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Soliton Self-wave Number Downshift
Compensation by the Increasing
Second-Order Dispersion

N.V. Aseeva, E.M. Gromoyv, and V.V. Tyutin

Abstract Dynamics of solitons in the frame of the extended nonlinear Schrédinger
equation (NSE) taking into account stimulated Raman scattering (SRS) and inho-
mogeneous second-order dispersion (SOD) is considered. Compensation of soliton
Raman self-wave number downshift in media with increasing second-order linear
dispersion is shown. Quasi-soliton solution with small wave number spectrum
variation, amplitude and extension are found analytically in adiabatic approximation
and numerically. The soliton is considered as the equilibrium of SRS and increasing
SOD. For dominate SRS soliton wave number spectrum tends to long wave region.
For dominate increasing SOD soliton wave number spectrum tends to shortwave
region.

Keywords Dynamics of solitons and quasi-solutions ¢ Extended nonlinear
Schrodinger equation * Stimulated Raman scattering * Inhomogeneous second-
order dispersion

1 Introduction

Interest to solitons is conditioned because of their possibility to propagate on
considerable distance keeping the form and transporting the energy and information
without losses. Soliton solutions are considered in many different nonlinear models
in various areas of physics for investigation of intensive wave fields in dispersive
media propagation: optical pulses in fibers, electromagnetic waves in plasma, and
surface waves on deep water [1-4].
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Fig. 1 The equilibrium of Wave number's spectrum
the soliton self-wave number

downshift (SRS) and wave .
number upshift by increasing Increasmg
SOD leads to stabilization of
soliton wave number
spectrum

Propagation of high-frequency wave packets of rather big extension is described
by the second-order nonlinear dispersive wave theory. Basic equation of the theory
is nonlinear Schrodinger equation (NSE) [5, 6]. considering both second-order
dispersion (SOD) and cubic nonlinearity. Soliton solution in this case arises as an
equilibrium of dispersion dilatation and nonlinear compression of wave packet.

Dynamics of high-frequency wave packets of low extension is described by the
third-order nonlinear dispersive wave theory, taking into account third-order terms:
nonlinear dispersion [7], stimulated Raman scattering (SRS) [8]. and the third-order
dispersion (TOD). Basic equation is the third-order nonlinear Schrodinger equation
(TNSE) [9-12]. In [13-20] soliton solution in the frame of the TNSE without
SRS was found. Such soliton exists as an equilibrium of the TOD and nonlinear
dispersion. In [21] stationary kink-waves in the TNSE without TOD were found.
This solution exists as an equilibrium of nonlinear dispersion and SRS. Taking into
account SRS leads to downshift of soliton spectrum [8] and destroys stability of
soliton propagation.

SRS in time presentation. corresponding to delay of nonlinear response. leads to
soliton self-frequency downshift [8]. Compensation of the SRS by linear radiation
fields from soliton core was considered in [22]. Compensation of the SRS in
inhomogeneous media was considered in cases: for media with periodic SOD
[23. 24], for media with shifting zero dispersion point (ZDP) of SOD [25]. and for
dispersion decreasing fiber (DDF) [26].

SRS in space representation, corresponding to nonlocal nonlinear response, leads
to soliton self-wave number downshift. On the other hand, inhomogeneous SOD
leads to variation of soliton wave number too. In particular, in geometrical optic
approximation. velocity of wave number variation in smoothly inhomogeneous
media is described by well-known equation k = —w& . where @ = @(k,&) is the
linear dispersion relation. For inhomogeneous SOD ¢(&) = —ay) velocity of wave
number variation is proportional to gradient of dispersion k = ‘fg (k—ko)? and for
qj; > 0 wave number increases.

Equilibrium of these effects leads to stabilization of the wave number spectrum
(Fig. 1). In this chapter soliton dynamics in media with SRS and increasing positive
SOD is considered. Quasi-soliton solution with small wave number spectrum
variation, amplitude, and extension is found. This soliton exists as the equilibrium
of SRS and increasing SOD.
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2 Basic Equation

Let us consider the dynamics of the high-frequency wave field U(&.t)exp
(iot — ik&) in the frame of the extension NSE with SRS and inhomogeneous

SOD. : )
QU U d(|UJ?
i 4 g Dol | U P pll—2 2200,
i +q(&) 8§2+ 22U |U |+ u 5

where in consequence of the nonlinear dispersion law @ = o (k.| U ?) the fol-
lowing notation is used: ¢ = —9%®/dk? is the SOD. « = —dw/d (|U |*) is the
self-phase modulation.and  u is the SRS in space presentation (nonlocal nonlinear
response). Equation (1) with the zero conditions at the infinity U|§_)im — 0 has the
following integrals:

(1)

* Rate of "mass” change (number of “quantum™) wave packet variation

dr/|U|2d§_/aqR|U|2i§ 2)

» Rate of impulse change

ea oo
d 5 u 8(}8U3U*
= % = s 3
dr/“Uldé 2]( EY: ) st | 32 € a¢ & @

» Rate of the modulus gradient wave field change

(g fet)s

where U =| U | exp(i@), k = d¢/d¢& is the local additional wave number of wave
packet. Value %—g% =0 7 4 8|U| )? in Eq.(4) corresponds to density of
the full energy wave packet: first term {.ouesponds to the density of “kinetic”
energy and second to “potential” energy. The right side of Eq.(2) corresponds
to “mass” (number of “quanta™) variation of the wave packet by inhomogeneous
SOD. The right side of Eq.(3) describes impulse variation: first term by SRS and
second by inhomogeneous SOD.

Assuming space scales of heterogeneity of both dispersion ¢ and the local wave
number kK much bigger than the scale of the heterogeneity of the packet envelope

Lgx > Ljy). relations (2)—(4) take forms:
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== 2

dk u d|U|? dq 2 |
e il g 5
NS 2_/( - 1e§+ - é_(w KN) . (5)
@: (@) ,{—N1 (_6)

dt 8’g’ 0]

dw dq ]
= (ﬁ)_ﬁw, (7)

where N = [ | U |*> d& is the number “quantum” of the wave packet (“mass” of the

—oa

wave packet), W = [ (%'—?)Edi is the “potential” energy of the wave packet. and

—+oo
El )= % [ E| U | dE is the “mass” center of wave packet. Taking into account

Eqgs. (6)—(7) values N and W are connected by the relation
N(t)W(t) = const; (8)
the equilibrium state of the system (6)—(7) is achieved under conditions:

N =Ny, W =Wy, k=0,

—+oo
a\U\Z) (ac;) 9)
= d Wo.
‘u_l ( d¢ 5= d& £ 0

For wave packets with amplitude A and extension A. integrals in system (9) can

be estimated as N ~ A2A.W ~ A%/A, and f a|U| )2dE ~ A*/A. In this case

pammeterq of the equilibrium state Eq. (9)alethe fOllOWll"lU A=A, A=A, k.=0,
and uA? = (‘fé )é . Increasing dispersion (ffg )‘Jg can stabilize both the additional

wave number, the amphtude and the extension of the wave packet.
3 Adiabatic Approximation

Let us consider the dynamics of localized wave packets with module of envelope
| U | described by the self-similar function

U |=A(0)f (6 Aé)(r)). (10)
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where f(0) = 1. For such self-similar solution, the relation (8) corresponds to the
wave packet of a constant amplitude: therefore the system (5)—(7) can be reduced to

dk  p A§ dq A2 g

5 __242( M+ (aé)éu ( r)_k . (11)
dA aq)
el kA, (12)
dt (aé =0

= af2\2 & i3 f \2 R
where A4 = [(55)%dn /[ fddn. A = [(5;)dn /[ f~dn. The

equilibrium state of the system (11)—(12) is achieved for wave packets with
zero additional wave number k = 0. invariable both the extension A = Ap
and the amplitude A = Ap. propagating in media with linear profile of SOD

(qf§ e = g = const:

HA3 =24, (13)

|
Using replacement 7 = Zq’r and r = A/+/A; the system (11)-(12) is reduced to

the form
%::—2([—;))—,’(2, (14)
% = 2kr, (15)
where p = ’11 “AZ > (). This system has one equilibrium state {f;é . Phase

trajectories ( 14)—( 15) are the following:

1— -
r (k2+ 2"’) =1 (k0+ p), (16)
r .’0

where rg = r(0) is the soliton extension at the initial time moment and kg = k(0)
is the soliton wave number at the initial time moment. Type of the phase plane of
Egs. (14)—(15) depends on the value of parameter p:

1. Weak SRS (p < 1). In Fig.2 the phase plane of Egs.(14)—(15) for p = 0.5
is shown. Direction of movement along trajectories is from left to right. In
particular case for wave packets with zero initial wave number kg = 0, wave
number in the first time period increases. Maximum value of the wave number in
this case is the following:

2/3
. k3ro g v1—p /
e 2J1T—p 2r '

In the long run wave number tends to zero.




Fig. 2 Phase trajectories
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k
5 >
Fig. 3 Phase trajectories 45
(14)—(15) for p =1 (critical V 4\
SRS)
5
0 Ll
2. Critical SRS (p = 1). In Fig. 3 the phase plane of Eqgs.(14)—(15) for p =1 is

shown. Direction of movement along trajectories is from right to left. For p =
I time variation of wave number from Eq. (14) is the following: k = 5 fi?:or' In
particular for positive initial wave number kg > 0 wave number tends to zero.
[t corresponds to stabilization of SRS and increasing SOD. For negative initial
wave number Ky < 0 wave number tends to long wave region. It corresponds to
domination of SRS.

Strong SRS (p > 1). In Fig. 4 phase plane of Eqs. (14)—(15) for p = 2 is shown.
Direction of movement along trajectories is from right to left. In this case wave

dk

number is decreased monotonically = < 0. It corresponds to domination of SRS.
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Fig. 4 Phase trajectories tn
(14)—(15) for p > 1 (strong
SRS)

L R
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4 Numerical Results

Let us consider numerically the initial-value problem of dynamics of soliton-like
wave packets

Ao

L cosh(&/A)
in the frame of Eq.(1) fora =1, ¢(&)=1+¢&/20, Ap =1, and different u.
For sech-like profile Eq. (17) we have A1 /A, = 8/5 and parameter p from adiabatic
approximation is the following: p = %%A%. In the particular case, for the value of
SOD gradient ¢’ = 1/20 and for the initial soliton amplitude Ag = |1 we have p =
32u. Equilibrium of SRS and increasing SOD is achieved under condition p = 1,
corresponding to parameter of SRS u =1/32.

In Fig. 5 numerical results of distributions of module of wave packet envelope
| U | on & with u = 1/32 at different time moments are shown as example.
Wave packet propagates with keeping of soliton-like form with small amplitudes
of radiation fields. This gives the possibility of using adiabatic approximation for
the description of the soliton dynamics in the frame Eq. (1). In Fig. 6 distributions

of module of wave number spectrum | Uy |, where Uy (k1) = f U(E,t)e *dE, on

—oo

k with 4 = 1/32 at different time moments are shown. For y = 1 /32 maximum of
the wave number spectrum is varying slightly. It corresponds to the equilibrium of
self-wave number downshift by SRS and increasing SOD. Deviation of parameter u
leads to disturb the dynamical equilibrium of SRS and inhomogeneous dispersion.

In Fig. 7 numerical results of maximum of modulus of wave number spectrum
kmax(t) = k(| Ux |= max) as function 1 for different values u are shown. Curves for

(17)
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Fig. 5 Numerical results of distributions of module of wave packet envelope | U | on & for u =

1/32 at different time moments

t=0
]
ud
0 2 — 1 2 1
-10 -5 0 5 10
k
t=30
1
ud
0 a1 ]
-10 -5 0 5 10
k
t=60
1
jud
O a 3
-10 -5 g 10
K

Fig. 6 Numerical results of distributions of module of wave number spectrum | Uy | on k for

= 1/32 at different time moments
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Fig. 7 Numerical results of maximum of modulus of wave number spectrum Kyqx(7) for different
values u as a function of ¢

u=1/128 and u = 1/64 correspond to domination of SOD, u = 1/32—dynamical
equilibrium of SRS and inhomogeneous dispersion, ¢ = 1/16 and u = 1/8—
domination of SRS.

Adiabatic approximation is in a good agreement with numerical results for
regime of the equilibrium SRS and increasing SOD and for regime of the domination
SRS. Regime of the domination increasing SOD from adiabatic approximation
corresponds to numerical results only for initial time period.

5 Conclusion

Dynamics of solitons envelope in the frame of the expanded NSE taking into account
SRS and inhomogeneous SOD is considered both analytically in adiabatic approx-
imation and numerically. Compensation of the SRS by the increasing SOD under
condition [l ~ ff% /A% is shown. In this case soliton propagates with unvariable both
additional wave number, amplitude. and extension. For strong SRS u > p, soliton
wave number downshift. For weak SRS u < u. soliton wave number upshitt.

Acknowledgments This study was carried out within “The National Research University Higher
School of Economics™ Academic Fund Program in 2012-2013, research grant No.l1-01-0066".
This work was supported by the Russian Foundation for Basic Research (project 12-02-00436-a).



10 N.V. Aseeva et al.

References

1. Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)
2. Dickey. L.A.: Soliton Equation and Hamiltonian Systems. World Scientific. New York (2005)
3. Kivshar, Y.S., Agraval, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic,
San Diego (2003)
4. Agraval. G.P.: Fiber Optic Communication Systems. Wiley. New York (2002)
5. Zakharov, V.E., Shabat, A.B.: Sov. Phys. JETP 34, 62-69 (1972)
6. Hasegava, A.. Tappert, E.: Appl. Phys. Lett. 23, 142-144 (1973)
7. Oliviera, J.R., Moura, M.A.: Phys. Rev. E 57, 47514755 (1998)
8. Gordon. J.P.: Opt. Lett. 11, 662-664 (1986)
9. Kodama. Y.J.: Stat. Phys. 39. 597-614 (1985)
10. Zaspel, C.E.: Phys. Rev. Lett. 82, 723-726 (1999)
11. Hong, B., Lu. D.: Int. J. Nonlinear Sci. 7. 360-367 (2009)
12. Karpman, V.I.: The Eur. Phys. I. B 39, 341-350 (2004)
13. Gromov. E.M., Talanov, V.L.: Sov. Phys. JETP 83, 73-79 (1996)
14. Gromov. E.M.. Talanov, V.I.: Chaos 10. 551-558 (2000)
15. Gromov. E.M., Piskunova, L.V., Tyutin, V.V.: Phys. Lett. A 256. 153158 (1999)
16. Scalora, M., et al.: Phys. Rev. Lett. 95. 013902 (2005)
17. Obregon, M.A.. Stepanyants, Y.A.: Phys. Lett. A 249, 315-323 (1998)
18. Wen, S.C.. et al.: Phys. Rev. E 73. 036617 (2006)
19. Marklund, M., Shukla, P.K., Stenflo, L.: Phys. Rev. E 73, 037601 (2006)
20. Tsitsas. N.L.. Rompotis. N.. Kourakis. 1., Kevrekidis. P.G.. Frantzeskakis. D.J.: Phys. Rev. Lett.
E 79. 037601 (2009)
21. Kivshar, Y.S.: Phys. Rev. A 42, 1757-1761 (1990)
22. Biancalama, F., Skrybin, D.V., Yulin, A.V.: Phys. Rev. E 70, 011615 (2004)
23. Essiambre, R.-J., Agrawal, G.P.: J. Opt. Soc. Am. B 14, 323-330 (1997)
24. Essiambre, R.-J.. Agrawal. G.P.: J. Opt. Soc. Am. B 14, 314-322 (1997)
25. Andrianov, A., Muraviev, S., Kim, A., Sysoliatin, A.: Laser Phys. 17, 1296-1302 (2007)
26. Chernikov, S.. Dianov, E.. Richardson, D., Payne. D.: Opt. Lett. 18. 476478 (1993)



