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Abstract: Relating behavioral and neuroimaging measures is essential to understanding human brain
function. Often, this is achieved by computing a correlation between behavioral measures, e.g., reaction
times, and neurophysiological recordings, e.g., prestimulus EEG alpha-power, on a single-trial-basis. This
approach treats individual trials as independent measurements and ignores the fact that data are acquired
in a temporal order. It has already been shown that behavioral measures as well as neurophysiological
recordings display power-law dynamics, which implies that trials are not in fact independent. Critically,
computing the correlation coefficient between two measures exhibiting long-range temporal dependencies
may introduce spurious correlations, thus leading to erroneous conclusions about the relationship
between brain activity and behavioral measures. Here, we address data-analytic pitfalls which may arise
when long-range temporal dependencies in neural as well as behavioral measures are ignored. We quan-
tify the influence of temporal dependencies of neural and behavioral measures on the observed correla-
tions through simulations. Results are further supported in analysis of real EEG data recorded in a simple
reaction time task, where the aim is to predict the latency of responses on the basis of prestimulus alpha
oscillations. We show that it is possible to "predict" reaction times from one subject on the basis of EEG
activity recorded in another subject simply owing to the fact that both measures display power-law
dynamics. The same is true when correlating EEG activity obtained from different subjects. A surrogate-
data procedure is described which correctly tests for the presence of correlation while controlling for the
effect of power-law dynamics. Hum Brain Mapp 00:000-000, 2015.  © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Behavioral measures are essential in the study of neuronal
activity. In particular, crucial to understanding neuronal
function is to identify relationships between behavior (e.g.,
reaction times) and brain activity measured via different
methods (e.g., LFPs: [Zhang et al., 2008], EEG: [Babiloni
et al., 2006; Besserve et al., 2008; Bompas et al., in press;
Busch et al., 2009; Dijk et al., 2008; Ergenoglu et al., 2004;
Hanslmayr et al.,, 2007; Linkenkaer-Hansen et al., 2001;
Monto et al., 2008], fMRI: [Boly et al., 2007; Coste et al., 2011;
Fox et al., 2007; Pessoa et al., 2002]). Typically, after data
acquisition, a correlation coefficient between behavioral
measures and features arising from the measured neuronal
activity is calculated. If a significant correlation is found, a
functional dependence is concluded.

When performing a correlation analysis, large empirical
correlations may indeed result from the presence of genu-
ine underlying functional relations; however, depending
on the experimental setup and data analytic steps taken,
there exist innumerable factors which may generate a spu-
riously high empirical correlation. These may include con-
founding variables or data preprocessing steps, such as
low pass filtering, or as is considered in this article, the
temporal structure of the behavioral and/or neuronal
measures recorded. The effect of such temporal structure
on correlation is well known in the statistical time-series
literature [Yule, 1926] but its effect in psychology and neu-
roscience is worth closer scrutiny.

This situation is especially in need of correction since
the temporal structure of behavioral responses recorded in
e.g. simple reaction time paradigms, and in neural activity,
for example, in the amplitude of bandpass-filtered oscilla-
tions (e.g. alpha activity) is particularly pronounced. On
the single-trial level, responses have been shown to exhibit
substantial variability. Such variability may be explained
by the presence of power-law dynamics, i.e. resulting from
a process displaying fluctuations over a range of time
scales. These power-law dynamics may be formally
described equivalently in terms of:

i. The autocorrelation function of the time series
decaying as a function of the lag I with exponent y:
R(l) ~ 1/

ii. The spectral power is inversely scaling as a function
of the frequency f with exponent f: 5(f) ~ J%

iii. The fluctuation function F(L), as estimated by
Detrended Fluctuation Analysis (DFA), increasing as
a function of the window length L as a: F(L) ~ L.
Informally, the fluctuation function denotes the vari-
ation of the cumulative sum of the time series at
hand when viewed over a fixed number of samples,
the window length L. The DFA exponent, , is often
referred to as the Hurst exponent.

The relations between the various exponents may be cal-
culated by the Wiener-Khinchin theorem: g =2a—1 and
v = 2—2o. In the following, o will be used.
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Figure I.
Visualization of time series with different o-exponents. Top:
a=0.5 (white noise), middle: o =1 (pink noise), bottom:
a = |.5 (Brownian motion). Smoothness increases with increas-
ing o. The same random seed was used for generation of the
three time series.

Time series subject to large « are more predictable in
character and smoother in appearance than time series
with lower o (see Fig. 1). Time series with o = 1/2 may be
approximated by white noise in their lower frequencies,
time series with o < 1 are stationary (for example, frac-
tional Gaussian noise) and with « > 1, non-stationary (for
example, fractional Brownian motion [Mandelbrot and
Van Ness, 1968]).

The presence of power-law dynamics has been estab-
lished in a variety of behavioral measures (reaction times
[Van Orden et al.,, 2003], memory-related tasks [Maylor
et al.,, 2001; Rhodes and Turvey, 2007], mental rotation
[Gilden and Hancock, 2007], and visual discrimination
[Gilden and Wilson, 1995]), see Kello et al. [2010] for a
review on scaling laws in behavior. Neural activity also
exhibits power-law dynamics. This has been established
using various imaging methods, including fMRI [Bull-
more et al., 2001; Fox et al., 2007] and LFPs [Bedard et al.,
2006; Leopold et al., 2003; Milstein et al., 2009]. For M/
EEG, power-law dynamics have also been exhibited in
raw electrode data [He et al., 2010; Miller et al., 2009;
Pritchard, 1992], as well as the amplitude envelopes of
band-pass filtered oscillations [Linkenkaer-Hansen et al.,
2001; Nikulin and Brismar, 2004, 2005; Palva et al., 2013;
Smit et al., 2013]. The simulation results and testing pro-
cedures we present here are valid equally for all of the
cited paradigms and modalities; as a case study, in this
article, we consider neural data in the form of amplitude
envelopes of band-pass filtered oscillations. For a recent
review on power-law dynamics in brain activity see He
[2014].

While the temporal structure of behavioral and neural
time-series has been widely studied and found to exhibit
long-range temporal correlations (LRTC), otherwise
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termed power-law dynamics, the effect in confounding
correlation analyses has not been explicitly investigated.

This article provides a critical assessment of correlation
analysis between neural activity and behavioral measures
in the presence of power-law dynamics in both domains.
Significance levels for correlation, resulting from not tak-
ing into account power-law dynamics, are shown in simu-
lation and data analysis of multichannel EEG data to be
highly erroneous over a range of scaling exponents. We
propose a surrogate data procedure for adjusting the sig-
nificance level for correlation analysis which respects the
temporal structure implied by power-law dynamics and
which we show to achieve the correct significance level
regardless of exponent values.

MATERIALS AND METHODS

Simulations: Generating Time Series Subject to
a Given a-Exponent

Independent time series subject to a range of a-exponents
were generated using the algorithm proposed by Kasdin
[1995]. The time series are generated by filtering white noise
processes with an IIR filter, whose coefficients are depend-
ent on the desired «-exponent. The method allows for the
generation of time series with a given o-exponent for a
wide range of a-values. The length of the time series was
chosen to correspond to the number of trials in the EEG
experiment (see Data Acquisition section), n = 800. The «-
exponent was set to a range of values between 0.5 and 1.5
in steps of size 0.005, resulting in 200 time series.

Spearman’s rank correlation coefficient p was computed
between all independent pairs of simulated time series. To
obtain an empirical distribution of the correlation coeffi-
cient, pairs of time series were generated and a correlation
coefficient computed between the pair 1,000 times. The
value for which the correlation is assessed as significant
was computed (at the significance level o = 0.05) by a
standard test for correlation, which uses Student’s t
approximation to the distribution of the Spearman correla-
tion coefficient (we use the implementation in corr.m in
MATLAB). The number of rejections of the null hypothesis
according to this significance test was computed for each
pair of o values.

To test the effect of the number of trials on significance
levels, we further varied the time series length, setting
n =400, 1,600, respectively. Removing a trend from RT
data is a common preprocessing procedure [Van Orden
et al., 2003]. To check for the effect of detrending, we
repeated the above analysis after removing a linear trend.
Often, a binning procedure is used, combining trials
according to percentiles of the measured value, with the
aim to arrive at a clearer signal through averaging. To
investigate the effect of this procedure, we followed the
approach of Linkenkaer-Hansen et al. [2004], with 10 as
the number of bins.

Data Acquisition
Recording setup

EEG and EMG data were acquired with BrainAmp MR-
plus (Brain Products, Germany) amplifiers and sampled at
1,000 Hz. During acquisition the EEG data were bandpass-
filtered in the frequency range of 0.015 to 250 Hz. An elec-
trode cap with 96 electrodes, placed according to the 10 to
20 system, was used. The electrodes were referenced to
the nose.

The stimulation electrode was placed on the index finger
between the distal and medial phalanges of the non-
dominant hand. Bipolar EMG electrodes were placed on
the FDI (first dorsal interosseus; reference on second meta-
carpophalangeal joint) and FDP (flexor digitorum profun-
dus with reference on processus styloideus ulnae) muscles
of the nonstimulated hand for the detection of the index
finger movement. Additionally, an acceleration sensor was
placed on the response finger.

Participants were seated in a comfortable chair. To avoid
visual distractions, a dark screen (2 m X 1.5 m) was
placed in front of the participant. Participants were
instructed to fixate their gaze on a white fixation cross in
the middle of the screen for the duration of the
experiment.

Participants and experimental paradigm

Eleven healthy participants with normal or corrected-to-
normal vision, with no history of neurological disease,
took part in the experiment. Two participants were left-
handed, two were female. Participants gave written
informed consent and received monetary compensation for
their participation. The study was approved by the local
Ethics Committee of the Charité University Medicine Ber-
lin, Germany and conformed to the declaration of
Helsinki.

Before and after the experiment, the somatosensory
threshold of each participant was determined. The experi-
ment employed a simple reaction time paradigm, consist-
ing of nine stimulus blocks, each lasting 5 min. In each
block a weak electrical stimulus (square wave current
pulse of 0.2 ms duration, three times the determined sen-
sory threshold, so that it was well perceivable) was
applied to the index finger of the nondominant hand; the
participant was required to react as fast as possible with a
light twitch of the index finger of the dominant hand. This
setup was fixed for all participants except for one partici-
pant, whereby the configuration was flipped (response:
nondominant hand, stimulation: dominant hand).

The inter-stimulus interval was chosen to be distributed
uniformly in the interval [2.5 s, 3.5 s]. The number of trials
acquired amounted to 866 * 23 trials.

Three rest blocks of five minutes were recorded, in
which the participant was not required to perform a task;
the rest blocks were spliced randomly between task blocks.
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Ten practice trials were conducted before the EEG record-
ing was started.

Data Analysis
Determination of reaction times from EMG

For the determination of reaction time, the onset of
movement was determined with the aid of recorded EMG
data. The continuous EMG data were high-pass filtered at
a cut-off frequency of 10 Hz and the 50 Hz power line
noise was removed with a notch filter at 48 to 52 Hz (But-
terworth filter, order 4).

After rectification the continuous EMG data were cut
into epochs of ranging from —500 ms to 2,000 ms relative
to stimulus onset. The movement onset was determined
manually by a trained researcher and consequently veri-
fied by another researcher.

Preprocessing and artifacts

The data were analyzed offline using MATLAB (The
MathWorks, Inc., Natick). EEG recordings were decimated
to a 200 Hz sampling rate. The 50 Hz power line noise
was removed with a notch filter at 48 to 52 Hz (Butter-
worth filter, order 4). Trials with reaction times faster than
50 ms were discarded. Each channel was visually
inspected for artifacts with the aid of the variance in all
trials in the window [—2,000 to 1,000] ms. For each trial,
the neuronal activity was visually inspected for the pres-
ence of artifacts (muscle and mechanical) with based on
the recorded EOG activity, the variance of activity and by
the Mahalanobis distance of the maximum power between
trials [Nikulin et al., 2008]. Between 1% and 17% of trials
were rejected over participants (mean number of rejected
trials: 56).

Correlations with laplacian filtered mean amplitude
in a-band

The calculation of prestimulus activity and reaction
times was performed as follows: data were bandpass-
filtered in the EEG alpha-range (8-13 Hz) (Butterworth fil-
ter, order 4). A Laplacian spatial filter (subtracting the
mean voltage values of the four surrounding electrodes)
was applied to each channel, yielding 31 channels. When-
ever one or more of the four surrounding electrodes had
been rejected, the Laplacian was not computed for that
channel and was not taken further into account. (Blythe
et al. [2014] studied the effect of spatial filtering on the
computation of o-exponents and demonstrated that ao-
exponents observed in sensor space distort the true values
underlying the processes in source space, concluding that
spatial filtering, such as Laplacian filtering, is an essential
step to the study of Hurst exponents in EEG data.) The
amplitude envelope was calculated as the absolute value
of the analytic signal, obtained by the Hilbert transform of

the Laplacian filtered signal. For each trial, the activity
—1,000 ms to —5 ms relative to stimulus onset was
extracted and the mean amplitude in this interval was cal-
culated. Spearman’s rank correlation coefficient between
the mean amplitude for each trial and RT was computed
for each channel. For comparison, activity bandpass-
filtered in the beta range (15-25 Hz) was analyzed.

As an additional test of the procedure, also Spearman’s
rank correlation coefficient between amplitude time series
for all channels from one subject and amplitudes from all
other subjects was calculated.

Quantifying Fluctuations With Detrended
Fluctuation Analysis

We use Detrended Fluctuation Analysis [Peng et al,
1994] to quantify the fluctuations in the RT and EEG data,
yielding values of the exponent a of a signal X(f). For a
comprehensive introduction to DFA see Hardstone et al.
[2012]; briefly, a DFA analysis proceeds by computing the
fluctuation function F?(n), which is defined as the variance
of the integrated time series (Z(t) = Y\, X(t)) in win-
dows of length n after detrending. Informally, F?(1) may
be viewed as measuring the smoothness in the time-series;
summing a highly autocorrelated time-series yields an
almost continuous curve, whereas as summing an uncorre-
lated time-series yields a jagged random walk. The expo-
nent « is defined as the slope of a log-log least squares fit
of n versus F(n) (y/F?(n)).

For the data analysis we set eight log spaced window
lengths n = 5,...,50. Note that for DFA analysis each sam-
ple relates either to one reaction time or the averaged
amplitude of alpha oscillations over 1,000 ms.

Testing for Significant Correlations

As it will be demonstrated in the results section, the
presence of high o-exponents leads to high variance in
empirical correlations, skewing standard tests for correla-
tion. This may be corrected for if sufficient time-series “of
the same type” are made available, yielding the expected
range corr elations take; in statistics this is known as the
method of surrogate data. Surrogate time series were gener-
ated using the Amplitude Adjusted Fourier Transform
(AAFT) algorithm [Theiler et al., 1992]. AAFT serves to
generate time-series, which are independent of the meas-
ured time-series X(f), but are subject to the same spectrum
and distribution, under the assumption that the measured
time-series is a monotonic transformation of a Gaussian
process.

The steps involved are:

1. A Gaussian white noise time series Y(f) is generated
with equal length.

2. Y(t) is reordered so that the ranks of each data point
agree with X(t).
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3. The phases of the Fourier transform of Y(t) are ran-
domly resampled from a uniform distribution and
the inverse transform is computed, to give a
resampled Gaussian time-series.

4. X(t) is reordered so that its ranks agree with the
resampled Y(f), to give a surrogate time-series.

5. This procedure is iterated to yield multiple surrogate
time-series.

The correlation coefficient was then computed for the
two original RT and EEG time series and repeatedly
between the original RT time series and surrogate time
series generated from EEG time series (number of repeti-
tions: 10,000). The P value for the measured correlation is
then given by the lowest percentile in which the correla-
tion lies in the correlation coefficient distribution given by
the surrogate data. For an illustration of the surrogate data
procedure, see supplementary material, Introduction sec-
tion. MATLAB code for the surrogate data procedure is
available at https://github.com/neurophysics/spurious_
correlations.

Type | Error Assessed on Reaction
Times and a-Amplitude

We may safely assume that reaction times and EEG time
series of separate participants are independent, as the
interstimulus intervals were randomized for each subject
individually. This allows us to assess the number of type I
errors when using the standard correlation procedure of
Correlations with Laplacian Filtered Mean Amplitude in
a-Band section by computing correlations between the RT
of one subject and the alpha-amplitude of another as well
correlations between alpha-amplitudes of different partici-
pants. For comparison, we also apply the proposed surro-
gate data procedure (number of repetitions: 1,000). The
number of trials was reduced, in each participant, to the
minimum number of trials (taking the first Ny, trials)
across participants so that the time series agreed in length.

RESULTS
Correlations From Simulations

When computing the correlation coefficient between
independently simulated power-law time series, the inci-
dence of significant (positive or negative) correlations, as
assessed by the t-statistic, increases with increasing -
exponent of the time series (Fig. 2a). This result can be
explained when looking at the distribution of correlation
values obtained from repeating the simulation 1,000 times
(Fig. 2b). While the mean correlation across repetitions is
close to zero, as expected from independent signals, the
variance of the obtained correlation values increases with
increasing o-exponents, i.e. with more slowly decaying
autocorrelation. This implies that the probability of achiev-

ing a high (positive or negative) correlation between two
independent time series is higher when their autocorrela-
tion decays slowly, i.e. higher exponents increase the vari-
ability of Spearman’s correlation coefficient.

For a given sample size and a defined significance level,
whether or not a correlation is assessed as significant
according to standard statistical testing depends only on
the magnitude of correlation coefficient. For example, for
sample size n =800 and a significance level of 0.05, the
correlation is significant for a value greater than
p = 0.0693. (p =T/ frmg T =F'(pln=2), with F?
being the inverse Student’s t CDF, p = 1— %% (double tail)
and degrees of freedom: n—2). This implies that the
increase in variance of correlation values will lead to an
increase in correlations assessed as significant by the test
applied.

As can be seen in Figure 2c, a substantial fraction of cor-
relations reach significance according to the standard test
for correlation across a range of a-exponents. The increas-
ing fraction of significant correlations with respect to
increasing o-exponent is systematic and not an artifact of a
multiple comparisons (otherwise the resulting fraction
would randomly fluctuate with respect to the a-exponent).
Random fluctuations in the correlation coefficients are
expected (as seen in Fig. 2a) over a single iteration of com-
putation of the correlation coefficient for the generated
time series. But after repeating the simulation and looking
at the fraction of significant correlations reveals a system-
atic bias in estimation of the desired significance level,
using the standard correlation test. For o-exponents
between 0.5 and 1, i.e. the range of values typically found
in EEG time series, the maximum fraction is as high as 0.6
(excluding identity correlations), implying that up to 60%
of significant correlations according to standard testing
may constitute spurious detections), i.e. 12 times the cho-
sen significance level.

In addition, neither of the data processing procedures
(altering sample size, removing a linear trend or binning)
tested solve the problem that with increasing o-exponent,
the fraction of significant correlations between independ-
ently generated time series greatly exceeds the defined
level for type I errors (see Supporting Information for
results regarding the additional data processing proce-
dures: Fig. S2 for removing linear trend, Fig. S3 for bin-
ning and Fig. 54 for altering the sample size.)

Reaction Time Statistics

Reaction times for the simple reaction time experiment
showed a distribution with a long positive tail, see Figure
3 for an example of a representative participant. The bot-
tom part of the figure shows the time course of reaction
times. One can identify fast changes and changes on a
greater time scale.

The estimated a-exponents for RT time series of all par-
ticipants are displayed in Figure 4. The values lie between
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Figure 2.

Top left (a): Simulated pairwise time series correlation (Spear-
man’s p) for different combinations of a-exponents. Increasing
values of « lead to stronger (positive or negative) correlation
values, as evidenced by the more saturated colors towards the
upper right region of the graph. Length of time series n = 800.
Right (b): Distributions of correlation values between simulated
time series for changing a-exponent. Bottom Left (c): Fractions
of simulated time series with significant correlations (P < 0.05)

0.55 and 0.81, indicating the presence of long-range tempo-
ral correlations. (P = 0.00098, Wilcoxon signed rank test.)

EEG Time Series Statistics

The estimated o-exponents for Laplacian EEG alpha-
band time series are displayed in Figure 4, with the major-
ity of values ranging from 0.5 to 0.8, with a few lying close
to 1.4.

Empirical Correlations From Data

Figure 5 displays the RT time course for one subject and
the prestimulus alpha-amplitudes for another subject; a

using standard testing, for different combinations of a-expo-
nents. Fractions that do not exceed 0.05 are plotted in green.
This implies that for all combinations of a values plotted in red,
standard testing would lead to an increased rate of type |
errors. The colormap is discretized for better comparisons.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

topographic map displaying significant correlations is pre-
sented. Despite their independent generation, a large num-
ber of significant correlations, according to standard
statistical testing procedures, between the RT and EEG
data are found. Across all participants, correlating RT with
prestimulus alpha-amplitudes yields a significant correla-
tion 535 times of 3,070 possible combinations (17%) (signif-
icance level o = 0.05). Correlations between prestimulus
alpha-amplitudes from different participants are assessed
as significant in 15% of cases, using the standard test for
correlation. Mean o-exponent in a given pair and magni-
tude of correlation between prestimulus alpha-amplitudes
from different participants were positively correlated
(r=0.166, P <0.0001, n =85,566).
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Examplary reaction time data from one participant. Top: Histo-
gram of RTs. Bottom: RTs over the course of the experiment,
showing |/f-type fluctuations.

As the number of data points in the case of correla-
tions between RT and EEG data was not sufficient to
arrive at estimates of fractions of significant correlation
as a function of the a-exponent as calculated in the simu-
lation of Simulations: Generating Time Series Subject to a
Given a-Exponent section, surrogate testing was used (in
a manner similar to that described in Testing for Signifi-
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Figure 4.
Estimated a-exponent for RT time series (red circles) and for
EEG alpha-band amplitude time series (black stars) for different
participants. Each star corresponds to one Laplacian channel.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Figure 5.

Top: RT time course for one subject. Below: example EEG
alpha-band amplitude time series from five different channels of
another subject. Left: Topographical map of correlations
between the two types of measures (i.e. RT from one and EEG
from another subject). Vertical ticks on the color bar indicate
the threshold above which correlations are significant according
to parametrical testing. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

cant Correlations section). Surrogate testing, i.e., comput-
ing the correlation coefficient between surrogate RT
time series from one participant and surrogate EEG
time series from all other participants, also yielded a
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Figure 6.
Fractions of time series with significant correlations (P < 0.05)
between RT data and Laplace filtered EEG data using standard
testing, for different combinations of a-exponents. Combinations
of a-exponents that did not occur in the data are plotted in blue.
This figure is analogous to Figure 2c. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7.
Correlations between RT and Laplace filtered EEG alpha-band (interval 1,000 to 5 ms before
stimulus onset. Correlations that do not reach significance level (P < 0.05) are plotted black.
Left: uncorrected. Number of significant correlations: 104. Right: significance corrected by the
surrogate-data procedure. Number of significant correlations: 89. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

fraction of significant correlations higher than expected
according to standard tests for correlation. As we con-
sider here finite length data DFA will return a slightly
different (mean standard deviation across participants
and channels: 0.03) exponent estimate for each of the
1,000 iterations. To reflect this uncertainty and in order
to visualize the irregularly spaced data points, the fol-
lowing procedure was used for plotting: the estimated
a-exponents were binned into a grid (two-dimensional
histogram). For each bin, the fraction of correlations
assessed as significant by the standard test (significance
level o evelifi was calculated. Bins with a small number
of available data points (<100) were discarded. Bins for
which no data was available are shown in blue.

Figure 6 displays the fraction of significant correlations
for Laplace filtered data (1,000 ms prestimulus). There is

an increase in the fraction of significant correlations for
higher a-exponents with a maximum fraction of 0.61,
implying that as many as 60% of unrelated data (but gen-
erated on the basis of real EEG experiments) pairs may
display spuriously high correlation.

The results obtained with surrogate data generated
from EEG measurements confirm the outcome of the sim-
ulation analysis: increasing o-exponents of time series
lead to an increased fraction of correlations labeled signif-
icant by classical testing. Again, none of the data postpro-
cessing steps examined change the result in a qualitative
way, with increasing o-exponents leading to higher frac-
tions of significant correlations using standard testing
(see Supporting Information for additional data process-
ing results regarding detrending (Fig. S5) and binning
(Fig. S6)).
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Figure 8.
Topography of correlations between RT and Laplace filtered EEG alpha-band, interval [—1,000
—5] ms. Left: average of correlations across participants showing larger values over the sensori-
motor region. Right: average of absolute values of correlations across participants. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Testing for Correlations: Surrogate-Data
Procedure

To investigate the corrected significance levels for correla-
tion between RT and EEG time series from the same partici-
pant, which takes the autocorrelation structure of the signals
into account, a surrogate-data procedure was used (see Test-
ing for Significant Correlations section for details). Permuta-
tion tests are a commonly used method to assess the
significance of correlations in place of a parametric test. The
question is, what kind of permutation should be used: sim-
ply shuffling one time series destroys its autocorrelation
structure and yield low correlations when relating the two
signals, thus underestimating the variance of distribution of
the test statistic, in the presence of autocorrelation.

In this case, the correlation coefficient was computed
repeatedly (number of repetitions: 10,000) between the EEG
time series with a random phase surrogate (AAFT) RT time
series, counting the number of times a correlation at least as
large as the original correlation with nonphase-shifted RT
time series was achieved. This count divided by the number
of repetitions constitutes a corrected P value for evaluating
the significance of the correlation.

Figure 7 displays significant correlations for all partici-
pants for Laplace filtered mean amplitude in EEG alpha-
band 1,000 ms before stimulus onset. The left figure dis-
plays all significant correlations, according to the stand-
ard test, whereas the right hand figure displays only
those confirmed as significant by the surrogate-data
procedure.

To illustrate the spatial distribution of correlations
assessed as significant, Figure 8 displays the Laplace mon-
tage data averaged across participants for Laplace, EEG
alpha-band, as well as an average of absolute correlations.
As these two topographies display great similarity, it is
clear that the direction of correlation (positive or negative)
coincides in most cases.

Using the surrogate-data procedure we estimated that
fewer correlations are significant than suggested by the
standard test for correlation. We see a 14% reduction in
significant correlations deemed significant for the EEG
alpha-band, 27% for EEG beta-band (results available in
supplementary material, see Supporting Information Fig.
S7) after application of the surrogate data procedure. Thus
application of the surrogate data procedure greatly dimin-
ishes the number of correlations assessed as significant.

For an illustration with simulation data that this permu-
tation test preserves the set significance level of 0.05 across
the examined range of a-exponents, see the left panel of
Figure 9 showing no dependence on the a-exponent for a-
exponents smaller than 1, with random fluctuations
around a mean value of 0.05. The surrogate data pro-
cedure is applicable to pairs of time series where the
expected a-exponent are less than 1. This is because the
method controls for autocorrelation using the magnitude
of the Fourier transform, i.e. the power-spectrum. The
empirical power-spectrum is a consistent estimator of the
power-spectrum only for o<1 [Kasdin, 1995]. Further
work will aim at developing methods which are applicable
to time series with o>1. For the applications we are
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Figure 9.

Left: deviations from the set significance level: empirical fractions
of significant correlation using the surrogate data procedure
minus the set significance level of o =0.05. Due to computa-
tional limitations, the range of a-exponents was limited to [0.5
1.25] in steps of 0.0625, spanning 99.5% of the range of a-expo-
nents present in the EEG data. Right: test power of proposed

interested in, this is not a severe restriction, since RT time
series and amplitude time series of neuronal oscillations
are usually subject to an a-exponent in the range from 0.5
to 1 [Linkenkaer-Hansen et al., 2007; Nikulin and Brismar,
2004; Smit et al., 2011]. For an illustration of statistical
power, see the right panel of Figure 9. As expected, the
test power is dependent on the a-exponent of the signals.
To test statistical power of the surrogate-data procedure,
the following procedures were performed: two white-noise
time series were generated with a defined correlation
between them. These time series were then filtered to
obtain correlated time series with 1/f-spectrum (in accord-
ance to the method described in Simulations: Generating
Time Series Subject to a Given a-Exponent section). The
significance of the correlation between the two time series
was then assessed with the proposed surrogate-data proce-
dure. For each correlation value, 1,000 repetitions of this
procedure were performed, calculating the fraction for
which the correlation was significant. Due to computa-
tional limitations, only time series combinations with the
same a-exponent were considered.

DISCUSSION: POWER-LAW DYNAMICS CAN
RESULT IN SPURIOUS CORRELATION

It has been shown through data analysis and simulations
that relating two independent signals with power-law signal
characteristics may result in spuriously high correlations.
This has implications for a number of lines of research which

surrogate data procedure as a function of the correlation, num-
ber of repetitions for each correlation value: 1,000. Due to
computational limitations, only time series combinations with
the same a-exponent were considered. [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]

aim at investigating the relationship between neuronal activ-
ity and behavioral measures through correlation analysis, as
both may exhibit power-law dynamics.

Increased Frequency of Spuriously High
Correlations With Higher o-Exponents

Power-law dynamics are often present in data and were
reported in the range o ~ 1 for psychophysical data [Van
Orden et al., 2003], for EEG amplitude envelopes [Linken-
kaer-Hansen et al., 2001; Nikulin and Brismar, 2004, 2005;
Smit et al., 2013], LFP [Milstein et al., 2009] and fMRI [He,
2011; Zarahn et al., 1997]. These values thus fall into a
range where the effect demonstrated here arises. The sim-
ulations were performed with varying number of trials
resulting in up to 60% of correlations assessed as signifi-
cant, using a standard test, for a-exponents in the range of
0.5 to 1, which corresponds to exponents observed in
physiological settings. Thus high correlations do not
necessarily point towards neurophysiologically relevant
interaction, but may also reflect the univariate signal char-
acteristics of the data.

It has been shown previously that a-exponents may be
altered under certain experimental conditions or in certain
experimental groups, for instance in the case of disease
(e.g., EEG alpha-band oscillations in Alzheimer’s disease:
Montez et al. [2009]), age [Nikulin and Brismar, 2005], vig-
ilance [Bedard et al., 2006], task versus a rest [He, 2011].
The same is applicable to behavioral measures (although
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there is less data available explicitly with respect to a-
exponents in this case; for instance: RTs for ADHD [Gilden
and Hancock, 2007]). Thus differences between groups in
the form of significant (as judged by standard methods)
correlation for one condition but not the other may be
observed simply due to the distinct exponent values of the
time series. The present results imply that in order to
meaningfully compare correlation values from two condi-
tions, one must report the a-exponents for both conditions.
The effect reported here is independent of the many
other problems that may arise in correlation analysis.
For instance, the presence of outliers may strongly influ-
ence the correlation coefficient, especially Pearson’s
[Rousselet and Pernet, 2012]. But as simulation results in
the previous section showed, using a more robust corre-
lation measure such as Spearman’s rank correlation coef-
ficient is still not sufficient to overcome these problems.
Another important aspect which recently received atten-
tion is proper control for multiple comparisons, which
should be performed for instance using a cluster-based
approach [Maris and Oostenveld, 2007]. But the spurious
correlations described here arise even when only a single
test is performed. When performing correlation analysis
of time series data, one must therefore take into account
the signal properties of the involved time series and
examine them for long-range temporal correlations.

Testing for Spurious Correlations

To correct for spurious correlations arising from power-
law dynamics a surrogate-data procedure was suggested,
with repeated permutations preserving the power-law
dynamics present in the time series. Simply shuffling the
data would destroy all low frequency components and fail
to reveal the influence of power-law dynamics on the cor-
relation coefficient for non-permuted data. When using
this surrogate-data procedure to assess the validity of cor-
relations observed between two time series with power-
law signal properties, up to one quarter of the correlations
labeled as significant by standard testing were not con-
firmed. To address the question whether RT variability,
and behavioral measures in general, can be explained by
properties of the neuronal activity preceding the stimulus,
tests for spurious correlations should be used to uncover
genuine functional relationships. Although there is no
widely accepted procedure for testing the correlation
between processes with power-law dynamics, the surro-
gate procedure represents an important step towards gen-
eral testing methodologies.

Commenting on the neurophysiological implications of
the surviving correlations in the simple reaction time
experiment is beyond the scope of the article, but a con-
centration of significant correlations between prestimulus
alpha-band amplitude and RT over the sensorimotor cor-
tex of mostly positive sign is in line with previous
research [Linkenkaer-Hansen et al.,, 2004; Zhang et al.,

2008]. As spurious correlations distribute evenly with
respect to sign, this trend towards positive correlations
may reflect that previously observed correlations are
genuine.

Related Work

The effect of autocorrelation structure on correlation
and, more broadly, effective sample size has been
acknowledged in several lines of research, although not
yet explicitly acknowledged in neuroscience. Yule [1926]
noted the occurrence of spurious correlations between
independent time series as a result of serial correlations
between consecutive samples within each variable.
Granger and Newbold [1974] dealt with the problem of
spurious regressions, demonstrating that regressing two
independent random walks resulted in a vast overestima-
tion of a significant relationship between them. Phillips
[1986] provided analytical results supporting this argu-
ment. Granger went on to develop the cointegration
approach [Engle and Granger, 1987], a test whether two
time series have a shared drift. This method has not been
commonly applied to neuroscientific data.

Analytical derivations for the variance of the correlation
coefficient with respect to autocorrelation are given in
Bartlett [1935] for AR(1) processes (autoregressive proc-
esses of order 1, where the value at one time point
depends linearly on one previous time point plus noise),
depending on the sample size and autocorrelation parame-
ters: Var(C) = %igl gii with p; being the first order sample
autocorrelation of the first time series and p’; of the second
time series. As samples in autocorrelated time series are
not independent, this can be used to arrive at an estimated
“effective sample size” (the number of independent sam-
ples to which the time-series is statistically equivalent) to
compute significance. Thiébaux and Zwiers [1984] derived
a more general form, including more terms of the autocor-
relation. However, they also demonstrated that the effec-
tive sample size could not be estimated with good
precision, thus rendering such a correction of the signifi-
cance level unstable.

Surrogate methods have been previously suggested by
Theiler et al. [1992], and Ebisuzaki [1997] also suggested a
“random phase test” as a permutation test to arrive at a
better estimation of significance of correlations between
time series in the field of climate research.

Implications

Recent studies [Fox et al., 2005, 2007] have tried to esti-
mate functional connectivity with fMRI by computing
the correlation coefficient between raw BOLD signal time
series. As these signals also display power-law dynam-
ics, this approach could yield spurious correlations. The
significance level is adjusted by calculating the effective
number of independent observations. As mentioned
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above, estimation of the effective number of independent
observations is unreliable and might still overestimate
the significance. A recent article [Arbabshirani et al., in
press] addressing the effect of autocorrelation on func-
tional connectivity in fMRI finds only small effects of
autocorrelations on obtained correlations, when model-
ing the present autocorrelation with an auto-regressive
process of order 1 (AR(1)). This potentially ignores long-
term temporal correlations as present in processes with
power-law dynamics, leaving the question open whether
and how functional connectivity correlations are affected
by power-law dynamics.

In studying neuronal oscillations with EEG/MEG, ana-
lyzing single trials instead of averages uses a vast
amount of additional information about the variability of
neuronal processes. However, one has to be aware that
features calculated from single trials represent a time
series with a temporal structure. The results presented
here show that when not taking this into account, the
validity of correlations between features such as power
or amplitude envelope calculated from EEG and behavior
is not ensured. EEG/MEG studies calculating a correla-
tion coefficient not accounting for the temporal structure
are numerous.

Estimating a model for the autocorrelation and remov-
ing it as in the prewhitening approach [Monti, 2011] addi-
tionally has the problem of removing information from the
data that is potentially interesting. In the EEG-RT case for
instance, the processes underlying slow fluctuations may
relate to relatively slow changes in vigilance, while faster
fluctuations may relate to the motor preparedness proc-
esses, manifested for instance in motor excitability, which
is known to be reflected in the amplitude of alpha oscilla-
tions [Sauseng et al., 2009]. One goal of research in this
field is to find patterns corresponding to both types of
processes (slow and fast changes in the amplitude dynam-
ics of oscillations), which is not possible under the pre-
whitening approach.

EEG studies performing single-trial regression with
power as the dependent variable and RT as a regressor
[Cohen and Cavanagh, 2011] will also run into the prob-
lem of serially correlated residuals. Moving away from
single-trial analysis and binning the data [Dijk et al., 2008;
Linkenkaer-Hansen et al., 2004] will not necessarily elimi-
nate the effect, as shown in our simulations. There is evi-
dence that sensory detection is also governed by power-
law dynamics [Palva et al., 2013], which is of importance
for studies considering stimuli close to the sensory thresh-
old, as the behavioral output may result in a time series
affected by long-range dependencies.

The problem does not only arise when looking at corre-
lations between brain activity and behavior. As demon-
strated, relating EEG amplitudes with each other, leads to
an elevated rate of false positives when not controlling for
power-law dynamics. An increasing number of studies
investigates correlations between brain activity within sub-
ject, e.g. looking at correlations between oscillatory proc-

esses between distinct frequency bands [Dahne et al.,
2014] or between brain activity from different participants
(e.g. “hyper-scanning,” Montague et al. [2002]). If power-
law dynamics are not taken into account, spurious correla-
tions can also occur in these paradigms.

In conclusion, power-law dynamics present a problem
for evaluating the significance of correlations and may
lead to false positives. In the present article, the connec-
tion between spurious correlations and power law
dynamics was clarified and the dependence of correlation
coefficient values on the o-exponent, ie. the extent of
long range correlations of the time series data, was exam-
ined. Appropriate methods should be used to ensure
valid estimation of significance; a non-parametric permu-
tation test with power-law dynamics preserving surrogate
data was proposed to correctly reduce the number of
false positives unlike as was observed for parametric
methods.
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