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Abstract

We study the g-deformed Knizhnik-Zamolodchikov (¢KZ) equation in
path representations of the Temperley—Lieb algebras. We consider two
types of open boundary conditions, and in both cases we derive factor-
ized expressions for the solutions of the ¢gKZ equation in terms of Baxter-
ized Demazurre—Lusztig operators. These expressions are alternative to
known integral solutions for tensor product representations. The factor-
ized expressions reveal the algebraic structure within the ¢KZ equation,
and effectively reduce it to a set of truncation conditions on a single scalar
function. The factorized expressions allow for an efficient computation
of the full solution once this single scalar function is known. We fur-
ther study particular polynomial solutions for which certain additional
factorized expressions give weighted sums over components of the solu-
tion. In the homogeneous limit, we formulate positivity conjectures in the
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spirit of Di Francesco and Zinn-Justin. We further conjecture relations
between weighted sums and individual components of the solutions for
larger system sizes.
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The g¢-deformed Knizhnik—Zamolodchikov equations (¢KZ) are widely
recognized as important tools in the computation of form factors in inte-
grable quantum field theories [44] and correlation functions in conformal
field theory and solvable lattice models [26]. They can be derived using
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the representation theory of affine quantum groups [24] or, equivalently and
using a dual setup, from the affine and double affine Hecke algebra [5]. The
qKZ equations have been extensively studied in tensor product modules of
affine quantum groups or Hecke algebras, and much is known about their
solutions in the case of cyclic boundary conditions [47,46]. We refer to [22]
and references therein for extensive literature on the ¢KZ equations.

Recently interest has arisen in the ¢KZ equation in the context of the
Razumov—Stroganov conjectures. These relate the integrable spin-1/2 quan-
tum XXZ spin chain [45, 39] in condensed matter physics and the O(1) loop
model [2,40] in statistical mechanics, to alternating sign matrices and plane
partitions [4]. Further developments surrounding the Razumov—Stroganov
conjectures include progress on loop models [6,33,15,19,20,51,18] and
quantum XXZ spin chains [7,37,38], the stochastic raise and peel models
[1,9,10, 35, 36], lattice supersymmetry [3, 23,48, 49], higher spin and higher
rank cases [50,17,41], as well as connections to the Brauer algebra and
(multi)degrees of certain algebraic varieties [8, 16, 31].

The connection to the ¢KZ equation was realised by Pasquier [34] and
Di Francesco and Zinn-Justin [17], by generalizing the Razumov—Stroganov
conjectures to include an extra parameter ¢ or 7 = —(q + ¢~ 1). In particu-
lar, the polynomial solutions for level one ¢KZ equations display intriguing
positivity properties and are conjectured to be related to weighted plane
partitions and alternating sign matrices [34,17,28,13,18].

In the Razumov—Stroganov context one considers the gKZ equation in a
path representation for SL(k) quotients of the Hecke algebra, using cyclic
as well as open (non-affine) boundary conditions. In the case k = 2, this
quotient corresponds to the Temperley—Lieb algebra, for which there is a
well known and simple equivalence between the path representation and its
graphical loop, or link pattern, representation. In this paper, we study the
qKZ equation for k = 2 in the path representation and for the two types of
open boundary conditions also considered in [13, 51, 18].

The solution of the ¢KZ equation is a function in N variables x; i =
1,..., N taking values in the path representation. The components of this
vector valued function can be expressed in a single scalar function which we
call the base function. We derive factorized expressions for the components
of the solution of the ¢KZ equations for the Temperley—Lieb algebra (referred
to as Type A) and the one-boundary Temperley—Lieb algebra (Type B)
with arbitrary parameters. The factorized expressions are given in terms of
Baxterized Demazurre-Lusztig operators, acting on the base function which
we assume to be known. The formula for Type A was already derived for
Kazhdan-Lusztig elements of Grasmannians by Kirillov and Lascoux [30].
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We further reduce the ¢KZ equation to a set of truncation relations that
determine the base function. These relations also appear in a factorized
form. We conjecture that the truncation relations can be recast entirely in
terms of Baxterized elements of the symmetric group.

Restricting to polynomial solutions, the factorized expressions provide an
efficient way for computing explicit solutions. We note here that polynomial
solutions may also be obtained from Macdonald polynomials [5, 34, 28, 29].
Using the factorized expressions, we compute explicit polynomial solutions
of the level one ¢KZ equations, recovering and extending the results of Di
Francesco [14] in the case of Type A and of Zinn-Justin [51] in the case of
Type B. We would like to emphasize the importance of such explicit solu-
tions as a basis for experimentation and discovery of novel results. Based on
the explicit solutions, and in analogy with Di Francesco [13,14] and Kasa-
tani and Pasquier [28], we formulate new positivity conjectures in the case of
Type B for two-variable polynomials in the homogeneous limit (z; — 0) of
the solutions of the ¢KZ equations. In the inhomogeneous case, the factor-
ized expressions furthermore suggest to define linear combinations (weighted
partial sums) of the components of the solution in a very natural way.
Special cases of these partial sums are also considered in the homogeneous
limit by Razumov et al. [37,38] and by Di Francesco and Zinn-Justin [18].
We conjecture identities between the partial sums and individual compo-
nents of solutions for larger system sizes.

The first three sections of this paper are a review of known results. We
define the Hecke and Temperley—Lieb algebras of Types A and B, the path
representations and explain the ¢KZ equation in these representations. In
Section 4, we state our main theorems concerning factorized solutions and
truncation conditions for the ¢KZ equation of Types A and B. These results
are proved in Section 6 and Appendix A. The fifth section contains a list of
conjectures regarding the explicit polynomial solutions of the ¢KZ equation.
These conjectures relate to the positivity of solutions in the homogeneous
limit, and to natural partial sums over components of the solution. Our
observations are based on explicit solutions for Types A and B, which are
listed in Appendices B and C.

Throughout the following we will use the notation [z], for the usual
g-number

The notation [z] will always refer to base g.
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2 Relevant algebras and their representations
2.1 Iwahori—Hecke algebras

2.1.1 Type A

Definition 2.1. The Iwahori—Hecke algebra of type Ay, denoted by H% (q),
is the unital algebra defined in terms of generators g;, ¢ = 1,..., N — 1, and
relations

(gi—a)(gi+a ") =0, ggj=gjg Vi.j:li—j|>1,
9i9i+19i = Gi+19iGi+1- (2.1)

Hereafter, we always assume
qgeC\{0} and [k]#0, VE=2,3,...,N, (2.2)

in which case the algebra Hﬁ,(q) is semisimple. It is isomorphic to the group
algebra of the symmetric group C[Sx] ~ Ha(1).

It is sometimes convenient to use two other presentations of the algebra
HA (g) in terms of the elements a; and s;

a; :=q — gi, Si::q_1+gia Z:]-v?N_l

For each particular value of index ¢ the elements a; and s; are mutually
orthogonal unnormalized projectors

a;s; = s;a; =0, a;+5; = [2]

generating the subalgebra H3' (¢) — M4y (q). Traditionally, they are called
the antisymmetrizer and the symmetrizer and associated, respectively, with
the two possible partitions of the number 2: {1?} and {2}.

The H4(g) defining relations (2.1) in terms of generators a;, i = 1,...,
N — 1, read

B=Plo  we = Vigiliogl>L

;A4 10; — Q; = Qip10;0541 — Qit1, (2.3)
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and in terms of s;, ¢ =1,..., N — 1, they read

512 = [2]57;7 S$iSj = 5554 \V/Z,] : |Z _]| > 1’

SiSi+18i — Si = Si+1SiSi+1 — Si+1-

2.1.2 Type B

Definition 2.2. The Iwahori-Hecke algebra of type By, denoted by H%
(q,w), is the unital algebra defined in terms of generators g;, i =0,..., N — 1,
satisfying, besides (2.1), relations

(go+a)(go+q“)=0, gogi=gigo Vi>1,
90919091 = 91909190- (2.4)

If in addition to (2.2), we assume [w+ k] #0 Vk€0,1,...,N — 1, then
the algebra H]%(q,w) becomes semisimple. Hereafter we do not need the
semisimplicity and we only assume that [w + 1] # 0.

It is sometimes convenient to use the presentations of H]%(q,w) in terms
of either the antisymmetrizers a;, or the symmetrizers s;, supplemented,
respectively, by the boundary generators

s ) R e 0
e s s G (2.5)

The generators ag and sg are mutually orthogonal unnormalized projectors,

[w]
[w+1]

apsSo = Spap = 0, ap + So =

The defining relations (2.4) written in terms ag and a; read

2 [w] .
ay = a apa; = a;ag Vi>1
0 [w—’-l} 0, 0lg 140 )
apa1apal — apa] = a1apaiay — ai1ag, (2.6)

and written in terms of sg and s; they read

[«]
w+1
$05150S1 — S0S1 = S150S51S0 — S150-

s% = ]so, SspS; = S;sg Vi>1,
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2.2 Baxterized elements and their graphical presentation

It is well known that the defining relations of the Iwahori—-Hecke algebras
(2.1), (2.4) can be generalized to include a so-called spectral parameter
(see [27,25] and references therein). This generalization is sometimes called
Baxterization and is relevant both in the representation theory of these
algebras as well as in their applications to the theory of integrable systems.

2.2.1 Type A

For the algebra HA(q), the Baxterized elements g;(u), i = 1,...,N — 1, are
defined as

2u—1
9i(u) :=gq Wv
which we can write alternatively as
¢" —[ulgi _ [1 —u]+ [u]a; [u]
; — - =1- i 2.7
%) = 53 [+ 4] w+1]° 27)

Here w € C\ {—1} is the spectral parameter. It can be shown that the
following relations hold

gi(w)gi(—u) =1, VueC\{-1,1}, (2.8)
9i(u)gi1(u+0)gi(v) = git1(v)gi(u + v)gir1(w), :
9i(u)gj(v) = gj(v)gi(u) Vi j:|i—j]>1, (2.10)

The relations (2.7)-(2.10) are equivalent to the defining set of conditions
(2.1). The relations (2.8) and (2.9) are called, respectively, the unitarity
condition and the Yang—Bazter equation.

Note that the unitarity condition is not valid at the degenerate points
u = £1. It is therefore useful in certain cases to use a different normalization
for the Baxterized elements,

[1— ] [u+ 1] [u — 1]
hi(u) = gi(—u) = —a; =8 — . (2.11)
[u] [u] [u]
Note that now the elements h;(u) are ill-defined at v = 0. In this normal-
ization we have
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and h;(u) still satisfies the Yang—Baxter and the commutativity equations
(2.9) and (2.10). We also note that h; satisfies the simple but very useful
identity

hi(u) = hi(v) + (2.12)
[u][v]
2.2.2 Type B
In this case, we additionally define
%my:—MP¥+mm+fww
[557 — (g0 + 4 2)’
which alternatively can be written as
k(u,v) — [2u][w + 1]ag [2u][w + 1]
= =14 —F— 2.1
go(u) Feu) + ER (2.13)
where k(u,v) := [“F¥ + u][“5% + u], and v is an additional arbitrary param-
eter.
The boundary Baxterized element go(u) satisfies relations
go(u)go(—u) =1 (2.14)

9o(v)g1(u + v)go(u)g1(u — v)

1(u —v)go(u)gr(u+v)go(v),  (2.15)
go(u)gi(v) = gi

=9
= gi(v)go(u) Vi>1,

which are equivalent to the defining relations (2.4). Relations (2.14) and
(2.15) are called, respectively, the wunitarity condition and the reflection

equation [42]. An alternative normalization for the boundary Baxterized
element is

 k(u/2,v) _ k(~u/2,v) B k(u/2,v)
ho(u) := _mgo(—u/Q) = —m —ap = S0 — W-lﬁ)

In this normalization, we find

ho(w £ v) = —ay, ho(—w £ v) = sp,
ho(v —w)hi(v)ho(u + v)hi(u) = hi(u)ho(u 4+ v)h1(vV)ho(v —uw).  (2.17)
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2.2.3 Graphical presentation

For our purposes it is convenient to represent the Baxterized elements graph-
ically as tiles and the boundary Baxterized element as a half-tile

The (half-)tiles are placed on labelled vertical lines and they can move
freely along the lines unless they meet other (half-)tiles. Multiplication in
the algebra corresponds to a simultaneous placement of several (half-)tiles on
the same picture and a rightwards order of terms in the product corresponds
to a downwards order of (half-)tiles in the picture. In this way, the Yang—
Baxter equation (2.9) can be depicted as

i i+1 1 1+1

and the reflection equation can be depicted as

7\ P\
hi(u) = <:u o ho(u) = u> (2.19)
N/ v
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The picture of the Yang—Baxter equation for the dashed tiles is the same
as (2.18), but the picture of the reflection equation (2.17) has a different
arrangement of the spectral parameters

A Y
7’

N
N PEEERN

=g Kou Y

[ N I\‘/I

£ v 3 luty 3

N 7’ = 1, N

Iu—&-{i( K v )

| N N ’

"u 3 lv_q;" (2.20)
RN 7’ M,

Ny o

0 1 0 1

Let us remark that expressions for the boundary half-tile go(u) and the
dashed half-tile hg(u) depend on an arbitrary parameter v, which is not
shown in the pictures. For the dashed half-tile we shall exploit this degree
of freedom in Section 4.2; see (4.4).

2.3 Temperley—Lieb algebras

The Iwahori-Hecke algebras have a well-known series of SL(2) type, or
Temperley—Lieb, quotients whose irreducible representations are classified
in the semisimple case by partitions into one or two parts (i.e., by the Young
diagrams containing at most two rows). The Temperley—Lieb algebra can be
described in terms of equivalence classes of the generators a; (different gen-
erators belong to different equivalence classes). Below we use the notation
e; for the equivalence class of —a;.

Definition 2.3. The Temperley—Lieb algebra of type Ay, denoted by
T]\‘}“(q), is the unital algebra defined in terms of generatorse;,i=1,..., N —1,
satisfying the relations

e? = —[2e;, eiej=eje; Vi, j:li—j|>1,

€;€;41€; — €5. (221)

Definition 2.4. The Temperley-Lieb algebra of type By, T (q,w) (also
called the blob algebra [32]), is the unital algebra defined in terms of gener-
ators e;, i = 0,..., N — 1, satisfying, besides (2.21), the relations

[w]
[w+ 1]
€1€ep€el = €1. (222)

63 = — ey, epe; =ejeg Yi>1,



806 JAN DE GIER AND PAVEL PYATOV

2.3.1 Graphical presentation

We reserve empty tiles and half-tiles for the generators e; and eg

e; = <> eo = [> (2.23)

i 0

The defining relations (2.21) and (2.22) are depicted, respectively, as

(2.24)

and

0 0 0 1 ¢ (225)

2.3.2 Baxterization

Obviously, one can adapt all formulas for the Baxterized elements from the
previous subsection to the case of Temperley—Lieb algebras by the substi-
tution a; — —e;. We shall follow tradition and will use a special notation
— R;(u) and Ky(u) — for the Baxterized elements and the boundary Bax-
terized element of the Temperley—Lieb algebras. In the same normalization
used for g;(u) (see (2.7) and (2.13)), we have

[
Ri(u) == TE
Ko(u) k(“"”;pg’%*”eo, k(u, 8) = [“£2 + u][#5° +u].  (2.26)
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Here we have intentionally used a different notation to denote an arbitrary
additional parameter, ¢ instead of v which was used in the Iwahori—Hecke
case; see (2.13). The two parameters ¢ and v will play different roles in what
follows below (see the comment after (3.12)).

The elements R;(u) and Ky(u) satisfy the unitarity conditions (2.8),
(2.14), the Yang-Baxter equation (2.9) and the reflection equation (2.15).
They are usually called the R-matriz and the reflection matriz. This nota-
tion comes from the theory of integrable quantum spin chains. The path
representations of the Temperley—Lieb algebras, which are introduced in the
next subsection and which are used later on in the gKZ equations, are invari-
ant subspaces of the state space of certain quantum spin-1/2 XXZ chains;
see e.g. [7].

Remark 2.1. In order to make contact with other notations in the litera-
ture, we note that our notation here correspond to those in [7] if we identify
g=¢e", ¢¥ - e¥ ¢® — —e and in [51] to ¢ = —¢. Further useful nota-
tions in [7] that we shall employ later are:

T=-0, T=v2+[2=2pgr, a=-

+1]
[T(S][ “e]

2.4 Representations on paths

We will now decribe an important and well-known representation of the
Temperley—Lieb algebras of Types A and B on Dyck and Ballot paths,
respectively.

2.4.1 Dyck path representation
Definition 2.5. A Dyck path « of length N is a vector of (N + 1) local
integer heights

o = (040,041,. ..,aN),

such that g = 0, ay = 0 for N even and oy = 1 for N odd, and the heights
are subject to the constraints o; > 0 and ;41 — a; = £1.

By Dy we denote the set of all Dyck paths of length N.
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Each Dyck path « of length N corresponds uniquely to a word in w, €
T]{}(q), represented pictorially as

N even: Wo =

N odd: Wo =

N=11

where the empty tiles at horizontal position ¢ are the generators e;; see
(2.23).

We now define an action of the algebra T]{?(q) on a space, which is spanned
linearly by states |a) labelled by the Dyck paths, identifying the states |«)
with the corresponding words w, € 73 (q). This action is given by a set of
elementary transformations of pictures shown in (2.24). A typical example
of such an action is given in figure 1.

In doing so we find the following representation of the algebra 7, ]{? (q):

Proposition 2.1. The action of e; for i =1,...,N — 1 on Dyck paths is
explicitly given by

o Local minimum:

ei|...7ai+1,ai,ai+1,...>:|...7ai+1,ai+2,ai+17...).

Figure 1: The result of e;|) if o has a slope at i. If ¢ +r is the first
position to the right of an upward slope at ¢ whose height is equal to that
at i, i.e., a4 = a; > 0, then a layer of tiles between 7 and 7 + r is peeled
off the original path and the result is again a Dyck path. A similar peeling
mechanism to the left works for downward slopes.
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e Local maximum:
62"...,041' - l,ai,ai - 1,> = —[2] ‘...,Cki— l,ai,ai— 1,)

o Uphill slope: a;—1 < oy < atiqq-
Let j > @ be such that o = o and oy > «; VI 11 <1 < j, then

67;|...,Oé7;—1,0[2',057;—{—1,C¥i+2,...,05j,...>

= |...,Oé7;—1,0@,0@—1,()[i+2—2,...705j_1 —2,aj,aj+1,...>.

e Downhill slope: a;—1 > a; > qiq1.
Let k < 1 be such that o, = ; and o > ;¥ : k <1 <1, then

6’@"...,Ozk,...,Oéi,Q,Oél'—F1,051',011'—1,...>

:|...,Oék,05k+1—2,...,0[1‘,2—2,041'—1,0[1',041'—1,...)

Remark 2.2. For generic values of ¢ the Dyck path representation is the
irreducible representation of the Temperley—Lieb algebra 7, ]{? (q) correspond-

ing in the conventional classification to the partition {| 252 |, 5]}

Definition 2.6. We call the unique Dyck path without local minima in the
bulk the mazimal Dyck path and denote it Q*. Explicitly this path reads:

QA = (0,1,2,..., |52 [ 22 ] [ B2, en),

where ey := N mod 2 is the parity of N.

It is clear from Proposition 2.1 that the maximal Dyck path plays a role
of a highest weight element of the Dyck path representation.

2.4.2 Ballot path representation

Definition 2.7. A Ballot path a of length N is a vector of (N + 1) local
integer heights

a=(ag,aq,...,anN),

such that o; > 0, aj41 — a; = £1 and ay = 0.

We denote the set of all Ballot paths of the length N by By.
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Each Ballot path « of length N corresponds uniquely to a word w, €
T2 (g, w), represented pictorially as

N even: Wy =

N odd: Wo =

where the empty (half-)tiles at horizontal position ¢ (0) are the generators
ei (eg); see (2.23).

Now we can define an action of the algebra 72 (q,w) on the space, which
is spanned linearly by states |a) labelled by the Ballot paths, identifying the
states |a) with the corresponding words w, € 72(g,w). Thus we find the
following representation of the algebra T (q,w):

Proposition 2.2. The action of e; fori=1,..., N — 1 on Ballot paths is
explicitly given by Proposition 2.1 in the case of a local extremum or an
uphill slope. In the remaining cases we find

o Downhill slope, Type I:
If there exists k < i such that o = o and o > a; Yl : k <1 < i, then

€l ooy py o, + a0 —1,000)

= ]...,ak,akﬂ—2,...,ai_2—2,ai—1,ai,ai—1,...>.

o Downhill slope, Type Ila:
If i is odd and oy, > o; Vk < i, then

eilag, ..., qi_2, 05+ 1, 05,05 — 1,...)

:\a0—2,...,ai,2—2,ai—1,ai,ai—1,...>. (227)
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o Downhill slope, Type 1Ib:
If i is even and ap > a; Vk < i, then

ei\ao, ce o 0 + 1 a0 — 1, >
_ _ D
= o2 lowg —2,. .. -0 — 2,05 — Ly, — 1,000, (2.28)

The action of the boundary generator ey is given by
e Uphill slope at i = 0:
eolag, ap + L,ae,...) = |ag + 2,0 + 1, a0, . . .).
e Downhill slope at i = 0:

[w]
[w+1]
Remark 2.3. For generic values of ¢ and w the Ballot path representation

is the irreducible representation of the Temperley—Lieb algebra T]\]? (q,w)
corresponding to bi-partition {| [}, {[§]}.

60’040,040 — 1,042,. . > = —

Definition 2.8. We call the unique Ballot path without local minima in the
bulk the maximal Ballot path and denote it by Q. Explicitly this path reads:

OB =(N,N—1,...,2,1,0).

As follows from the Proposition 2.2 the maximal Ballot path plays a role
of a highest weight element of the Ballot path representation.

3 g-Deformed Knizhnik—Zamolodchikov equation
3.1 Definition

Let us consider a linear combination |¥) of states |a) with coefficients 1,
taking values in the ring of formal series in N variables ¢*%i,i =1,2,..., N:

O(1,. . 2n)) =D Yalrr,. .. on)|a).

Here « runs over the set of either Dyck (Type A), or Ballot (Type B) paths
of length N.
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The qKZ equation in the Temperley—Lieb algebra setting is a system of
finite difference equations on the vector |¥). Actually, we consider the ¢KZ
equation in an alternative form with permutations in place of finite differ-
ences. This is historically the first form it appeared in literature [43]. In
both Types A and B the ¢KZ equation reads universally [51],

Ri(xi—a:i+1)|\11> :7Ti|\I/>, Vi= 1,...,N—1, (31)
Ko(—$1)|\11> :7T0|\I/>, .
W) = x| D). (3.3)

Here R; are the Baxterized elements of the Temperley—Lieb algebra, K is
the boundary Baxterized element in the Type B case and K is the identity
operator in Type A. The operators R;(z; — x;+1) and Ky(—x1) act on states
|r), whereas the operators 7; permute or reflect arguments of the coefficient
functions

Tial- s Tis Tig1y ) = Yalo ooy Tig1, Tiy - - 1),
ﬂol/]a(ajl,...) :wa(—xl,...), (34)
WNwoc(--wa) wa(...,—)\—.%'N>. (35)

Here A € C is a parameter related to the level of the ¢gKZ equation; see [22].

Remark 3.1. Clearly, the elementary permutations m;,7 =1,..., N — 1, are
the generators of the symmetric group Sy, whereas myp and 7wy are left and
right boundary reflections. They satisfy the relations

2 .. . .
=1, Wm1m = T 1T, Ty = TV A, j oz i — | > 1,
2 1 _ _ .
Ty =1, mWemTTL = MIMTLTO, o, = mimy Vi > 1,
7T]2V =1, TNTN_ATNTN_1 = TN_1TNTN_1TN, TNT; =manVe <N —1.

Therefore, the unitarity conditions (2.8), (2.14), the Yang-Baxter relation
(2.9) and the reflection equation (2.15) for the operators R; and K are
consistency conditions for the ¢KZ equation.

3.2 Algebraic interpretation

In this subsection, we consider the algebraic content of the ¢KZ equation.
We follow the lines of the paper [34].
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3.2.1 Type A

Consider equation (3.1). Here the R-matrix R;(z; — x;) acts on the states
|a), @ € Dy, while the operator 7; acts on the functions ¥ (z1,...,2x). In
other words, the gKZ equation (3.1) written out in components becomes

Y Yalzr,an) (Rilws — zip)a) = D (ma) (@1, 2n)|a),

OtEDN QEDN

a€Dn
Ti— Tip1 + 1 T — Tip1 — 1
S e ) L
aEDy [z — @ita] [z; — Tit1]
= > (i) (@1, ,2n) o) (3.6)
OZG’DN
Here, we have used notation
—(mi - 1)] 1
a; = m— )| Xip1 — x4
% [«Tz — xz‘-{—l] % i+1 i
e —1
:(m+1)w, i=1,2,...,N 1, (3.7)

[T — Tiy1]

for symmetrising operators acting on functions in the variables x; [21]. These
operators satisfy the Hecke relations (2.3). Moreover, they generate a faithful
representation of the algebra ’H%(q) in the space of functions in N variables
x; (i =1,...,N), thus justifying the use of the identical notation a; in (2.3)
and in (3.7). The generator g; = ¢ — a; in this representation is known as
the Demazurre-Lusztig operator [5]. The alternative set of generators s;
and the Baxterized elements h;(u) (2.11) in this particular representation
read

[z — 21 + 1]

5= R (1 —m),
[:EZ $z+1]
(u :[$i—$i+1+u] B [xi_$i+1+1]ﬂ_.
) [u][z; — 2it1] [wi — zip1] " (3.8)

Looking back at equations (3.6) we note that their solution amounts to
constructing an explicit homomorphism from the Dyck path representation
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of the Temperley-Lieb algebra 73} (¢) into the functional representation (3.7)
of the Iwahori-Hecke algebra H4(q):

|a) — 1y Va € Dy, (3.9)

where 1, are the components of the solution |¥) of the ¢KZ equation of
Type A.
3.2.2 Type B

In this case, we additionally have a non-trivial operator K affecting equa-
tion (3.2), which reads in components:

> Yalmr, . ar) (Ko(—z1)|a) = > (rovhe) (@1, . 21)]a),

a€By aeBN

where the summation is taken now over all Ballot paths. Recalling the
definition
0 -9
k(u,5) = |:’LL—|—w_2'_:| |:u+w2:| ,

from (2.26), this can be rewritten as

Z Ya(x1,...,zN)(—epla))

aEBN

. k(xl,é) - k(—xl,é) " r o
- ¥ (; JEC——

S ol +17 2o]fw + 1]

= Z (ao¥a) (1, .., zN)|). (3.10)

aEBN

where we have denoted

L k(—l’l,(S) . 1
ap = _(7T0 + 1) [2931”&) + 1] - [21’1”&) + 1] (7T() - l)k(—xl,d). (311)

The operator ap and the operators a; from (3.7) satisfy the defining rela-
tions (2.6) for the Type B Iwahori-Hecke algebra. Moreover, the realization
(3.11), (3.7) gives a faithful representation of HX (q,w). The generator sq
defined in (2.5) and the boundary Baxterized element hg(u) from (2.16) in
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this realization read

k(wl, (5)
[2%1][&) + 1]

(1 —mo), ho(u) =so— Klu/2,v) (3.12)

0= [ulfw + 1]

Let us stress here the difference between the parameters § and v. The
“physical” parameter § appears in the definition of the boundary Baxterized
element Ky(u) and therefore enters the ¢KZ equation and the boundary
conditions of related integrable models; see e.g. [7,51]. The parameter v is
introduced here for the first time in this section. It plays an auxilliary role

and we will fix it later to obtain a convenient presentation of the solution of
the ¢KZ equation of Type B; see (4.4) below.

Finally, the relation (3.10) states that the solution |¥) of the ¢KZ equa-
tion of Type B encodes an explicit homomorphism from the Ballot path
representation of the Temperley-Lieb algebra 72 (q,w) into the functional
representation (3.7), (3.11) of the Iwahori-Hecke algebra HY (q,w):

la) — ¥y Vae By.

3.3 Preliminary analysis

3.3.1 Type A

Equation (3.6) breaks up into two cases, depending whether or not a path
a in the sum on the right-hand side (RHS) of (3.6) has a local maximum at
i, i.e., whether or not it is of the form a = (..., a; — 1, cj, s — 1,...). We
will first look at the case in which it does not.

Case i): a does not have a local maximum at i.

As each term in the left-hand side (LHS) of (3.6) is of the form e;|«), and
hence corresponds to a local maximum at 4,

the coefficient of |a) in the RHS of (3.6) has to equal zero. Hence, we
obtain

—(aita) (1, ..., xN) = (hi(—=1)Ya) (21, ..., 2N) =0, (3.13)
which can be rewritten as

(mi = D {zi — 2ip1 — Uha(@1,...,2n)} =0 for [a)  ejla’).
Hence, if |a) o e;|a’) the function

[zi — xip1 — a(z1,. .. 2N)



816 JAN DE GIER AND PAVEL PYATOV

is symmetric in z; and z;11, which implies that [r;1; —2; — 1] divides
Ya(z1,...,zN) and the ratio is symmetric with respect to z; and ;4.

Iterating (3.1) we find

U(Z1y. oy X1y Ty Thy -+ - s Tn—1, Tont1s - - - TN)
= Ri(zk — zm) - Rm—1(Tm—1 — Tm)¥(x1, ..., 2N). (3.14)

Consider now the component 1, on the LHS of (3.14), where o does not
have a local maximum at any ¢ for kK <4 <m — 1. This component can
only arise from the same component on the RHS of (3.14), on which the
R-matrices have acted as multiples of the identity. Hence, if « is a path
which does not have a local maximum for any k£ < i <m — 1, we find

wa(xla oy =1, Tmy Ty o+« s Tm—1y Tm41; - - '71"N)

=T e (2, 2w (3.15)

It follows from (3.15) that if & does not have a local maximum between k and
m — 1, then ¢o(z1,. .., zn) contains a factor [ [, <; ;< [1 + 2 — 2;] and the
ratio is symmetric in the variables z;, k¥ < i < m. An analogous argument
can be given when considering the boundary equations (3.2), with Ky =1,
and (3.3). In summarizing the effects of these considerations, it will be
convenient to introduce the following notation:

Definition 3.1. We denote by Aff the following functions:

Af(azk, ey Ty = H [+ z; £ ],
k<i<j<m

where pu is a parameter.

Lemma 3.1. The following hold:

e If a does not have a local maximum between k and m — 1, then 1,
(x1,...,xN) contains a factor A7 (zk,...,%m) and the ratio is sym-
metric in the variables x;, k < i <m.

e If a does not have a local maximum between 1 and m — 1, then 1,
(z1,...,7N) contains a factor AT (z1,...,2m) AT (71,...,2m) and the
ratio is an even symmetric function in the variables x;, 1 <i < m.

e If a does not have a local mazimum between k and N — 1, then 14
(x1,...,xN) contains a factor A] (zg,. .. va)A;-l(ggkv ...,xN) and
the ratio is an even symmetric function in the variables (x; + \/2),
kE<i<N.
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Corollary 3.1. The base coefficient function wé corresponding to the maz-
imal Dyck path Q* (see Definition 2.6) in the solution of the ¢KZ equation
of Type A has the following form:

U (@, o)
= A7 (@1, ) AT (71, 20) AT (T, - - -5 TN)
X A;\‘r+1($n+1,...,$]\[) §A(x1, R A %, coLIN T+ %), (3.16)
where n = | (N +1)/2] and *(z1,. .. Tp|Tni1, ..., 2N) is an even symmet-

ric function separately in the variables v;, 1 <i<nandzj,n+1<j<N.

Proof. The path Q* does not have a local maximum between 1 and n
and neither between n + 1 and N, and the result follows immediately from
Lemma 3.1. |

In the sequel we use the following picture to represent %Zféi

o .. oo N
vo= L | | 1 | Ll 1 1 1 (3.17)

Relation (3.13) for 1/13 can then be displayed pictorially as

<h1<—1)¢é)($1, N ,.TJN) =

Ty ... Ty Tj41 -+ Tp Tp+l TN
1 1 1 ! |1 1 1 | | _y
I N e ’
<—1>
N (3.18)

where 1 <i < N, ¢ # n, and we use the graphical notation (2.19) to repre-
sent h;(—1).

Case ii): « has a local maximum at i.
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Figure 2: Definition of the Dyck paths o~ and ot*, k> 1.

Now (3.6) gives,

([2] = ai) Yo = sita = hi(1) Yo = Z Yg = Po- + Z Yore.  (3.19)

o k=1,2,...
e;B=a
A pictorial definition of the paths a~ and o™ k=1,2,..., is given in

figure 2. In the example of figure 2, the heights of the paths a™* to the
right of the point ¢ are higher than those of a.. This happens in case if the
path a has a local minimum at the point i + 1, i.e., if oy = 41 + 1 = qa.
Equally well, if the path a has a local minimum at the point i — 1 (a; =
@;_1+ 1= a;_3), the sum in (3.19) contains one or several paths a™* whose
heights are higher than those of o to the left of the point ¢. The number
of paths a** appearing in the sum (3.19) depends on the shape of a and
varies from 0 to [(N —1)/2].

Remark 3.2. An important observation is that the path o~ is absent in
figure 2 in case o; = 1. In this case, the condition o; = a; — 2 = —1 implies
that the path a™ is no longer a Dyck path, and that consequently the term
Yo- in (3.19) has to vanish.

A further analysis of equation (3.19) will be made in Sections 4 and 6.

3.3.2 Type B

The analysis of the bulk ¢KZ equation (3.6) in Case i) is identical to that
of Type A and we conclude:

Corollary 3.2. The base coefficient function 1/18 corresponding to the max-
imal Ballot path QP (see Definition 2.8) in the solution of the ¢KZ equation
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of Type B has the following form:

¢£(x1a .. .,.%'N) = Al_(xla s 7$N) Aj\_Jrl(xh s 7$N)
X§B(x1+g,...,m+g), (3.20)
where £B(x1,...,xN) is an even symmetric function in all of its variables

Proof. The path QB does not have a local maximum between 1 and N, so
the result follows immediately from Lemma 3.1. g

In the sequel we use the following picture to represent wg:

Y= L | | | | | (3.21)

Case ii): « has a local maximum at i.

For Type B, (3.6) gives,

hi(D) o = Y cathg =1ha- +co(D) Yaro + Y Porr, (3.22)

o k=1,2,...

e;B=a

where a pictorial definition of the paths o~ and at*, k>0, is given in
figure 3. For ¢, and 1+« the coefficients cg are all equal to 1, but ¢y may
be different from 1. This coefficient is defined by the following rules: ¢y = 0
if the path a is not in the preimage of o under e;, that is, 3j < i : aj <
a; — 1. Otherwise, cy(i) =1 if 7 is odd and ¢o(i) = —[w]/[w + 1] if ¢ is even
(this follows from the rules (2.27) and (2.28)). Further analysis of Case ii)
is postponed to Sections 4 and 6.

Now consider the non-trivial Type B boundary ¢KZ equation (3.10). As
before, the analysis breaks up into two cases, depending whether or not a
path « in the sum on the RHS of (3.10) has a maximum at 0, i.e., whether
or not it is of the form o = (ag, a9 — 1,...). We will first look at the case
in which it does not.

Case i): a does not have a local maximum at 0.
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Figure 3: Definition of the paths o~ and ot*, k > 0.

As each term in the LHS of (3.10) is of the form eg|a), and hence corre-
sponds to a maximum at 0, the coefficient of |a) in the RHS of (3.10) has

to equal zero. We thus obtain

(%@%)(ffl, s 7$N) = Oa

which can be rewritten as

(3.23)

(mo — 1) {[z1 — “’TM][:Q - %4]1#&(561, ..,xp)} =0 for |a) o eola).

Hence, if |a) o ep|a’) the function

(o1 = 250w = 45% (2, -, 2N)

is an even function in z; which implies that [z + WT_(S][l'l + “’T‘M] divides

Yao(T1,...,2N), and the ratio is even in z7.
Case ii): « has a local maximum at 0.

Now (3.10) gives,

([w[:)-}l] - GO)% = 5000 = Yq-0.

Here by o™

(3.24)

we denote the path coinciding with a everywhere except at the

left boundary, where one has ay” = ag — 2, so that egla™®) = |a). Relation
(3.24) in fact implies condition (3.23) as any path with a local maximum
at 0 is the o~ path for a certain path a. Therefore, the Type B boundary

gKZ equation (3.10) is equivalent to the relation (3.24).
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4 Factorized solutions

We now present factorized formulas, in terms of the Baxterized elements
hi(u), i =0,1,..., N — 1, for the coefficients ¢, of the solution |¥) to the
qKZ equation (3.1)—(3.3). For Type A, such formulas were obtained ear-
lier by Kirillov and Lascoux [30] who considered factorisation of Kazhdan—
Lusztig elements for Grassmanians.

4.1 Type A

The factorized expression for 1, is most easily expressed in the following
pictorial way. Complement the Dyck path « with tiles to fill up the triangle
corresponding to the maximal Dyck path Q*, as in figure 4. To each added
tile at horizontal position ¢ and height j assign a positive integer number
u; j according to a following rule:

e put u;; = 1 if in the list of added tiles there are no elements with the
coordinates (i £ 1,7 — 1);
e otherwise, put u; j = max{w;1 j—1,ui—1,;-1} + 1.

Algorithmically this rule works as follows. First, observe that the added
tiles taken together form a Young diagram Y, (see figure 4). In other words,

|

|+

’ AN
A 10 RN

Z AN

Figure 4: Solution of the gKZ equations of Type A. We use the graphi-
cal notation (2.19) and (3.17) to represent the Baxterized elements h;(k),
k=1,2,..., and the coefficient wé. The associated Young diagram Y,
corresponds to the partition {92,6,13}.
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the Young diagram Y, is the difference of the maximal Dyck path Q4 and
the Dyck path «. Then, act in the following way:

e Assign the integer 1 to all corner tiles of the Young diagram Y, and
then remove the corner tiles from the diagram.

e Assign the integer 2 to all corner tiles of the reduced diagram and,
again, remove the filled tiles from the diagram.

e Continue to repeat the procedure, increasing the integer by 1 at each
consecutive step, until all tiles are removed.

Once the assignment of integers is done, define an ordered product of oper-
ators h;(usj)

Ju
H, = Hhi(uij), (4.1)

where the product is taken over all added tiles and the factors of the prod-
uct are ordered in such a way that their arguments u; ; do not decrease
when reading from left to right (note that factors with the same argument
commute).

Theorem 4.1. Let o be a Dyck path of length N. The corresponding coef-
ficient function ), in the solution of the ¢KZ equations (3.1)—(3.3) of Type
A is given by

Yo = Hats, (4.2)

where wé is the base function corresponding to the mazimal Dyck path Q*
of length N and the factorized operator H, is defined in (4.1) (see also

figure 4).

The proof of Theorem 4.1 is given in Section 6.1.

4.1.1 Truncation conditions

For k=1,2,...,|N/2|, let B(k) denote the path of length N, which has
only one minimum, occuring at the point 2k — 1, with 3(k),,_; = —1. Note
that 3(k) is therefore not a Dyck path. The associated Young diagram Yy
is a (n—k+1) x k rectangle, n = | %], We introduce notation Hj} :=
Hpgy) for the corresponding factorized operator. An example of 3 (k) and its
corresponding operator H. ﬁ is given in figure 5 for £k = 3 and N = 12.

Proposition 4.1. The base coefficient function ¢é for the solution of the
Type A qKZ equation is subject to truncation relations

HA S =0 YE=1,2,...,|N/2]. (4.3)
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Figure 5: The path ((3) of the length N = 12 is drawn in bold. The cor-
responding factorized operator H? is an ordered product of the Baxterized
elements h;(u;;) represented by dashed tiles on the picture. The additional
conditions (4.3) require that this picture vanishes.

Conditions (3.16), (4.1), (4.2) and (4.3) together are equivalent to the ¢KZ
equations (3.1)—(3.3) of Type A.

Proof. Using the techniques described in the proof of Theorem 4.1, see

Section 6.1, it follows that the relations (4.3) ensure the vanishing of
the contributions ¢,- in (3.19) if a~ is not a Dyck path; see Remark 3.2.
Explicit examples are given in Section 4.3. g

For a particular value of the boundary parameter A a simple polynomial
solution of the conditions (4.3) was found in [12]:

Proposition 4.2. For A\ = —3, the conditions (4.3) admit the simple solu-
tion €A = 1. In this case the coeficients of the ¢KZ equation, when properly
normalized, are polynomials in variables z; = ¢*, 1 =1,..., N.

Using the factorised formulas we have calculated these solutions for sys-
tem sizes up to N = 10. In the homogeneous limit x; — 0 the coefficients
Ya(x1,...,2N) become polynomials in 7 = —[2]. In fact, up to an overall
factor, each 1), becomes a polynomial in 72 with positive integer coefficients.
These polynomials were considered in [14], where their intriguing combina-
torial content was described. In Appendix B, we present a table of these
polynomials up to N = 10, and we shall further discuss them in Section 5.

4.2 Type B

We will now formulate a factorized solution for Type B. This result was
deduced from some exercises we made for small size systems. As we found
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these instructive, we have given these in Appendix A. Analysing the expres-
sions for the coefficient functions in the cases N = 2,3 we see that in order
to write them as a product of the Baxterized elements h;(u), i > 0, we have
to fix in a special way the auxiliary parameter v in the definition (3.12) of
ho(u). From now on we therefore specify

Ls/20] e+ LG+ /20

’i\’ = ho(k) := ho(k)|y=wtp, = 50 — [k][w + 1] ’

\N— ==

where p;, = k mod 2. Note that the Baxterized boundary element ho(u) is
defined for integer values of its spectral parameter u € Z as only such values
appear in our considerations.

Now we can repeat the procedure described in the beginning of Section 4.1
but with the set of Ballot paths instead of Dyck paths. For each Ballot path
a we consider its complement to the maximal Ballot path Q. This com-
plement may be thought of as half a transpose symmetric Young diagram,
cut along its symmetry axis. We fill the complement with (half-)tiles cor-
responding to the (boundary) Baxterized elements h;(u; ;) and ho(u; ;) as
shown in figure 6. The rule for assigning integers u; ; to the tiles remains
exactly the same as for Type A. For the half-tiles the rule is:

e put ug ; =1, if there is no adjacent tile oy with the coordinate (1,7 —1);
e otherwise, put ug; = uy ;-1 + 1.

N|

1
13>
I/ A\

v N
IS 12 ,'\

N
ETUNEET]
e N4 \
Y 10 A& 10 >

N s

N
N N

AN

Figure 6: Solution of the ¢KZ equation of Type B. We use the graphical
notation (2.19), (4.4) and (3.21) to represent the Baxterized elements h;(k),
the boundary Baxterized elements ho(k) and the coefficient 5.
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The operator H, corresponding to the Ballot path « is given by the same
formula (4.1) as for Type A, where now index i may take also value 0, thus
allowing the boundary operators ho(uo ;) enter the product.

Theorem 4.2. Let o be a Ballot path of length N. The corresponding
coefficient 1., of the solution of type B qKZ equation is given by

1% = al/}g) (45)

where wg is the base function corresponding to the mazimal Ballot path QP
of length N and the factorized operator H, is defined in (4.1); see also
figure 6.

The proof of Theorem 4.2 is given in Section 6.2.

4.2.1 Truncation conditions

Fork=1,...,n = | %] let v(k) denote the path of the length N with only
one minimum, occuring at the point 2k — ey — 1 with v(k)y,_ 1 = —1
(recall that ey = N mod 2). Note that (k) is therefore not a Ballot path.
The associated half-Young diagram has a shape of trapezium. We introduce
the notation H,]f := H, for the corresponding factorised operator. An
example of a path v(k) with N = 10 and k = 3 is shown in figure 7.

S
Be 1

\Y
~
w9 3
|\’\\
N8 o~
17N R\
K77 W
I\\/\\//
|6/<6/\6/>\
’ N
5 5 »
7 N
4;<4\/\
AN AAR ¢
’
G338
7
« 2 \
/7 N
13 A
0 ok—1=5  N=10

Figure 7: The path (3) of the length N = 10 is drawn in bold. The cor-
responding factorized operator H?]? is an ordered product of the Baxterized
elements h;(u;;) represented by dashed tiles on the picture. The additional
conditions (4.6) require that this picture vanishes.
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Proposition 4.3. The base coefficient function ¢g for the solution of the
Type B qKZ equation satisfies the truncation conditions

HEYE =0 Yk=1,2,...,n. (4.6)

Conditions (3.20), (4.5) and (4.6) together are equivalent to the ¢KZ equa-
tions (3.1)—(3.3) of Type B.

Proof. Just as for Type A, the relations (4.6) ensure the absence of
Y- in (3.22) if a~ is not a Ballot path. Explicit examples are considered
in Appendix A. O

For particular values of the boundary parameter A and the algebra param-
eter w the simplest polynomial solution of the conditions (4.6) was found in
[51]:

Proposition 4.4. In case A\ = —3/2 and w = —1/2 the conditions (4.6)
admit the simple solution €2 = 1. In this case, the coeficients of the ¢KZ

equation, when properly normalized, become polynomials in variables z; =
qg*,i=1,...,N.

4.3 Separation of truncation conditions

4.3.1 Type A

Equation (4.3) impose restrictions on the otherwise arbitrary symmetric
functions £* of the ansatz (3.16). Based on experience with calculations for
small N we observe that these restrictions can be written in a more explicit
way. Namely, one can separate the functional part (depending on variables
x;) and the permutation part (depending on the permutations ;) in the
operators H{* in (4.3).

To formulate this separation in a precise way, let us first define the follow-
ing set of Baxterised elements in the group algebra of the symmetric group

C[SN] ~ 'H%(l):

Denote furthermore by H? the permutation operators obtained from the
operators H,? by substituting h;(u; ;) — m;(u ;).
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Conjecture 4.1. The LHS of the truncation condition (4.3) for Type A can
be written in the following separated form (remind that n = L%J}

AT ... AT ... Ay ..
H]?w(AZ _ 1 (fL']g, 7xn+k) H? 0 (l'k, 7xn) [1('%.71"!‘17 ,flfn+k) 77/}8
1

Ag (xg, .o Tpgg) AT (Tky oy ) AT (Tpt1s - - o Tntk)
(4.7)

Example 4.1. In the case N =5, there are two truncation conditions on
the base function 1/16:

e Condition (4.7) for k = 1 reads

Ap (21,20, 2
)
Al (f)’jl,xQ,ng)

1 (@1, 24)
o (x1,...,24)

h1(1)ha(2)hs(3)g =

or, in terms of &4

H?{Aa (z1, w2, 23) AT (21, 22, 23) AT (24, 25)

X A;H(u,x5)£A(1:1,332,a:3\:U4 + %,1'5 + %)} =0, (4.8)

where IT3 := (1 — ) (3 — m2)(3 — m3). Since the function in braces in

(4.8) is antisymmetric in the variables x1,x2,x3, the operator H/ﬁ in
this formula can be equivalently substituted by

H? — (1 — w3 4 momy — mymams). (4.9)

e Condition (4.7) for k = 2 reads

A_Al_(xg,...,l'5) AAE(ZQ,%g)Aa(HM,(LG) A
h3(1)ha(2)ha(2)h3(3)1bg = Ay (29, oras) 1T, Al_(962,963)A1_($4,:C5)w =0.

or, in terms of &4

H?{AE(% + 1, w9, 23) AT (21, 22, 23) A (24, T5)

X A:\:_l(u,x5)§A(x1,x2,ac3\x4 + %,xg, + %)} =0.
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The operator 113 := (1 — m3)(3 — m2)(3 — m4)(3 — m3) in this formula
can be equivalently substituted by

H? — (1 — 3 4 mamy + MyT3 — TWYTY + WTTATS). (4.10)

Formulas (4.9) and (4.10) suggest the following proposition.

Proposition 4.5. In condition (4.7) one can substitute the operator H?
by a polynomial in the permutations (—m;), i =k,...,n+k— 1, with unit
coefficients. The terms of the polynomial are labelled by the sub-diagrams of
the rectangular Young diagram {k=*tDY corresponding to the path B(k);
see Section 4.1.1. Their form is given by formula (4.1), where one has to
substitute the factors h;(u;;) by —m;.

4.3.2 Type B

In this case, we found analogues of the expressions (4.7) for particular trun-
cation conditions (4.6) only.

Let us supplement the set of Baxterized elements 7;(u) with the boundary
Baxterized element

The elements m;(u), i = 0,1 satisfy a reflection equation of the form (2.17).

Denote by II2 the operator obtained from H? by the substitutions

ho(uij) = mo(1),  hi(uiz) — mi(ui;) Vi> 1.

Conjecture 4.2. The LHS of the condition (4.6) for k =n and arbitrary
N can be transformed to

HT]? 1/)8 _ {@(:Ul,...,jL’N)Af(:rl,...,a:N) HE Aa(l’g,.:,x]\[)
Ay (z1,...,2N) O(x2,...,xN)A] (z2,...,ZN)
[[V/2]][w +n]y B
[w+1] }¢Q7
h, — | N+l d O(x; ) e— . . k(zp, )
where n = | ~5=| and O(x;, ..., x;) : Hzgpgg PERIEESIE
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For N odd denote by II¥ the operator obtained from H} by the substi-
tutions

ho(um) — Wo(ui,j)a hi(um) — 7ri(um) Vi > 1.

Conjecture 4.3. The LHS of the condition (4.6) for k =1 and N odd can
be written in the following separated form

A (e, 2 AT (2, )

HBYS =O(x1,... 20 b
1¥a (21 . )Ag(ml,...,xn)Aa'(xl,...,xn) !
Ag(z1,...,2n) B
X —= Uvg. 4.11
AT (21,...,2n) @ ( )

Remark 4.1. Note that condition (4.11) does not actually depend on
the algebra parameter w. If we choose &P =1, then it is satisfied for
A€ {-3/2,-2} only.

5 Observations and conjectures

In this section, we consider explicit polynomial solutions of the gKZ equation
described in Propositions 4.2 and 4.4, and we consider the homogeneous
limit z; — 0. We would like to emphasize the importance of these explicit
solutions for experimentation and for the discovery of many interesting new
results. In this section, we formulate some of these observations. We present
new positivity conjectures and relate partial sums over components to single
components for larger system sizes. Furthermore, based on our results we
have been able to find a compact expression for generalized partial sums in
the inhomogeneous case.

5.1 Type A

In Appendix B, we have listed the solutions described in Proposition 4.2 up
to N =10 in the limit x; — 0, ¢ =1,..., N. These solutions were obtained
using the factorized forms of the previous section.

In the following, we will write shorthand 1, for the limit x; — 0 of
Ya(x1,...,2N). The complete solution is determined up to an overall nor-
malization. We will choose £* = (=1)"»~1/2 where n = [(N +1)/2] for
which we have

Wi = 7 IN/2(WN/2)-1)/2,
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An immediate observation was already noted in [14]:

Observation 5.1. The components 1, (21, ..., zx) of the polynomial solu-
tion of the ¢KZ equation of Type A in the limit z; — 0,7 =1,..., N are, up
to an overall factor, which is a power of 7, polynomials in 72 with positive
integer coefficients. Here 7 = —[2].

We now conjecture a partial combinatorial interpretation, by considering
certain natural sums over subsets of Dyck paths. Let us first define the
paths Q(N,p) € Dy whose local minima lie on the height p, where

p=L[(N-1)/2] —p.
Figure 8 illustrates the path ©(12, 3).

For later convenience we also define, in the case of odd IV, the paths Q(N ,D)
€ Dy whose first p — 1 local minima lie on the height p, except for the last
minimum which lies at height 0. Figure 9 illustrates the path 2(13,4).

=) A /X\ /x\ /X\ /X\ N
Q(12,3)

N=12

Figure 8: The minimal path €(12,3) € Dja3.

Q(13,4)

N=13

Figure 9: The path €(13,4) € Di36.
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Q(12,4)

N=12

Figure 10: Definition of the number ¢, as the signed sum of boxes between

the a and the path 62(12,4). In this figure, N =12 and p=4 and co4 =
4-3+1=2.

We define the subset Dy, of Dyck paths of length N, which lie above
Q(N,p), i.e., whose local minima lie on or above height p. Formally, this
subset is described as

Dnp={a € Dy| a; > Qi(N,p) = min(Q;,p)},

where Q; = min{i, N + ex — i}, ey = N mod 2, are integer heights of the
maximal Dyck path Q* = Q(N,0). We further define an integer c,, asso-
ciated to each Dyck path in the following way (see also Appendix B). Let
a = (o, a1, ...,an) € Dy, be a Dyck path of length N whose minima lie on
or above height p. Then ¢, is defined as the signed sum of boxes between
a and Q(N,p), where the boxes at height p + h are assigned (—1)"~! for
h > 1. An example is given in figure 10, and an explicit expression for cq
is given by

(—1)? LN/2] [(N-1)/2]
Cap = " Z (s — Q2i(N, p)) — Z (a2i41 — Q2i41(N, p))
i=1 =0

Consider the partial weighted sums

Se(N,p)= Y 75, (5.1)

a€Dn,p

It was noted in [36,33] that for 7 =1 (¢ = e*™/3), these partial sums for
system size N, correspond to certain individual elements for size N + 1.
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Here we observe that this correspondence holds also for arbitrary 7: the
partial sums Si(N,p) are up to an overall normalization proportional to
certain individual components v, of the solution for system size N + 1:

S+(4, 1) = 1/)@ 57(4, 1) = T_2¢AAA

S_(5,2) =772 o~

S,(6,2) = 7/}M S_(6,2) = T_:ng&

S+(6, 1) = 1/)4222 57(6, 1) = 7_3@@4&4

S1+(8,3) =¥ oy | S-(8,3) = T ann
S+(8,2):1/1MZ S_(8,2)—T_4¢MA

S, (8,1) =4 55 S_(8,1) =1"% X

We formalize this observation in the following conjecture:

Observation 5.2.

S4(N,p) = Yan+1p), N even,

S_ (N, p) = T*N/Z wﬁ(N—i—l,p-‘rl)’ N even,
S_(N,p) =7 NV 249011 ,, N odd.
The weigthed partial sums were defined in (5.1) in an ad hoc way. This

was the way they were discovered when searching for relations as in
Observation 5.2. In fact, these partial sums arise in a natural way as we will
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Z N

Z N

Figure 12: The partial sum S_(10, 3) in factorized form.

show now:

Observation 5.3. The partial sums S4 (N, p) are obtained from factorized
expressions. In particular, let

H p+2z+] 1 +])
J—

2 \

p+2@+] 1)a

2+

11
EI

where the product is ordered as in figures 11 and 12. Then we have
S+(N.p) = lim PEs. (5.2)

In fact, we conjecture that (5.2) with (5.1) remain valid in the presence
of the variables x;:

Observation 5.4. Define

p p—1

=1 [ ho+oiri(u+i—1).

j=1i=j—1

where the product is ordered as in figure 13.
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Z N

Figure 13: The partial sum S(10, 3, u) in factorized form.

The weighted partial sums are special cases of the following identity for
polynomials in z1,..., TN,

S(N,p,u) i= Pr(u) (a1, ay) = 3 ([1 - “]> bal@1,. .. 2N).

Note that (5.3) has many interesting specializations, such as u = 0 and
u = 1 which, when properly normalized, correspond to the single coefficients
Yo, (N-1)/2)) and Yo(n,|(v-3)/2)), respectively. The standard sum rule
where one performs an unweighted sum, corresponds to u = 1/2. Inter-
estingly, a special case of the generalized sum rule (5.3) is closely related
to a result of [18], were a similar generalized sum was considered, based
on totally different grounds and in the homogeneous limit z; — 0 and for
p=|(N —1)/2]. By computation of a repeated contour integral, it was
shown in [18] that in this case, S(N, |(N —1)/2],u) is equal to the gener-
ating function of refined ¢, T-enumeration of (modified) cyclically symmetric
transpose complement plane parititions, where ¢t = [1 — u|/[u]. Because of
the natural way this parameter appears in (5.3), we hope that this result
offers further insights into the precise connection between solutions of the
qKZ equation and plane partitions.

5.2 Type B

In Appendix B, we have listed solutions of the ¢KZ equation for Type B
from Proposition 4.4 up to N = 6 in the limit x; — 0, ¢ =1,..., N. These
solutions were obtained using the factorized forms of the previous section.
As in the case of Type A, we again find a positivity conjecture, this time in
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the two variables 7/ and a which are defined by

12
(2] 2]

=2-1=2+2=[2%p, a=

The complete solution is determined up to an overall normalization. We will
choose &8 = V21 (—72)N(N=1)/2_ for which we have

Observation 5.5. The solutions ¥, (x1,...,zy) of the ¢gKZ equation of
Type B in the limit 2; — 0,4 =1,..., N are polynomials in 72 and a with
positive integer coefficients.

For a = 1, this conjecture was already observed in [51]. As was conjec-
tured in [11] for 7/ = 1, the parameter a corresponds to a refined enumeration
of vertically and horizontally symmetric alternating sign matrices. A sum
rule for this value of 7/ was proved in [51]. We suspect that the parameter
7/ is related to a simple statistic on plane partitions, as it is for Type A. We
thus have an interesting mix of statistics, one which is natural for ASMs,
and one which is natural for plane partitions. In a forthcoming paper we
hope to formulate some further results concerning the solutions for Type B.

6 Proofs
6.1 Proof of Theorem 1

We have to show that the vector |¥) whose coefficients are given by the for-
mulas (3.16) and (4.1), (4.2) satisfies the ¢KZ equations (3.1)—(3.3) of Type
A. Following the preliminary analysis of Section 3.3.1, we divide the proof of
(3.1) into two parts, depending on whether or not the word corresponding
to the path « begins with e;.

1.« does not have a local mazimum at i. We have to show that, see (3.13),

—(aia)(z1, ..y zN) = (hi(=D) o) (21,...,2N8) =0, (6.1)

for 1, given by (4.2).

If o does not have a local maximum at ¢, then either h;(—1) acts on a
local minimum, or on a slope of a.
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Figure 14: Action of h;(—1) on a slope of a Dyck path «. The first equality
follows from the Yang-Baxter equation (2.18) and the second follows from
(3.18). For the operators H, of a more general form (like, e.g., the one
shown in figure 4) the first part of this transformation should be repeated
until ~;(—1) commutes through all the terms of H,.

e hi(—1) acts on a local minimum of «.
In this case 1, is divisible by h;(1) from the left and (6.1) follows
directly from

e h;(—1) acts on a slope of a.
In this case, we use the Yang-Baxter equation (2.18) to push h;(—1)
through the operator H, (4.1) in the expression for ¢, (4.2). Then
hi(—1) vanishes when acting on wé; see (3.18). This mechanism is
illustrated in figure 14.

2.  « has a local mazximum at i. The harder part of the proof of Theorem 4.1,
to which we come now, lies in proving (3.19) when h;(1) acts on a component
1o, where the path « has local maximum at ¢. If this maximum at ¢ does
not have a nearest-neighbour minimum at i — 1 or i + 1 then (3.19) becomes
simply
hl(].)’l[)a = sz)a—a

and the action of h;(1) is the addition of a tile with content 1 at ¢, which is
just the prescription of the Theorem 4.1; see figure 15.

Now we will look at the action of h;(1) on 1, (4.2), where the Dyck path
« satisfies conditions (see figure 16)
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Figure 15: Graphical representation of the equation h;(1)1, = 1,- corre-
sponding to the addition of a tile with content 1 at a maximum without
neighbouring minima. In this case, v > 1 and v > 1.

| | | | | | | | | |
Al
v
- ~
s N
L
s N
s N N
v
s /N N
2 N N N
2
’ /N N N
, N AN N
2 v v v
s ST AV Y N
’ N ’ s N
v V. ¥
, NP 7 PG ELEAN N
’ NN ’ s N
2 4 v v
, Skt M8 Y 60 M vs Y N
/ N i N N N \
2 v 4 v v 4 v
s SNt g 2 AN PSSR N
s NEPAEEEN N ONis N s AN N
L v 7 v M v v v
’ Suks od M 4 Y04 4 v X N
s N SN NN AN N
L v N v v v, v
s /\"+21\3 3008 008 Nvk2 XN N
s NP X N N N
v N~ v v
s St 2 vHL N N
, N N ’ N
v v
, /N /N N
’ N N N
, N N3 N
’ 2N AN N
, VAN 2N N

i i1 i+ i+2p+1 i+2r+1

Figure 16: The Dyck path « satisfying conditions (a) and (b). Between i + 1
and ¢ + 2r 4+ 1 this path contains exactly one local minimum at ¢ + 2p + 1,
which has the same height as the minimum at ¢ + 1.

(a) « has a maximum at ¢ with a neighbouring minimum at ¢ 4+ 1;

(b) « crosses the horizontal line at height a;+1 = a; — 1, for the first time
to theright of 4, at i +2r + 1, r > 1: qj10, — 1 = @yjyor411 = Qjpor1o +
1= ajt1.

In this case, we observe that the factorized expression (4.2) for v, contains
a strip of tiles Hjy1 4,(1), where

Hi+1,i+r(u) = hi+1(u)hi+2(u + 1) X -ee X hH_r(u +r— 1). (6.2)

This strip is shown shaded in figure 16.
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We are going to rewrite the term h;(1)H;y1 i4+,(1) in the product h;(1)1)q
in such a way that we obtain the components 1,- and v ,+x from the RHS
of (3.19), see also figure 2, defined according to the rules (4.1) and (4.2). As
a first step we prove the following proposition:

Proposition 6.1. Let X be an arbitrary element of the algebra Hﬁ(q) taken
in its faithful representations (3.7) and (3.8). We denote by A; j, i < j, the
linear span of terms Xay = Xhip(—=1)Vk :i < k < j. We define additionally
Ai,i—l = 0, Hi,i—l(l) = 1.

The following relation is valid modulo A; ;j4r—1:

Hit14(1) mod Ajjyr—1, Vr>0.
(6.3)

Hmw(u) = Hi,i+r(u + U) + W

For the proof of Proposition 6.1, we need the following two simple lemmas.

Lemma 6.1. One has

L hi(u)Hiy1ir(u+1) = Hijgr(u);
2. Hiiyr(Whitri1(u+7r+1) = Hiiprga(u);
3. for generic values of u and v

Hiirr(u) = Hjjr(u+v)

y (]
Hiicpr H; i+r k 1).
+kzo[u—|—k”u+v+k} ii+k 1(U+U) ki (u_|_ 4 )
(6.4)

Proof. The first two parts of the lemma follow immediately from the defini-
tion of H;;yr(u) in (6.2). To prove (6.4), we use induction on r. For r =0
equation (6.4) reduces to (2.12). Now we shall make the inductive step by
assuming (6.4) is true for some r, and prove it for r 4 1:

H;jry1(u)
=Hijirr(Whipr1(u+r+1) = Hiipr(u+0)higrp1(u+r+1)

- [v]
+ kzo ot i+ o £ ko1 ()

X Hi+k+1,i+7“<u +k+ 1)hi+r+1(u +7r+ 1)
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[v]
=Hir ity 1
,+(U+U)< +r(ut v+t )+[u+r+1][u+v+r+1]

- [v]
Hiivi Hithiitr k+1
+kzzo[u+k”“+”+k] ko1 (U V) Hiygstiprir(u+ k+1)

r+1 [’U]

= Hijiyr1(u+v) + Z [
k=0

X Hiykr1ivri1(u+k+1),

H; v
u—|—k][u—|—v—|—k] Ji+-k 1(U+U)

where we used (2.12) and the induction assumption. This completes the
proof of Lemma 6.1. O

Lemma 6.2. One has

u+r+1
Hi,i+r(u) = [[u}] mod qu77j+r, (65)

In particular, the coefficient wé (3.16) of the mazimal Dyck path Q* satisfies
the relations

Hi,i—i—r(u) wé = W wéﬂ (6'6)

in case the indices v and i are chosen within the limits 0 <r<n—1,1<

i <n-—r, where n = L%J

Proof. From (3.18) and (2.12) we find that

ha(u) = B g1y = mod A;;, (6.7)

which implies formula (6.5). Relation (6.6) for the coefficient 15 then follows
from (3.18). O

Proof of Proposition 6.1. By applying (6.4) twice, first with the arguments
{u,v}, and then with the arguments {u,v} substituted by {u+ 1, —u},
we find:

H;iyr(u) = Hyjigr(u+v) + Hiy1i40(u+1)

[u][u+v]

y g
Hii - Hl i+r k 1
+kzl[u+k}[u+v+k3] k-1 (U + V) Hip gy 1ir(u+ Kk + 1)
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[v]

= qu_r(u + U) + W

Hi1i40(1)
RS [u]
 [ul[u+ 0] kz kot e i)

X Hiyproipr(u+k+2)

[en]

- [v]
E Hi g H; itr E+1
+k:1 [u—l—k][u—i—v—i—k‘] Jitk 1(U+U) +Ek+1,i+ (’LL—|— + )

[v

= ) u v 7]
R ) ey

Hi1i40(1)

" v
+ Z i‘Z:Il;i,k+177j+7»('U/ + k + 1)

P [u+ K]
1 1
% <MH@Z‘+7€1(“ +v) — WHi+l,i+k1(1)> .

(6.8)

It lasts to notice that, by Lemma 6.2, the operators between parentheses in
the last term of (6.8) become c-numbers modulo A; ;4,—1 and in fact cancel:

! 1
<[u+v+k]H"’”k1(“ +o) - WHHl,iJrkl(l))
_ 1 [utv+kl 1 [k o A
- <[U+v+k] [+ ] [u + v][K] [1]) d Ajjitr—1
=0 mod Az‘,i—l—r—l-
Hence, (6.8) implies (6.3). 0

Consider a path o whose all local minima between i+ 1 and 7 + 2r + 1
lie higher than «;11. For such paths Proposition 6.1 implies the following:

Corollary 6.1. Let a = (ag,...,an) be a Dyck path satisfying conditions
(a) and (b) on page 43. Assume additionally that a has no local minima at
height a;yq between i + 1 and i + 2r + 1. Let further a~ (respectively, )
denote the path obtained from « by raising (resp., lowering) the height «;
(resp., a;q1) by two; see figure 2. Then for the coefficients Vg, Vo, Pat1
defined by (4.2) we have:

hi(1a = Yo + o
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Figure 17: Diagrammatic presentation of Corollary 6.1. The transformation
(6.9) is displayed in details.

Proof. As we noted before, the product h;(1)1, contains the factor h;(1)
Hit1,i4+r(1). Applying (6.3) and (6.7) for u = v = 1, we can transform this
factor in the following way:

1
hi(1)Hit1 i4r(1) = hi(1)Hig1540(2) + mhi(l)Hi—&-Q,i—o—r(l) mod A;1i4r—1

= Hiirr(1) + Hiz2i4(1) mod A;;ir 1. (6.9)

On substitution of this result back into h;(1)y, the terms containing the
expressions H;;i,(1) and Hjyg4+,-(1) both assume the form of the ansatz
(4.2). They correspond, respectively, to the paths a~ and o1, The terms
from A;;1,—1 vanish owing to the same mechanism as in figure 14. This
calculation is graphically displayed in figure 17. g

Consider now a path « that has exactly one local minimum between i + 1
and 7 + 2r + 1 of the same height as the minimum at ¢ + 1; see figure 16. In
this case, the following Corollary holds.

Corollary 6.2. Let a = («ap,...,an) be a Dyck path satisfying conditions
(a) and (b) on page 43. Assume additionally that o has one local minimum
placed at the point (i +2p + 1), 0 < p < r, which has exactly the same height
as the minimum at ¢ + 1: cjpopi1 = uiy1; see figure 16. Let further the paths
a~, ot be defined as in Corollary 6.1, and denote by a™? the path obtained
from « by raising the heights a1, ..., ai40p41 by two; see figure 2. Then
for the coefficients Vg, Vo, Yo+1 and Yo+2 defined by (4.2) we have:

hi(1)tha = Yo + Yat1 + Yar2. (6.10)
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Proof. We copy the transformation of h;(1)1, from the proof of Corollary
6.1 till the end of (6.9). As before, the term H; ;4,(1) in the last line of (6.9)
gives rise to the coefficient 1,- in (6.10), whereas the term A; ;1,1 vanishes
upon substitution into h;(1)y,. This time, however, the term H;yg4,(1)
when substituted into h;(1)1, does not give an expression fitting the ansatz
(4.2). We continue its transformation using again (6.3) for u = p, v = 1, and
(6.5) for u = 1:

Hit2ivr(1) = Hiz2,i4p(1) Higpi1,i+r(p)
1
= i+27i+p(1)<Hz'+p+1,i+r(P +1) + ] Hi+p+27i+r(1))

mod Ajipi1itr—1

1
= Hiro (D Hispir D)+ — Hisproien(l
i+2,itp(D) Hitpt1itr(p+1) + P 1] itpt2,i+r(1)
mod Ai+2,i+7‘—1 . (611)

The first term in (6.11) upon substitution into h;(1)1), gives rise to the
coefficient ¢,+1, whereas the last term vanishes. It remains to consider the
effect of the second term.

Let us introduce a further extension of the notation (6.2),

Hm:f(“) = Hijpr(u)Hi—1itr—1(u+1) x ...
X Hi giyr—s(u+s) Vr,s>0, (6.12)
i— i—1
H, /70 :=H ! =1.

1,947

Graphically, H; Z_;f (u) can be displayed as a rectangular block of tiles of a
size (r+ 1) x (s+ 1) with the bottom corner tile corresponding to h;(u).
We also use the following shorthand symbols for uphill and downhill strips

(the case of block with either s =0 or r = 0):

Hly(u) = Higo(w),  H7%(w) == H7(u).

8

Now we notice that in the assumptions of the corollary the strip of tiles
Hit1i+r(1) in expression (4.2) for ¢, is in fact multiplied from the left by
the block of tiles Hi+2p+17;_t£_tf(1). Therefore, we can continue the transfor-
mation of the second term in (6.11) by multiplying it from the left by the

term H, 5, +17fi£j;f (1). The transformation is essentially a permutation of
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Figure 18: Diagrammatic presentation of the transformation (6.13) for the
case p=4 and r =7 (this situation occurs in the third line of the cal-
culation in figure 19). Using the Yang-Baxter equation one moves the
strip Hitpy2,i+r(1) down and right. The contents of the tiles in the block

H ., +2éi§iz(1) are shifted cyclically in the uphill layers during the per-

mutation. The shaded downhill strip H;i;j;}(l) equals [p+ 1] modulo
Ai+r+1,i+p+7‘-

These two terms which makes use of the Yang-Baxter equation (2.18):
; 1
i+p+2
Hiopi1itprr (1) <[p Y Hi+p+2,i+r(1)>

! i+p+2 ;
= p+1] Hivopt2,iprr(1) Hipopi1iiprr—1(2) HZI;L} (1)

i+ pt-2
= Hz‘+2p+2,figir(1) mod Ajiri1itptr - (6.13)

Here in the last line we evaluate factor H;i;];}(l) using (6.5). The trans-

formation (6.13) is illustrated in figure 18.

Substitution of the result of (6.13) back into h;(1)y, gives exactly the
expression for the coefficient 1,+2. The whole calculation is graphically
displayed in figure 19. g

The general structure now is clear and we can formulate

Proposition 6.2. Let a = («, ..., an) be a Dyck path satisfying conditions
(a) and (b) on page 836. Assume additionally that o has K > 1 local minima
placed at the points © 4+ 2p, + 1,0 =p; < --- < pg < r, which have the same
height h = a1 = airop,+1 VE; see figure 2. Then for the coefficients 1,
Yoy Yok, k=1,..., K, defined by (4.2) we have:

K
hz(l)wa = wa* + Z¢a+k7

k=1

where a~ and a* are the Dyck paths defined in figure 2.
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@ it+r i+2r+1

i i+2  itptl it if2p+l

it+2 i+2 itp itpt2 it2ptl

+ "/)a‘*'l + woﬁ'Q

i+2p+2

Figure 19: Diagrammatic illustration for the proof of Corollary 6.2. The
path « is taken from figure 16. Each time the transformation is applied
to the strips, which are shown shaded on the pictures. The second line in
the figure represents transformation (6.9). The third line corresponds to the
transformation (6.11). The shaded uphill strip in this line can be evaluated
as [4] (cf. with the last equality in (6.11)). The shaded downbhill strip has
to be moved up and right (see figure 18) and then evaluated as [5].
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Figure 20: Diagrammatic presentation of relation (6.14). The coloured ver-
tical lines on top of the tilted rectangles symbolize annihilator of the terms
Ai—sitr—s—1 and Ajyy_s1144r. In the expressions for ¢, (4.2) this role is
played by the coefficient wé.

For the proof of Proposition 6.2 we need a generalization of formula (6.3)
for the case of blocks (but now for v = 1 only):

Lemma 6.3. For generic values of u one has

i—s i—s 1 i—s i—st1
Hfp(w)=H,; ;L (u+ 1) + Wut1] Hitr40 (1) HZ9 (D) H, 0 (w4 2)
mod Ai—s,i-i—r—s—l @ Ai+r—s+l,i+r . (6.14)

The graphical presentation of relation (6.14) given in figure 20 is probably
more clarifying.

Proof. We use induction on s. For s = 0 relation (6.14) reduces to (6.4). We
now check it for some s > 0 assuming it is valid for smaller values of s:

Hz,zi; (u) = Hi7i+r(u)Hi7171zL;j71(u +1)

1 i
= (Hi,z‘+r(u +1) + W+ Hi+17i+r(1)>Hi—1,z+rS—1(U +1)

mod Ai—s,i+r—s—1
=Hjrr(u+1)H;_ /7 (u+2)
1
S~ 1) Higr (1 )
- [u+1][U+2]< isier (1) i1 (1)
x H}~3(1) Hz—lz::ir;(u +3)
1 i—s

+ W+ Hipvipr(DH; i (u+1)
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X mod Aj_sitr—s—1 D Aigr—st1,itr—1

=H,[ [ (u+1) + Hisr,ir(1)

fullu+ 1

[u] i i —s+1
(g ) + izt D) 2)
x mod Ai—s,i+r—s—1 S2) Ai+r—s+1,i+r .

Here in the second line we used (6.3) for v = 1 and take into account the
fact

i—s
Ai,[—i—’r—l Hifl,i+rfl(u + 1) - Ai—s,i+r—s—1-

When passing to the third line we used the induction assumption and then
permuted two terms in parentheses in the fourth line using the Yang—Baxter
equation (2.18). The result of this permutation contains the rightmost factor
hi+r(u 4+ 1), which can be evaluated as [u + 1]/[u] modulo A;4,. Finally, we
notice that by obvious symmetry arguments the mirror images of relations
(6.3) are valid for the downhill strips H} (u). Therefore, the term taken in
parentheses in the last line equals H} $(1). O

Proof of Proposition 6.2. The simpler cases K = 1,2 were already consid-
ered in Corollaries 6.1 and 6.2. In general, the calculation of h;(1)y, can be
carried out in the following steps:

Step 1. Using the transformation (6.9), we extract the term v,- from
hi(1)1s. The residual term equals 9,+1 in case K = 1; see Corollary 6.1.

Step 2. In case K > 1, the residue needs further transformation. Namely,
to fit the ansatz (4.2) one has to rise by one the arguments in all tiles of
the strip contained between the uphill lines starting at height h = a; 41 at
points ¢ — 1 and 7+ 2p; + 1 =14+ 1 and the downhill lines starting at the
same height h at points i + 2ps + 1 and i + 2r + 1 (see the dashed strip in
the picture in the second line of figure 19). Acting in this way we extract
the coefficient 1¥,+1 from the first step residue, see (6.11), and the rest, in
case K = 2, can be easily transformed to the form of ) ,+2; see figure 19.

Step 3. In case K > 2, the residual term of the second step does not fit
the the ansatz (4.2) and has to be further transformed. This time one has
to rise by one the arguments in the block of tiles contained between the
uphill lines crossing the points ¢ — 1 and ¢ + 2ps + 1 at the height h and
the downhill lines crossing the points ¢ + 2p3 + 1 and ¢ + 2r + 1 at the same
height. An example of the second step residue is given in figure 21. We
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i1 i+2pa+1 i+2p3+1 i+2r 41

Figure 21: The case K = 3, a typical diagram of the second-step residue.
The term that needs further transformation is the shaded block of tiles.

N oz A4

A
N/ \/6\/

/\ ~
5‘,\’5
4

3 w7

Figure 22: Transformation of the third-step residue in case when the second-
step residue is given by figure 21. Using the Yang-Baxter equation (2.18)
shaded uphill/downhill strip can be moved up and left /right (see explanation
in figure 18) and then evaluated with the use of (6.5). Since K = 3 in this
example, the third-step residue equals ©,+3.

can raise the arguments in the block using the result of Lemma 6.3; see
(6.14) and figure 20. The first term from the RHS of (6.14) gives rise to the
coefficient v¢,+2. The second term is the third step residue, which can be
further simplified using the Yang-Baxter equation (2.18) and the evaluation
relation (6.5). In case K =3, the result of the transformation coincides
with ©,+3. For the example of figure 21 the transformation is illustrated in
figure 22.

From now on the consideration acquires its full generality and we continue
the transformation until it ends up at Step K. O

Up to now we have finished the proof of the bulk ¢KZ equation (3.19) for
the coefficients 1, whose corresponding Dyck paths a have a local maximum
at ¢ and a neighbouring local minimum at ¢ 4+ 1. Consideration of the cases
where a has a neighbouring local minima at ¢ — 1, or both at ¢ — 1 and 2 + 1
is a repetition of the same arguments.

It lasts to check the Type A boundary ¢KZ relations (3.2) and (3.3).
By Corollary 3.1 these conditions are verified by the coefficient ¢S of the
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maximal Dyck path. Then we notice that none of the factors of the operator
H, (4.1) affect the coordinates z; and xy and hence commute with the
boundary reflections 7y and my; see (3.4) and (3.5). Therefore, each of the
coefficients 1, = Ha04 (4.2) also satisfies the conditions (3.2) and (3.3).

This completes the proof of Theorem 4.1.

6.2 Proof of Theorem 2

The proof is analogous to that of Theorem 4.1 for Type A, except that now
we also have to make use of the reflection equation (2.20) for hg. Again,
following the preliminary analysis of Section 3.3.1, we divide the proof of

(3.1) into two parts.

1. In case a does not have a local maximum at ¢ we have to show that
(6.1) is satisfied for ¥, given by (4.5). The working is identical to that
in Type A; see Section 6.1, except for the case when h;(—1) acts on an
uphill slope starting at the left boundary. In this case, we additionally
use (2.20) to reflect hi(—1) at the boundary; see the illustration in
figure 23.

2. If a has a local mazximum at i, then we need to prove that Theorem 4.2
implies (3.22). Here again, the working is identical to that in Type A
except for the case where a has a local minimum at ¢ — 1 and has no
lower local minima between 0 and ¢ — 1. In this case, (3.22) contains
the term 1,+0, which originates from reflections at the left boundary.
The proof still follows basically the same lines as in Type A although
the calculations become quite elaborate. Therefore, we decided to

Figure 23: Reflection of hy(—1) at the origin. The first equality follows from
the reflection equation (2.20) and the second one is a property of ¥§ (3.20):
hi(—1)pE = 0.
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collect the necessary technical tools in the lemma below and then to
illustrate the idea of the proof on a few examples in pictures.

Let us introduce the following notation:

Ho;(u) == ho(u) Hyi(u+1), H(u) = H}(u)ho(u+1),
To’i(u) = HO,Z'(U) X H()ﬂ'_l(u + 2) X oo X Ho’l(u + 27 — 2) X ?L(](U + 22) .

Pictorially Hp;(u) and H?(u) can be displayed as uphill and downhill strips
starting with the half-tile at the left boundary, and Tp ;(u) is a right triangle
whose hypotenuse lies on the left boundary vertical line. We also extend the
domain of definition for hg(u) (4.4) demanding that

(6.15)

For the newly introduced quantities the following analogues of equation (6.9)
and Lemma 6.3 hold

Lemma 6.4. One has

1.

hi(1) HY (1) = HX(1) + HY 5(1) + co(i) modAy;, Vi=1,2,...,

(6.16)
where co(i) = 1 if i is odd, co(i) = — [w[fl] if 1 is even, and we assume
2. For non-negative integers i and u

T()’i(u) = Toﬂ'(u + 1) + f(’LL, w) Hl,i(l) To’ifl(u + 2) , (617)

where!
[w] o
2w+ 1]’ ifu=0,
[pllp — v : . -

U,w) = , if u = 2p is even positive, 6.18
T009) =\ Bl + o+ 1 (618)
[pllp + v . .

, if u=2p—1 is odd.
2o+ Y

and we assume Hy (1) =Ty —1(u) = 1.
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Figure 24: Diagrammatic presentation of (6.14). The coloured vertical lines
on top of the tilted triangles annihilate the term Aq ;.

Equation (6.17) is displayed graphically in figure 24.

Proof. Equations (6.16) easily follow from (the mirror images of) (6.3), (6.5)
and from (4.4). Relations (6.17) can be proved by induction. The consider-
ations are standard and we just briefly comment on them.

For i =0, (6.17) follows from (4.4). To check the induction step i — i + 1
one makes a decomposition

Toiv1(u) = ho(u) Hip1(u+1) Toi(u+2)

and applies formulas (6.3), (4.4) and the induction assumption to rise consec-
utively the contents by one of the factors Hy;11(u + 1), ho(u) and Ty ;(u +
2). Recollecting the (half-) tiles in the resulting expressions with the help
of the Yang—Baxter equation (2.18) and the reflection equation (2.20), and
using the evaluation formulas (6.5) and (4.4) together with its consequence

ho(u)ho(u+2) = aho(u+2) + b (for some numbers a and b),

one finally reproduces the term T ;11(u + 1) and a combination of terms
Hij1(u+1)To(u+2) and Ha;41(1)T0,:(u + 2). The latter can be simpli-
fied to Hyi41(1)T0,i(u + 2), thanks to relations (6.4). The unwanted terms
Hyip1(1)Hyi(u+ 3)Th—1(u + 4) appearing at the intermediate steps cancel
in the final expression.

n principle, one can choose a regularization for ho(0) which is different from (6.15),
but then the prescription for f(0,w) should be changed correspondingly.
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o0

Figure 25: Diagrammatic presentation of relation (6.20). In the case, shown
in figure ¢ = 3 and, hence, the coefficient in front of ¥,+0 equals 1.

We mention here that all manipulations with g-numbers, which one needs
during the transformation, can be easily done with the help of the following
identities:

[u+Kk]vE k] = [u][v] + [F]lv£ (u+E)]. (6.19)
O

We now continue the proof of (3.22).

Consider the action of h;(1) on the Ballot path « which has a local min-
imum at ¢ — 1 and all the local minima in between 0 and ¢ — 1 are higher
then «;_1. In this case, applying relation (6.16), we find

hz(1>wa = wa* + 1/1a+1 =+ woﬂfO? (620)

where the paths a~, at%/! are defined in figure 3 and their correspond-
ing coefficients are given by (4.5). Note that, according to Lemma 6.4.1,
in the case i = 1 the term 1,+1 should be absent from the RHS of (6.20).
Altogether these prescriptions are identical to those of (3.22). The transfor-
mation (6.20) is illustrated in figure 25.

We now consider the case where the path « contains m > 1 local minima,
between 0 and 7 — 1, which are of the same height as the minimum at 7 —
1. The proof can be carried out in K =m + 2 steps (cf. the proof of
Proposition 6.2). To explain the first three steps we consider the case m = 1,
i.e., a path a with the two local minima placed at ¢t — 1 and i —2p — 1,
p > 0: o;_9p—1 = o;—1. Examples of such paths are given in figure 26. The
calculation of h;(1)1), for the path shown in figure 26(c) is illustrated in
figures 27-30.

Step 1. Extraction of coefficient 1~ from h;(1)1,, see figure 27. We use
(6.9) to raise by one the contents in the shaded strip H} ;(1) in figure 27.
The result is a sum of two terms. The second term is a residue of the first
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Figure 26: Ballot paths a with two local minima of the same height, one at
i — 1 and another one at i — 2p — 1. In these cases, one calculates h;(1)i),,

in K = 3 steps.

[4][4 — ]
[B][9][w + 1]

= 1/)of + [9} 1/)01+0 + Rl

Figure 27: Extraction of the coefficient ¢,- from the expression h;(1)1q.

step, which is to be further transformed at the second step. We denote it
by R;. Here we transform the first term raising by one the content of its
top half-tile hg(i) (shown shaded in figure 27) with the help of (6.17). This
results in a sum of ¥,- and a term proportional to 1,+o0, see the second
line in figure 27. The factor [9] in the coefficient of 1),+0 comes from the
evaluation of the top strip H}(1).

Step 2.  FExtraction of coefficient ¥,+1 from the first step residue, see
figure 28. Again, we use (6.9) to raise by one the contents in the shaded
strip Hilfpfl(p) in figure 28. The result is a sum of ¥, +1 and a term that we
continue transforming. Using the definition of hg (4.4) we lower the content
of the top half-tile (shown shaded) from i to i — 2p — 2 (from 8 to 2 in the
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Figure 28: Extraction of coefficient 1,+1 from Rj.

particular case shown in figure 28):

T 4][w+4 T
ho(®) = (g — i) + ho(2). (6.21)

The constant term resulting from this procedure gives a contribution pro-
portional to w‘ﬁo, see the second line of figure 28. The factor [5] appearing
in the coefficient of 1,+0 is due to the evaluation of the top strip Hj(1) (in
general one evaluates Hl-l_p_Q(l) — i —p—1]).

Lowering of the content in the top half-tile allows us to reorder the (half-)
tiles of the last term in the first line of figure 28. Namely, analogously to the
case considered in figure 18 we can push the uphill strip H;_op—1,i—p—2(1)
(shown shaded) up and left using the Yang—Baxter equation until it touches
the left boundary. Then we reflect the strip at the boundary as shown in
figure 29, which is possible because we changed the content of hg from 8
to 2 in (6.21). Finally, after reflection, the strip can be evaluated, can-
celling the numeric factor in front of the picture. We call the result of this
transformation a residue of the second step and denote it by Ro.

Step 3. Euxtraction of coefficient 1 +2 from the second step residue, see
figure 30. We use (6.17), see also figure 24 to increase the contents of the
triangle Ty (i — 2p — 2) (shown shaded in this figure). The result is a sum
of ¥,+2 and a term which in fact is proportional to 1,+0. To prove this, one
has to push up the downhill strip H;' ,, ,(1) (shown shaded in this figure)
and then evaluate it in the same way as it was done in the transformation
(6.9); see figure 18.
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Figure 29: Reflection of a strip at the boundary. Here we use the Yang—
Baxter equation (2.18) in the first and the last equalities and the reflection
equation (2.20) in the second equality. The shaded downbhill strip equals [3]
modulo Aj 9.

(1]

1
= Yar2 + GELAT

Figure 30: Extraction of coefficient 1,+2 from Rs.

Finally, collecting the terms v ,+0 from all three steps we find

hz(l)wa = wcx* + C()(Z.) woﬁLO + woﬂfl + ¢a+27 (622)

[w]
]
This value holds for all cases with i even, while ¢(i) = 1 for all cases with
i odd. In general, the coefficient cy(i) can be calculated with the help of

(6.19).

where c¢y(i) = for the particular case considered in figures 27-30.

Equations (6.22) coincide with the prescriptions of (3.22) in case the path
a contains m = 1 local minimum between 0 and ¢ — 1 of the same height
as the minimum at ¢ — 1. Before we proceed to cases with m > 2 let us
comment on two particular cases with m = 1: these are the cases (a) and
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Figure 31: Vanishing of Ry in h;(1)1, for the path « given by figure 26(a).
In the second step we already changed the content of the top half-tile from
i=5toi—2p—2=—1. Now we apply the reflection equation (2.20) to
move the shaded tile h1(2) up and evaluate it using (6.7). The two shaded
half-tiles then meet together and annihilate: hg(1)ho(—1) = so(—ag) = 0.

(b) in figure 26, where the local minimum of the height «;_; appears at 0
or at 1. Similar exceptional cases appear for all values of m.

(a) i odd and p = % In this case, the residue Ry vanishes so that the
calculation of h;(1)1),, finishes in two steps. The term 1),+2 does not appear
in (6.22), which is in agreement with (3.22). The contributions to ¥,+o
from the first two steps sum up to give the correct value of the coefficient
¢o(?) = 1. The mechanism how the residue Ry vanishes for the path shown
in figure 26(a) is explained in figure 31.

(b) i even and p = % — 1. In this case, in the second step, the content of
the top half-tile has to be changed from ¢ to ¢ — 2p — 2 = 0. This is why we
extended in (6.15) the domain of definition for h(u) and derived (6.17) and
(6.18) for the case u = 0. With these extensions the calculation of h;(1)yq
goes the standard way.

Consider now a path with m > 2 local minima preceding the minimum
at ¢ — 1, which all have the same height «;_1 (recall that we do not care
about higher preceding minima and do not allow lower ones). In this case
the transformations of the third step described earlier are not enough to
extract the term ,+2 and so we continue the transformation. We explain
this for the case of the path shown in figure 32.

Continuation of the Step 3. As can be seen in figure 32, the terms -,
Yy+o and ¢,+1 are already fixed. The term R, displayed in figure 33 appears
in the place of 1,+2 and we now continue its transformation. To extract the
term v,+2, we increase by one the contents of the (half-)tiles in the shaded
trapezium in the first equality in figure 33. This trapezium is a composition
of a rectangle and a triangle and we consecutively use (6.14) and (6.17) to
increase their contents; see also figures 20 and 24. As a result, besides ¥,+o
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Figure 32: The result of the transformations described in figures 27-30 in
the case m > 2. The path « has local minima of the same height at points
1—2pr—1, k=1,...,m and at ¢ — 1. In the particular example shown
here, we have i = 10, m = 2, p; = 2 and py = 4. The term R, in the RHS
comes in place of ,+2 in figure 30.

i=prprl

= wa+2 + Xa+o + Rd

O
2w +1]
Figure 33: Extraction of ¢,+2 from R in the case m > 2.

we get two more terms whose pictures are shown in the second equality on
figure 33. Using the by now standard procedures of lowering the content of
the boundary half-tile (from i — 2p; — 1 to ¢ — 2ps — 2 in general, and from
5 to 0 in the specific example on figure 33) and pushing up, reflecting at the
boundary and evaluating the strips of tiles, we extract the third step residue
R3 from the middle picture in figure 33. All the other terms can be reduced
to the same form y,+0. Both terms Rs and x,+o0 are shown in figure 34
(note that y,+o is composed of the same factors as 1,+0 but the contents
may be different).

Step 4. Further transformation of Rg is identical to the calculation of Ry;
see figure 30, and the result, for the case m = 2, is presented in figure 34.
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Figure 34: Definition of the term yx,+0 and calculation of the third-step
residue Rz in the case m = 2.

We obtain the term 1,+s and the term x,+o, which cancels similar term in
the preceding transformation (cf. the second line in figure 33 and the RHS
in figure 34).

Collecting the terms in figures 32-34 we eventually find that for the case
m = 2 the factorized formulas (4.5) indeed satisfy the Type B ¢KZ equations
in the bulk (3.22). Consideration of the cases with m > 3 goes along the
same lines.

It lasts to check the Type B boundary ¢KZ relation (3.24) (the bound-
ary relation (3.3) is valid due to the same arguments used in the proof of
Theorem 4.1). Indeed, rewriting (3.24) as

77/0(1) 1/1a = ¢a*07

one makes the assertion obvious.

This completes the proof of Theorem 4.2.

Appendix A Factorized solutions for Type B

A1l Case N =2

Here we have two paths, QF = k and Z\. From the preliminary analysis
we know that v, is given by (3.20) and satisfies equation

—aﬂ/)k = hl(_l)wk = 0. (Al)
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Now we may apply the boundary generator to obtain the component function
Y ~, and from (3.24) we find

Sol/Jk = wA (AQ)

Note, that acting by h1(1) on 1. we can get back to ¢}, ; see (3.22),

hl(l)d)A = wka
which can be equivalently written as

(1) (s = ). = 0. (4.3)

where we used (A.1), (A.2) and relation (2.12). Equation (A.3) is the trun-
cation condition to be satisfied by 1, .

A.2 Case N =3

In this case, there are three paths: QP = ‘ , KX and DA\

As before, we start with the component function @bg = djEA given by
(3.20) and satisfying relations

hl(—l)?/)& = h2(—1)¢& = 0. (A.4)
Then we act with the boundary generator and obtain
so¥p = Yo (A.5)
Next, we apply hq(1) and find
MW = by + Y (A.6)

This can be rewritten to give the following expression, cf. (A.3):

v = (50— ) (A7)
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where we have used (A.4), (A.5) and (2.12). Finally, we act by operators sg
and hg(1) to the rightmost term in (A.6) and obtain
so =
h2(1)wm = 1!)@ - [QE:)_]H@Z}EA-

The latter relations can be rewritten as the truncation conditions on 1/1&:

soh1(2) (so [3]“[}:&])1/1& (A.8)
hg(l)h1(2)<30 [3Tf:+211)¢&

where we used (A.4), (A.5), (A.6) and, again, (2.12) to find factorized expres-
sions.

Analysing the factorized expressions for the component functions in the
cases N = 2,3, we see that a proper definition for the dashed boundary
half-tile is

S Rk _ [[E/2]] [w + [(k +1)/2]]
]i\, - h0<k) = ho(k)’VZW-H’k = S0 — [k][w—i—l] 5

\N—==7

where p, = k mod 2. Note that the Baxterized boundary element hg(u) is
defined for integer values of its spectral parameter u € Z as only such values
appear in our considerations.

Using this notation, the expressions for the coefficients v, and the trun-
cation conditions take a simple form. For example, formulas (A.5), (A.7)
and (A.8) read

Vo = ho(1 Tﬂ& ¥ =h )50(2)1#&7 50(1)h1(2)50(3)¢&=0-

Appendix B Type A solutions

Using the factorized expressions of Theorem 4.1, we have computed polyno-
mial solutions of the gKZ equation for Type A from Proposition 4.2 in the
limit z; — 0 up to N = 10. These solutions are, surprisingly, polynomials
in 72 with positive coefficients, up to an overall factor that is a power of 7.
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The complete solution is determined up to an overall normalization we have
chosen so that

ph = 7 IN2N/2]=1/2,

Let o = (o, 11, ..., n) € Dy be a Dyck path of length N whose min-
ima lie on or above height p — 1. Then we define ¢, as the signed sum of
boxes between a and Q(N, p), where the boxes at height p + h are assigned
(—=1)". An example is given in the main text in figure 10. The explicit
expression for ¢,y is given by

(—1)P+1 |v/2] L(N-1)/2]
Cap = "5 D (a2 = Qi(N,p) = D (azis1 — Daia(N,p))
i=1 i=0

Furthermore we define the subset Dy, of Dyck paths of length N whose
local minima lie on or above height p = [(N —1)/2] — p, i.e.

DN,p = {a & ,DN‘ Q; Z min(Qz’aﬁ)} .

These definitions allow us to define the partial sums

Si(N7p): Z Tica’p¢a’

QEDN’p

for which we formulate some conjectures in the main text.

B1 N=14

S (4,1)=2+72, S, (4,1) =1+ 272
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B2 N=5
o rl/}a Tica,Z Tica,l
AN T2(2+72) 1
AAA 73 1
A~ (24 72) ¥l
AXZ 1+ 272 7E2 1
422 T ¥l 1
S_(5,0) =, S4+(5,0) =,
S_(5,1) :2(1+72)a S5:(5,1) = 1+3T2>
S_(5,2) =121+ 572 +4r* +79), S,(5,2) = 7%(6 + 572%)

B3 N=6
o VYo rECa2  pEcan
AN 14572 414 4 76 1
Ax (24272 + 1) T+l
AL (14372 + 714 T+l
AN 272(1 + 72) T2 1
& 7'3 Til ’7':|:1
S_(6,0) = 73, S, (6,0) = 73,
S_(6,1) = 72(3 + 27%), S (6,1) = 72(2+ 37%),

S _(6,2) =6+ 1372+ 671+ 75, S9,(6,2) =1+ 872+ 127* + 576,
From now on we abbreviate polynomials of the form P(7) = 7P >} _, a7
by

P(t) =71P(ag,a1,...,a,).
For example,
672 + 137% 4+ 67° + 78 = 72(6, 13,6, 1).
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B4 N=7

«a Yo 7ECa3  pEcaz  pEcan

Ao | 73(6,13,6,1) 1

Ao | 74(5,4,1) 7El

A | 74(3,4,1) 7E

AL 72(6,13,6,1)  rE!

A 15(3,2) 72

&ﬁ 7'6 '7':|:1

ANA| 73(5,3,1) 72

A A0 7(3,11,10,2) 72

A@ 72(3,5,1) T+l

A (1,8,12,5) 7E3 1
AQKZ 7(2,3,3) T+2 T+l
AX% 7(1,6,3) 42 T+l
4222 7%(2,3) rEL pE2 1
& 7_3 7_:|:2 7_:I:l 7_:i:l

S_(7,0) = 73, S, (7,0) = 73,

S_(7,1) =7%(3,3), S (7,1) =72(2,4),

S_(7,2) = (6,21,18,5), S, (7,2) = (1,11,24,14),

S (7,3) = 773(1,14,49,62,34,9,1), S.(7,3) = 73(24,76,56,14).
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B5 N=8

863

Q Yo rteas  pEeaz  pEean
soaos | (1,14,49,62,34,9,1) 1
Ao | 7(3,15,29,20,7,1) 7!
A S| 7(2,15,27,19,7,1) 7
A A | 1(1,12,28,25,8,1) 7
AX | 72(6,21,18,9,2) T2
AXAA 73(5,5,3,1) T
AN | 72(3,9,12,5,1) T2
ALK 72(2,15,24,13,2) T2
A& 7(1,6,6,1) Tl
AN | £3(6,21,18, 5) A
AX\XA 74(5,6,3) 732 Tl
AXQX 74(3,8,3) 732 Tl
AXQX 75(3,3) s A2 1
& 7_6 TiQ Til +1
0) =", 54+(8,0) =
1) =7°(4,3), S.(8,1) = 7°(3,4),
2) = 73(17,39, 24, 5), S1(8,2) = 73(6,29,36, 14),
3) = (24,136,234,176,63,12,1), S, (8,3) = (1,20, 108,219, 200, 84, 14).
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B6 N=9

« wa Tica"l

Ao | 7424, 136,234,176, 63,12, 1) 1

A~ | 15(28,84,94,43,10,1) 7E
A A | 15(20,72,84,41,10,1) o
AL | 15(12,58, 74,41, 10,1) 7E

oA A 73(24,136,234,176,63,12,1) 7!
A~ | 76(28, 65,45, 15, 2) 7E2
ANA | 19(14,31,23,7,1) 72
A A | 7428, 84,90, 40, 10, 1) 7E2
A A4 | 16(12,41, 41,16, 2) T2
AANAD | 7420, 68,74, 34,9, 1) 72

A AL 12(12,86,208,213,103,22,2) 12

A5 77(14,13,6,1) 7l
AAXAA 77(4,10,7,1) 7l
AAA%Z 73(12,62,88,51,11,1) i
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o wa 7ECa 4
Ao | 77(17, 39,24, 5) 43
AXNAD | 75(28,59,33,12,2) 3

A A0 | 73(14,56,84,54,15,2) FE3
A A | 7(4, 46,160,230, 154,47,5) 743
AXXAA 78(9,9,3) i
L 78(6,10,3) o
@XAA 79(4,3) i
A@Aﬁ +10 42
AL 76(14,9,4,1) o
A0 74(14,28,25,7,1) 42
AAXKZ 72(8,40, 68,61,26,3) FE2
AAXXZ 72(4,38,96,84,28,3) £
A&Z 73(8, 40, 56, 27, 3) S+l
AA@Z 74(4,14,9,1) S+2
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a Vo rECas  pECas  pEcCa2z  pEcan

A (1,20,108, 219, 200,84, 14) 784 1

AKX 7(3,19, 58, 69, 38, 9) T R
AR 7(2,27,67,75,47,10) T RS
AXXXZ (1,18, 75,106, 51, 9) 43 4
AR5 72(6,29, 36,30, 11) T R
G 7%(3,13,33,21,6) SE2 42
&222 72(2,27,64,51,11) SE2 o E2
@KZ 73(5,7,6,4) T
AX@Z 73(1,12,17,4) S48 il
AR 73(6,29, 36, 14) T
4@2} 74(5,8,6) FE2 2 S
42@2 74(3,12,6) a0 s
m 75(3,4) 13 L1 £ .




FACTORIZED SOLUTIONS OF qKZ EQUATION

B.6.1 N =10

7(4,4),
73(17, 54,48, 14),
(24,196, 520,624, 372,112, 14),

—4(1, 30, 273, 1042, 2006, 2121, 1321, 501, 117, 16, 1),

7°(3,5),
73(6,37, 60, 30),
= (1,26, 189, 524, 660, 378, 84),

74(120,920, 2242, 2440, 1305, 360, 42).

Va

T:tcoc,él

867

(1,30,273,1042, 2006, 2121, 1321, 501,117, 16, 1)
7(4, 56,294, 738,977,735, 327,89, 14, 1)

7(3, 49,269, 683,912,691, 312,87, 14, 1)

7(2, 47,267, 686,915, 688, 313, 88,14, 1)

7(1, 28,220, 669, 996, 820, 384, 101, 15, 1)
72(12,116, 396, 684, 348, 117,23, 2)

72(8, 60, 206, 350, 329, 176, 58,11, 1)

72(4, 48,210, 394, 403, 230, 72,13, 1)

72(6, 89, 368, 665, 618, 342, 120, 24, 2)

1

+1

+1

+1

+1

+2

+2

+2

+2
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« 1% TicaA

AANAN | 72(3,43,184, 343,349,200, 64,12, 1) 7£2

AAAXON | 72(2,47,264, 632,744, 469, 159, 27,2)  7E2

AXAAA 73(14,70,151,180,111,43,10,1) i
AN (5,57, 156, 174, 111, 46, 11, 1) 1
AAAXA 73(1,22,102,97,172,72,13,1) 1

AN | 73(24, 196, 520, 624, 408, 174, 44, 5) T3

AXNAN | 73(12,92, 216,276,198, 76, 18, 2) 73
AN | 73(8, 60,194, 286, 226,94, 20, 2) 7E3
AN | 73(6, 89, 368, 649, 564, 256, 58, 5) 73

AR 74(28,112,187,140, 69, 21, 3) T2
L 74(20, 118,189,142, 71, 22, 3) T+
A 75(28,84,73,42,16,3) =l
A&A& 70(14,14,9,4,1) TE2
PN 74(14,42,64,57,25,7,1) 7E2
POV N 74(4,24, 63,70,39,9,1) 72
A@& 74(5, 58, 166,190,111, 32, 3) T2
AAXXA 74(3, 42,147,206, 126, 33, 3) T+2
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«@ woc TicaA
AL 75(3,34,90, 85, 31, 3) il
AA&A 75(1,10,20,10,1) 72

o ¢a Tica,él Tica,S Tica,Q Tica,l

AN [ 74(24, 196, 520, 624,372,112, 14) 754 1

m 75(28,112,191, 144, 55,9) 3

A 75(20, 122,209, 162, 65, 10) i3

OOE 79(12, 88,192,174, 64, 9) 3 E

PN 76(28, 90,90, 48,11) 3 2

AXXXA 75(14, 45,60, 29, 6) T2 72

AXXXA 76(12,71,110,63,11) 2 2

A&& 77(14,18,12,4) T+ Al

AX&A 77(4,20,20, 4) T4 pE

A 77(17,54,48,14) TEL o pE
A@XA 78(9,12,6) 72 A2
@&A 78(6,15,6) 2 2 1
A@A 79(4,4) 3 A A2 1
A@A 7_10 7_:I:2 7_:|:2 7_:I:l 7_:|:1
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S_(10,0) =

S_(10,1) = 9( 4),

S_(10,2) = 77(36,86, 60, 14),
S_(10,3) = 74(155, 811, 1490, 1306, 592, 140, 14),

S_(10,4) = (120, 1400, 5754, 11584, 13071, 8900, 3805, 1044, 186, 20, 1),

S.(10,0) =

S+(10,1) = ( 5),

S.(10,2) = 77(17, 69, 80, 30),
S.(10,3) = r*(24, 256,914, 1496, 1230, 504, 84),

S, (10,4) = (1,40, 508, 2799, 7940, 12652, 12026, 6967, 2430, 480, 42).

Appendix C Type B solutions

Using the factorized expressions of Theorem 4.2, we have computed polyno-
mial solutions of the ¢KZ equation for Type B from Proposition 4.4 in the
limit z; — 0 up to N = 6. In the following variables,

/2:2_T:2+[2]:[2]21/2a a=—

r—|

+1]
TH 42 ] w:—1/2’

also see Remark 2.1, and up to an overall normalization, these solutions
become polynomials with positive coefficients. We choose the normalization
such that

W8 = gV,

Cl N=2

=
Q

7D e
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C2 N=3
a | Pq
b1+ 7% 4 a
O | 2
NP
C3 N=14
a | Pq
AN 5+ 72 4 a(2472)
RN a(3+212% + 1) +a?(2+77?)
AN 2+ 72
DN 2a(2 + 7'?) + 2a?
&A 3a
&A a?
C4 N=35
a | g

DA 9+ 17772 + 67" + 770 + a(16 + 1777 4 371) + a®(7T + 277%)
AN | 24572 4 37 4 76 4 a4+ 6772 + 27') + a2(2 4 72)

A |12 41772 + 47 + (12 + 572 + 74

EAA a(1+72)(54 377 + 1) + a*(5 + 372 + 7%
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Va

244872 4+ 7' 4 a(8 + 377?)
a(12 4+ 772 4+ 27'%) + 24%(3 + 77?)

8 + 372

PP E P

3a(3 +7'?) + 3a?

4a

KX | a2
C5 N=6
a Ya

AN 149 + 107772 + 27774 + 370 + a(126 + 131772 4 4577
+97/6 4 78) 4+ a%(32 4 3672 + 974 + 79)

PVZON 58 + 5772 4+ 147" 4+ 76 + (32 + 4472 + 217 + 676 4 7'8)
+a?(14+7%)(8 4 472 + 7)

A | 524 50772 4 217" 4 6770 + 78 + a(32 + 36772 + 974 + 76)

AN | 2(20 4 2472 + 7r 4+ 76) a1+ 772) (8 + 4772 + 74)

AXA (1+77)(8+ 477 +1'%)

DA | (81 + 101772 + 7074 + 26776 + 778 + 7/19) 4 a2(94 + 127772
+727" + 1770 + 278) 4 0®(32 4 3672 + 97" + 7'°)
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Ya

CPPEY b ETE P b

a(26 + 3772 + 257" + 11770 + 478 + 7/10) + ¢2(12 + 207"
+147% + 570 + 7%) + aP(1 4+ 72)(8 + 4777 + 7)

a(72 4+ 10472 + 817"* 4 2576 + 47/8) 4 a?(84 4 1077"% + 5574
+970) + a3(2 + 7) (12 + 577%)

a(39 4 5872 + 497" + 107°) + a*(2 4 772) (17 + 872 + 74)
a?(11 41972 + 197" + 770 + 7/8) + a3(2 + 72) (5 + 372 + %)

a(104 + 128772 + 447" + 976 + 78) + a%(104 + 9272 + 227"
+277%) + a®(32 + 11772 4 74)

3a(l 4 72)(8 + 47 + 7') 4+ a?(3 + 27?)(8 4 37"2)
+a®(14 + 37)

a(84 + 787 + 197" + %) + a*(50 + 207" + 37)
2a2(2 4+ 7) (7 4+ 47" 4+ 1) 4 2a3(24 + 672 + 27'%)
a(75 4 2672 4 37'%) + 24%(10 4 3772)

a®(31 + 1572 + 37"%) + 3a3(4 + 77?)

2a(10 + 3772)

4a%(4 + 7?) + 4a®

5a?
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