∞ . (3.6)

This estimate can be justified, e.g., as follows: multiplying Eq. (3.5) by,

w+(t, x) := max
{
Un(t, x) − R−1‖curlg‖L∞ ,0

}
,

integrating by parts in a standard way (note that w+ ∈ L2(0, T ,H 1), so all integrals have sense) and using that(
(u,∇x)w,w+

) = (
(u,∇x)w+,w+

) = 0

for all u ∈ H1 and w+ ∈ H 1, and we end up with

1

2

d

dt

∥∥w+(t)
∥∥2

L2 + νn

∥∥∇xw+(t)
∥∥2

L2 + R
∥∥w+(t)

∥∥2 = (
curlg − ‖curlg‖L∞,w+

)
� 0.

This inequality together with the fact that w+(tn) = 0 gives w+(t) ≡ 0 and Un(t, x) � R−1‖ curlg‖L∞ almost
everywhere. The lower bounds for Un(t) can be justified analogously, see e.g., [31,27] for more details.
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On the other hand, multiplying Eq. (3.4) by Un integrating by x and using that divuνn = 0, we establish that

d

dt

∥∥Un(t)
∥∥2

L2 + R
∥∥Un(t)

∥∥2
L2 � 0

and, therefore, ∥∥Un(T )
∥∥2

L2 � Ce−R(T −tn), (3.7)

where C is independent of n. Thus, Un(T ) → 0 in L2 as n → 0 and, without loss of generality, we may think
that Vn(T ) ⇁ V0 (weakly-star) in L∞(Ω) for some V0 ∈ L∞(Ω) and V0 satisfies (3.6) as well. Finally, we have
established that ωn(T ) ⇁ V0 weakly in L2(Ω) which together with (3.3) gives that ω(T ) ∈ L∞(Ω) and satisfies the
analogue of (3.6). So, the theorem is proved. �
Corollary 3.2. Under the assumptions of the previous theorem, any solution u(t) on the attractor Atr belongs to
W 1,p(Ω) for all p < ∞ and the following estimate holds:∥∥u(t)

∥∥
W 1,p(Ω)

� Cp‖g‖W 1,∞(Ω), p > 1, (3.8)

where the constant C is independent of t and p.

Indeed, the solution u(t) can be expressed via the vorticity ω using the Biot–Savart law:

u − 〈u〉 = (
∂x2(−�x)

−1ω,−∂x1(−�x)
−1ω

)
,

where 〈u〉 := 1
|Ω|

∫
Ω

udx and (−�x)
−1 is the inverse Laplacian with periodic boundary conditions acting on the space

of functions with zero mean. The desired estimate (3.8) is now an immediate corollary of (3.1) and the well-known
maximal regularity for the Laplacian in Lp:∥∥(−�x)

−1
∥∥

Lp→W 2,p � Cp, p > 1,

see [33].
The next theorem gives the uniqueness of solutions of dissipative Euler equation in the class of solutions with

bounded vorticity (note that, in this theorem, the uniqueness holds in the class of all such solutions and not only for
solutions which can be obtained as a Navier–Stokes limit). Although that is just a variation of the famous Yudovich
theorem (see [32,34]), for the convenience of the reader, we give below a simple proof of that result.

Theorem 3.3. Let the above assumptions hold, let u1, u2 ∈ C([0, T ],H) be two functions which solve the dissipative
Euler equation (2.1) in the sense of distributions and let, in addition, the corresponding vorticities are bounded:
ω1,ω2 ∈ L∞([0, T ] × Ω). Then, u1(0) = u2(0) implies u1(t) = u2(t) for all t ∈ [0, T ].

Proof. Indeed, let u(t) = u1(t) − u2(t) and E(t) := ‖u1(t) − u2(t)‖2
L2 . Then, obviously, u ∈ C([0, T ],H) and

E ∈ C1([0, T ]). Moreover, analogously to Corollary 3.2, we know that ui ∈ L∞([0, T ],W 1,p(Ω)) and∥∥∇xui(t)
∥∥

Lp � Cp, t ∈ [0, T ]. (3.9)

Assume that E(t) > 0 for t ∈ (0, δ) for some δ > 0 (otherwise it is nothing to prove). The function u obviously solves
the equation,

∂tu + (u1,∇x)u + (u,∇x)u2 + Ru + ∇xp = 0.

Multiplying this equation by u(t) and integrating over Ω , we arrive at

d

dt
E(t) + 2RE(t) � C‖∇xu2‖Lp

∥∥u(t)
∥∥2

L2p∗

where p > 1 is arbitrary and 1
p

+ 1
p∗ = 1. Using now the interpolation inequality,

‖u‖L2p∗ � ‖u‖1−1/p

L2 ‖u‖1/p
L∞ ,
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(see e.g., [29]) together with (3.9) and the fact that u is bounded in L∞, we obtain:

d

dt
E(t) � Cp

[
E(t)

]1−1/p
, (3.10)

where the constant C is independent of p. The idea now is to fix p = p(E) in (3.10) in an optimal way. Namely, let

p = log
K

E(t)
,

where K is a sufficiently large number to be sure that p > 1 for all t ∈ [0, T ]. Using also the elementary fact that
E−1/ log(K/E) � C, we finally derive the following differential inequality,

d

dt
E(t) � CE(t) log

K

E(t)
,

which is enough for the uniqueness. Indeed, integrating it we have:

E(t) � K
[
E(ε)/K

]e−C(t−ε)

,

for all small ε > 0. Passing to the limit ε → 0 (E(t) is continuous!), we get E(t) ≡ 0 and finish the proof of the
theorem. �
Remark 3.4. Note that the backward uniqueness theorem also holds for solutions of the damped Euler equation with
bounded vorticity, namely, the equality u1(T ) = u2(T ) for some time T � 0 two solutions of (2.1) (with bounded
vorticities) implies that u1(t) = u2(t) for t � T as well. Indeed, reversing time in the (2.1) and repeating word by
word the proof of the previous theorem, we end up with the following analogue of the differential inequality (3.10)
for E(t) := ‖u1(T − t) − u2(T − t)‖2

H :

d

dt
E(t) � Cp

[
E(t)

]1−1/p + 2RE(t).

Since the first term in the right-hand side dominates the second one (remind that E(t) is bounded on [0, T ] and we
need this estimate for E(t) small only). Thus, the second term in the right-hand side is not essential and, repeating
word by word the rest of the proof, we obtain the backward uniqueness result. This simple observation is however
crucial for our proof of the energy equality on the attractor (see next section).

4. Energy equality and strong attraction

In that section, we verify that the so-called energy identity holds for every u ∈ Atr and, based on this fact, establish
that the attraction property and the compactness holds not only in a weak topology of Θ

w,loc
+ (where it is almost

immediate), but also in a strong topology of the space Θ
s,loc
+ := L∞

loc(R+,H1). We start with the following result:

Theorem 4.1. Let u ∈ C([0, T ],H1
w) solves the dissipative Euler equation (2.1) and be such that the corresponding

vorticity ω ∈ C([0, T ],L∞
w∗(Ω)) is bounded. Then the function t → ‖∇xu(t)‖L2 is absolutely continuous and the

following energy identity holds:

1

2

d

dt

∥∥∇xu(t)
∥∥2

L2 + R
∥∥∇xu(t)

∥∥2
L2 + (∇xg,∇xu(t)

) = 0, (4.1)

for almost all t ∈ [0, T ].

Proof. It is more convenient for us to verify the absolute continuity not for ‖∇xu(t)‖2
L2 , but for the equivalent function

t → e2Rt‖∇xu(t)‖2
L2 . To this end, we introduce a new function v(t) := eRtu(t) which solves,

∂tv + ∇xp̃ + e−Rt (v,∇x)v = g̃(t), (4.2)

where

p̃ := eRtp and g̃(t) := eRtg,
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and will check the equivalent integral version of (4.1) for the function v, namely that

1

2

(∥∥∇xv(T )
∥∥2

L2 − ∥∥∇xv(S)
∥∥2

L2

) =
T∫

S

g̃(t) dt (4.3)

holds for all T � S � 0. In turns, in order to verify the equality (4.3), we first verify the analogous inequality. To this
end, we fix S being arbitrary and consider the approximation Navier–Stokes problems on the interval t ∈ [S,T ],

∂tvn + νn�xvn + e−Rt (vn,∇x)vn + ∇xp̃n = g̃(t), vn(S) = v(S)

with νn → 0. Then, on the one hand, we have the energy equality for that Navier–Stokes problem which reads

1

2

(∥∥vn(T )
∥∥2

L2 − ∥∥v(S)
∥∥2

L2

) + νn

T∫
S

∥∥�xvn(t)
∥∥2

dt =
T∫

S

(∇xg̃(t),∇xvn(t)
)
dt.

On the other hand, without loss of generality we may assume that vn → w (weakly in Θ
w,loc
+ ) where w solves the

limit Euler problem. Moreover, since curlvn(S) are uniformly bounded in L∞, we also conclude that curlw(t) is
uniformly bounded in L∞. Thus, according to the uniqueness theorem, w = v and passing to the weak limit in the
energy equality for vn, we conclude that

1

2

(∥∥∇xv(T )
∥∥2

L2 − ∥∥∇xv(S)
∥∥2

L2

)
�

T∫
S

g̃(t) dt. (4.4)

Thus, the energy inequality is verified for all T � S ∈ [0, T ]. In order to prove the inequality with the opposite sign, we
use (following [15]) the reversibility of the Euler equation considered. Namely, note that the structure of Eq. (4.2) will
not change if we replace t → −t , v → −v and x → −x (up to the non-essential change e−Rt → eRt in the vanishing
inertial term). Thus, we are able to reverse the time and justify (exactly as before) the energy inequality (4.4) for the
function ṽ(t, x) = −v(−t,−x) with reversed time on the interval t ∈ [−T ,−S]. Returning back to the function v, we
see that this inequality coincides indeed with (4.4), but with the desired opposite sign. Thus, the inequality (4.4) is
factually an identity and the theorem is proved. �

The following continuity property is the first standard corollary of the proved energy identity on the attractor.

Corollary 4.2. Under the assumptions of Theorem 2.9 any function u ∈ K belonging to the kernel of the dissipative
Euler equation (2.1) is continuous as a H1-valued function: u ∈ Cloc(R,H1).

Finally, we are able to state and prove the theorem about the strong attraction to the above constructed trajectory
attractor Atr which can be considered as the main result of the paper.

Theorem 4.3. Let the assumptions of Theorem 2.9 hold. Then, the attractor Atr is compact in the strong topology of
Θ

s,loc
+ := L∞

loc(R+,H1) and the attraction property holds in the strong topology of Θ
s,loc
+ as well.

Proof. We first prove the analogous result for the projection A := Atr|t=0 to the usual phase space H1.

Lemma 4.4. Let the above assumptions hold. Then the set A is compact in H1 and the following attraction property
hold: for every M-bounded set B ⊂ K+,

distH1

((
T (h)B

)∣∣
t=0,A) → 0, (4.5)

as h → +∞ (here and below distV (A,B) denotes the Hausdorff semi-distance between sets A and B in a space V ).

Proof. Indeed, let hn → ∞ and un ∈ T (hn)B be arbitrary. Then, according to Theorem 2.9, without loss of generality,
we may assume that
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1) un → u weakly in Θ
w,loc
+ and u ∈ Atr;

2) un(0) → u(0) weakly in H1;
3) There are solutions ũn of Euler equation (2.1) defined on [−hn,∞) such that Mũn

(−hn) are uniformly bounded
and un = ũn and un(0) = ũn(0);

4) ũn → ũ weakly in L∞
loc(R,H1) and ũ ∈ K be such that ũ(t) = u(t) for t � 0.

To prove the lemma, we only need to check that un(0) → u(0) strongly in H1. To this end (since the weak
convergence is already established), it is sufficient to establish that the norms ‖∇xun(0)‖2

L2 → ‖∇xu(0)‖2
L2 as n → ∞.

We will verify the last fact based on the energy equalities method.
Namely, we write out the energy inequality for the solution ũn of the dissipative Euler equation in the following

form:

∥∥∇xun(0)
∥∥2

L2 �
[
Mũn

(−hn)
]2

e−2Rhn + 2

0∫
−hn

e2Rs
(∇xg,∇xũn(s)

)
ds. (4.6)

Note that, using the technique of [12], one should be able to verify the H1-energy equality for any solution u ∈ K+.
However, we really need in (4.6) the inequality only which clearly true and may be easily obtained by passing to the
limit in the corresponding Navier–Stokes approximations.

Using now the fact that ũn are uniformly bounded in L∞(R,H1) together with the weak convergence ũn → ũ in
L∞

loc(R,H1), one can easily obtain that

2

0∫
−hn

e2Rs
(∇xg,∇xun(s)

)
ds → 2

0∫
−∞

e2Rs
(∇xg,∇xũ(s)

)
ds as n → ∞. (4.7)

Moreover, using that Mũn
(−hn) are uniformly bounded, we see from (4.6) and (4.7) that

lim sup
n→∞

∥∥∇xun(0)
∥∥2

L2 � 2

0∫
−∞

e2Rs
(∇xg,∇xũ(s)

)
ds. (4.8)

On the other hand, the energy equality holds for the function ũ ∈ K (due to Theorem 4.1). So, multiplying the identity
(4.1) by e2Rt and integrating over t ∈ (−∞,0], we arrive at

∥∥∇xu(0)
∥∥2

L2 = 2

0∫
−∞

e2Rs
(∇xg,∇xũ(s)

)
ds. (4.9)

Hence, inequality (4.8) implies:

lim sup
n→∞

∥∥∇xun(0)
∥∥2

L2 �
∥∥∇xu(0)

∥∥2
L2 . (4.10)

At the same time, since un(0) → u(0) weakly in H1, as n → ∞, we see that∥∥∇xu(0)
∥∥2

L2 � lim inf
n→∞

∥∥∇xun(0)
∥∥2

L2 . (4.11)

Equalities (4.10) and (4.11) yield ∥∥∇xun(0)
∥∥2

L2 → ∥∥∇xu(0)
∥∥2

L2 as n → ∞.

Thus, the strong convergence un(0) → u(0) in H1 is verified and the lemma is proved. �
Now, it is not difficult to finish the proof of the theorem. Indeed, to this end, it is sufficient to verify that if

un ∈ T (hn)B for some M-bounded set B ⊂ K+, hn → ∞ and un → u ∈ Atr in Θ
w,loc
+ , then the strong convergence

in L∞
loc(R+,H1) is actually holds.

By the definition of the local topology in Θ
s,loc
+ , it is sufficient to verify that

‖un − u‖L∞([0,L],H1) → 0 (4.12)
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as n → ∞ for every fixed L. In order to establish (4.12), we note that Lemma 4.4 together with the obvious facts that
the set {T (h)u, h ∈ [0,L]} is M-bounded implies that

sup
t∈[0,L]

distH1

(
un(t),A) → 0 (4.13)

as n → ∞.
Let now PN be the orthoprojector on the first N eigenvectors of the Stokes operator in Ω and QN := 1 − PN .

Then, the compactness of the attractor A in H1 (proved in Lemma 4.4) together with the convergence (4.13) imply
that, for every δ > 0 there exists N = N(δ) such that

lim sup
n→∞

‖QNun‖L∞([0,L],H1) + ‖QNu‖L∞([0,L],H1) � δ. (4.14)

On the other hand, due to the control of the ∂tun-norm through the Euler equation (2.1), we have the uniform
convergence un → u in C([0,L],H) and, therefore, since PN is finite-dimensional, for every fixed N , we have the
convergence, ∥∥PN(un − u)

∥∥
L∞([0,L],H1)

→ 0 (4.15)

as n → ∞. The convergences (4.14) and (4.15) give the strong convergence un → u in L∞([0,L],H1) which finishes
the proof of the theorem. �
Corollary 4.5. Under the assumptions of the previous theorem, the attractor Atr is compact in Cloc(R+,W 1,p(Ω))

for all finite p > 1.

Indeed, the result is an immediate corollary of the compactness in H1, interpolation inequality,

‖u1 − u2‖W 1,p � Cp‖u1 − u2‖θp

H1‖u1 − u2‖1−θp

W 1,2p ,

and the boundedness of the attractor in L∞(R+,W 1,2p) established in Corollary 3.2.
We conclude the paper by the following corollary which establishes the strong convergence of the time derivatives

of solutions to the “time derivative” of the trajectory attractor.

Corollary 4.6. For an arbitrary M-bounded set B ⊂ K+ the corresponding set,

∂tB := {∂tu, u ∈ B},
converges to ∂tAtr in the strong topology of L∞

loc(R+,H−1). Moreover, the set ∂tA
tr is compact in Cloc(R+,Lp(Ω))

for all p < ∞.

Indeed, let

T (u) := Π
(
g − Ru − (u,∇x)u

)
,

where Π is a Leray projector to the divergence free vector fields. Then, obviously, ∂tu = T (u) for all u ∈ K+ and
rewriting the inertial term in the standard form,

(u,∇x)u = div(u ⊗ u) := ∂x1

(
u1u

) + ∂x2

(
u2u

)
,

we see that T is continuous from L∞
loc(R+,H1) ⊂ L∞

loc(R+,L4(Ω)) to L∞
loc(R+,H−1). This fact, together with the

established convergence in Θ
s,loc
+ gives the first statement of the corollary. The second statement follows analogously

using the continuity of the map T from Cloc(R+,W 1,p(Ω)) to Cloc(R+,Lp(Ω)) for p > 2 and the compactness of
Atr in Cloc(R+,W 1,p(Ω)) verified the previous corollary.
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