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a b s t r a c t

The notion of amodular is introduced as follows. A (metric)modular on a set X is a function
w : (0,∞)×X ×X → [0,∞] satisfying, for all x, y, z ∈ X , the following three properties:
x = y if and only if w(λ, x, y) = 0 for all λ > 0; w(λ, x, y) = w(λ, y, x) for all
λ > 0; w(λ + µ, x, y) ≤ w(λ, x, z) + w(µ, y, z) for all λ,µ > 0. We show that, given
x0 ∈ X , the set Xw = {x ∈ X : limλ→∞ w(λ, x, x0) = 0} is a metric space with metric
d◦w(x, y) = inf{λ > 0 : w(λ, x, y) ≤ λ}, called a modular space. The modular w is said to
be convex if (λ, x, y) 7→ λw(λ, x, y) is also a modular on X . In this case Xw coincides with
the set of all x ∈ X such that w(λ, x, x0) < ∞ for some λ = λ(x) > 0 and is metrizable
by d∗w(x, y) = inf{λ > 0 : w(λ, x, y) ≤ 1}. Moreover, if d

◦
w(x, y) < 1 or d

∗
w(x, y) < 1, then

(d◦w(x, y))
2
≤ d∗w(x, y) ≤ d

◦
w(x, y); otherwise, the reverse inequalities hold. We develop

the theory of metric spaces, generated by modulars, and extend the results by H. Nakano,
J. Musielak, W. Orlicz, Ph. Turpin and others for modulars on linear spaces.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper, which is split into two parts, is to define the notion of amodular on an arbitrary set, develop the
theory ofmetric spaces generated bymodulars, calledmodularmetric spaces and, on the basis of it, define newmetric spaces
of (multivalued) functions of bounded generalized variation of a real variable with values in metric semigroups and abstract
convex cones. As an application we present an exhausting description of Lipschitz continuous and some other classes of
superposition (or Nemytskii) operators, acting in these modular metric spaces.
In order to motivate our investigations, let us recall the notion of a function of bounded ϕ-variation (e.g., [1,2]), where

ϕ : R+ = [0,∞)→ R+ is a ϕ-function, i.e., a continuous nondecreasing unbounded function vanishing at zero only. Let X
be the set of all real valued functions x : I → R on the closed interval I = [a, b] ⊂ Rwith a < b such that x(a) = 0. Clearly,
X is a real linear space. The ϕ-variation of a function x ∈ X is the quantity

ρ(x) = Vϕ(x) = sup
m∑
i=1

ϕ
(
|x(ti)− x(ti−1)|

)
∈ [0,∞], (1.1)

where the supremum is taken over all partitions {ti}mi=0 of the interval I , i.e.,m ∈ N and a = t0 < t1 < · · · < tm−1 < tm = b.
The linear subspace Xρ of X of functions of bounded generalized ϕ-variation is defined by means of the functional ρ on X ,
which gives an example of a modular on X , as follows.
According to Orlicz [3], a modular on a real linear space X is a functional ρ : X → [0,∞] satisfying the following four

conditions: (A.1) ρ(0) = 0; (A.2) if x ∈ X and ρ(αx) = 0 for all numbers α > 0, then x = 0; (A.3) ρ(−x) = ρ(x) for all
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x ∈ X; and (A.4) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all α, β ≥ 0 with α + β = 1 and x, y ∈ X . A modular ρ on X is said to be
convex [4] if, instead of the inequality in (A.4), the following inequality holds: ρ(αx + βy) ≤ αρ(x) + βρ(y). The modular
(1.1) is convex if the function ϕ is convex. It was shown in [5] that if ρ is a modular on X , then

Xρ =
{
x ∈ X : lim

α→+0
ρ(αx) = 0

}
, (1.2)

called amodular space, is a linear subspace of X , and it can be equipped with an F-norm according to the rule:
|x|ρ = inf{ε > 0 : ρ(x/ε) ≤ ε}, x ∈ Xρ, (1.3)

so that (by the definition of an F-norm) the functional | · |ρ : Xρ → R+ has the properties: (F.1) given x ∈ Xρ , |x|ρ = 0 if
and only if x = 0; (F.2) |−x|ρ = |x|ρ for all x ∈ Xρ ; (F.3) |x + y|ρ ≤ |x|ρ + |y|ρ for all x, y ∈ Xρ ; and (F.4) if cn, c ∈ R and
xn, x ∈ Xρ for n ∈ N, cn → c in R and |xn− x|ρ → 0 as n→∞, then |cnxn− cx|ρ → 0 as n→∞. Moreover, if the modular
ρ on X is convex, then the modular space Xρ coincides with

X∗ρ = {x ∈ X : ∃ a number α = α(x) > 0 such that ρ(αx) <∞}
and the functional

‖x‖ρ = inf{ε > 0 : ρ(x/ε) ≤ 1}, x ∈ Xρ = X∗ρ , (1.4)
is an ordinary norm on Xρ , which is equivalent to the F-norm | · |ρ in the following sense [4]: given x ∈ Xρ , the inequalities
|x|ρ ≤ 1 and ‖x‖ρ ≤ 1 are equivalent, and if at least one of them holds, then ‖x‖ρ ≤ |x|ρ ≤

√
‖x‖ρ , whereas, otherwise,

one has
√
‖x‖ρ ≤ |x|ρ ≤ ‖x‖ρ .

The theory of modulars on linear spaces and the corresponding theory of modular linear spaces were founded by
Nakano [6,7] and were intensively developed by his mathematical school: Amemiya, Koshi, Shimogaki, Yamamuro [8,6,9]
and others. Further and the most complete development of these theories are due to Orlicz, Mazur, Musielak, Luxemburg,
Turpin [10,11,4,5,3,12] and their collaborators. In the present time the theory ofmodulars andmodular spaces is extensively
applied, in particular, in the study of various Orlicz spaces [13–21,1,22,23], which in their turn have broad applications
[24,19,21,25,22].
However, in spite of the significant generality of the modular spaces, in certain situations (e.g., connected with problems

frommultivalued analysis [26–31] such as the definition ofmetric functional spaces, description of the action ofmultivalued
superposition operators) the notion of a modular on a linear space or on a space with an additional algebraic structure is
too restrictive. So, the aim of the first part of this paper is to define and develop a new notion of a modular on an arbitrary
set X coherent with the classical notion and to construct the corresponding theory of modular metric spaces adapted to the
problems of description of (multivalued) superposition operators, which will be presented in the second part of the paper.
Returning back to the example of functions of finite ϕ-variation, suppose that the triple (M, d,+) is a metric semigroup

with zero 0 ∈ M , i.e., an Abelian semigroup with respect to the addition operation + equipped with metric d, which is
translation invariant (for more details see Section 2.14). An example of M is the family of all nonempty compact convex
subsets of a real normed linear space Z endowed with the Hausdorff metric d [32]. Denote by X the set of all functions
x : I → M such that x(a) = 0. Noting that d(x, y) = |x− y|, x, y ∈ R, is a metric on R and that the argument of the function
ϕ from (1.1) can be rewritten for the difference x− y of two functions x, y : I → R in the form

|(x− y)(t)− (x− y)(s)| = d(x(t)+ y(s), y(t)+ x(s)), t, s ∈ I,
and taking into account (1.3) or (1.4), in the general case of a metric semigroup (M, d,+)-valued functions it is natural to
set ([31, Section 3] and Section 2.15): given λ > 0 and x, y ∈ X ,

wλ(x, y) = sup
m∑
i=1

ϕ
(1
λ
d
(
x(ti)+ y(ti−1), y(ti)+ x(ti−1)

))
, (1.5)

where the supremum is taken over all partitions {ti}mi=0 of the interval I . Then the function w : (0,∞) × X × X → [0,∞]
acting according to the rule (λ, x, y) 7→ wλ(x, y) possesses certain basic properties, which are postulated as axioms of
a metric modular on X (see Definition 2.1). The modular w defines an equivalence relation on X , which partitions X into
equivalence classes, called modular sets. A modular set can be equipped with a metric turning it into a metric space. If the
function ϕ is convex, then w from (1.5) is a convex metric modular (see Definition 3.3). The flexibility of our notion of a
modular is due to the fact that, e.g., the space of functions x : I → M of bounded generalized ϕ-variation can be generated
by different modulars and endowed with different metrics; for instance, replacing 1/λ by 1/λ2 in (1.5) we get a metric
modular, which is no longer convex even if ϕ is a convex function. Although the notion of a metric modular is different from
the classical notion of a modular on a linear space, they are coherent (cf. Theorem 3.11), and in what follows we present,
on the whole, generalizations of classical linear results to modular metric spaces, which is motivated by applications to the
theory of superposition operators (in part II). A more general variant of the theory of modular metric spaces is given in [33].
In short form some of the results of this paper were announced in [34] without proofs.
Part I is organized as follows. In Section 2 we define the notion of a metric modular on an arbitrary set and develop the

theory of modular metric spaces. The main results of this section are Theorems 2.6, 2.8, 2.10, 2.13 and 2.17. In Section 3 we
study the notion of a convex modular and construct the corresponding modular metric spaces, which have applications to
the description of certain classes of superposition operators in the second part of the paper. The main results of Section 3
are Theorems 3.6–3.9, 3.11 and 3.14.
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2. Metric modulars

Throughout the paper X is a nonempty set, λ > 0 is understood in the sense that λ ∈ (0,∞) and, due to the disparity of
the arguments, functionsw : (0,∞)× X × X → [0,∞]will be written aswλ(x, y) = w(λ, x, y) for all λ > 0 and x, y ∈ X .

Definition 2.1. A function w : (0,∞) × X × X → [0,∞] is said to be a metric modular on X (or simply a modular if no
ambiguity arises) if it satisfies the following three axioms:
(i) given x, y ∈ X ,wλ(x, y) = 0 for all λ > 0 if and only if x = y;
(ii) wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈ X;
(iii) wλ+µ(x, y) ≤ wλ(x, z)+ wµ(y, z) for all λ, µ > 0 and x, y, z ∈ X .

If, instead of (i), we have only the condition
(i′) wλ(x, x) = 0 for all λ > 0 and x ∈ X , thenw is said to be a (metric) pseudomodular on X .

2.2

Definition 2.1 appeared implicitly in [30, Section 4] and [31, Section 3] and explicitly in [34]. Condition w : (0,∞) ×
X × X → (−∞,∞] in it does not lead to a greater generality: in fact, setting x = y and µ = λ > 0 in (iii) and taking
into account (i′), for all y, z ∈ X , we find 0 = w2λ(y, y) ≤ 2wλ(y, z). If wλ(x, y) does not depend on x, y ∈ X , then, by (i′),
w ≡ 0 (although it may formally seem that (iii) in this case is a general subadditivity condition of the function λ 7→ wλ).
Now, if wλ(x, y) = w(x, y) does not depend on λ > 0 and assumes only finite values, then axioms (i)–(iii) mean that w is a
metric on X (pseudometric if (i) is replaced by (i′)).

2.3

Themain property of a (pseudo)modularw on a set X is the following: given x, y ∈ X , the function 0 < λ 7→ wλ(x, y) ∈
[0,∞] is nonincreasing on (0,∞). In fact, if 0 < µ < λ, then (iii), (i′) and (ii) imply

wλ(x, y) ≤ wλ−µ(x, x)+ wµ(y, x) = wµ(y, x) = wµ(x, y).

It follows that at each point λ > 0 the right limit wλ+0(x, y) = limµ→λ+0wµ(x, y) and the left limit wλ−0(x, y) =
limε→+0wλ−ε(x, y) exist in [0,∞] and the following two inequalities hold:

wλ+0(x, y) ≤ wλ(x, y) ≤ wλ−0(x, y). (2.1)

Examples 2.4. The following indexed objectsw are simple examples of (pseudo)modulars on a setX . Letλ > 0 and x, y ∈ X .
We have:
(a) waλ(x, y) = ∞ if x 6= y, and w

a
λ(x, y) = 0 if x = y; and if (X, d) is a (pseudo)metric space with (pseudo)metric d, then

we also have:
(b) wbλ(x, y) = d(x, y)/ϕ(λ), where ϕ : (0,∞)→ (0,∞) is a nondecreasing function;
(c) wcλ(x, y) = ∞ if λ ≤ d(x, y), andw

c
λ(x, y) = 0 if λ > d(x, y);

(d) wdλ(x, y) = ∞ if λ < d(x, y), andw
d
λ(x, y) = 0 if λ ≥ d(x, y).

2.5. The modular set

Letw be a (pseudo)modular on a set X . The binary relation
w
∼ on X defined for x, y ∈ X by

x
w
∼ y if and only if lim

λ→∞
wλ(x, y) = 0 (2.2)

is, by virtue of axioms (i′), (ii) and (iii), an equivalence relation (e.g., if x
w
∼ z and z

w
∼ y, then wλ(x, y) ≤ wλ/2(x, z) +

wλ/2(y, z)→ 0 as λ→∞, and so, x
w
∼ y). Denote by X/

w
∼ the quotient-set of X with respect to

w
∼ and by X◦w(x) = {y ∈ X :

y
w
∼ x} the equivalence class of the element x ∈ X in the quotient-set X/

w
∼. Note, in particular, that x ∈ X◦w(x) and that the

transitivity property of
w
∼ implies y

w
∼ z if and only if y, z ∈ X◦w(x) for some x ∈ X (e.g., x = y or x = z).

It follows from Section 2.3 that the function d̃ : (X/
w
∼) × (X/

w
∼) → [0,∞] given by d̃ (X◦w(x), X

◦
w(y)) =

limλ→∞wλ(x, y), x, y ∈ X , is well defined (the limit at the right-hand side does not depend on the representatives of the
equivalence classes) and satisfies the axioms of a metric, except, as Example 2.4(a) shows, that it may take infinite values.
Inwhat followswe are interested in the equivalence classes X◦w(x). Note that the quotient-pair (X/

w
∼, d̃)may degenerate

in interesting and important cases: e.g., in Example 2.4(c) we have X◦w(x) = X for all x ∈ X and d̃ ≡ 0.
Let us fix an element x0 ∈ X arbitrarily and set Xw = X◦w(x0). The set Xw is called a modular set. We note that condition

(2.2) in the definition of Xw is an analogue of the condition in the definition of Xρ from (1.2), which is known in the literature
as condition (B.1) or B1 (cf. [19,4,1,5] and the end of Section 2.15).
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Theorem 2.6. If w is a metric (pseudo)modular on X, then the modular set Xw is a (pseudo)metric space with (pseudo)metric
given by

d◦w(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ}, x, y ∈ Xw.

Proof. Given x, y ∈ Xw , the value d◦w(x, y) ∈ R+ is well defined: in fact, since x
w
∼ y, then, by virtue of (2.2), there exists

λ0 > 0 such that wλ(x, y) ≤ 1 for all λ ≥ λ0, and so, setting λ1 = max{1, λ0}, we get wλ1(x, y) ≤ 1 ≤ λ1, which together
with the definition of d◦w(x, y) gives d

◦
w(x, y) ≤ λ1 <∞.

Given x ∈ Xw , (i′) implies wλ(x, x) = 0 < λ for all λ > 0, and so, d◦w(x, x) = 0. Let w satisfy (i), x, y ∈ Xw and
d◦w(x, y) = 0. Thenwµ(x, y) does not exceedµ for allµ > 0. Hence for any λ > 0 and 0 < µ < λ, in view of Section 2.3, we
havewλ(x, y) ≤ wµ(x, y) ≤ µ→ 0 as µ→+0. It follows thatwλ(x, y) = 0 for all λ > 0, and so, axiom (i) implies x = y.
Due to axiom (ii), the equality d◦w(x, y) = d

◦
w(y, x), x, y ∈ Xw , is clear.

Let us show that d◦w(x, y) ≤ d
◦
w(x, z)+ d

◦
w(y, z) for all x, y, z ∈ Xw . In fact, by the definition of d

◦
w , for any λ > d

◦
w(x, z)

and µ > d◦w(y, z)we findwλ(x, z) ≤ λ andwµ(y, z) ≤ µ, and so, axiom (iii) implies

wλ+µ(x, y) ≤ wλ(x, z)+ wµ(y, z) ≤ λ+ µ.

It follows from the definition of d◦w that d
◦
w(x, y) ≤ λ + µ, and it remains to pass to the limits as λ → d◦w(x, z) and

µ→ d◦w(y, z). �

Themetric d◦w is a counterpart of the F-norm |·|ρ from (1.3), and Theorem2.6 generalizes the results from [5, Section 1.82]
and [11, Section 1.21] for F-norms generated by classical modulars on linear spaces.

Examples 2.7. For modularsw = wa, wb, wc, wd from Example 2.4 we have, respectively:

(a) Xw = {x0} and d◦w(x, y) = 0.
(b) If the function ϕ is bounded from above, then Xw = {x0} and d◦w(x, y) = 0. On the other hand, if ϕ(λ) → ∞ as

λ → ∞, then Xw = X and d◦w(x, y) = ψ
−1(d(x, y)), where ψ(λ) = λϕ(λ), λ > 0, is a strictly increasing function

on (0,∞) such that ψ(λ) → 0 as λ → +0 and ψ(λ) → ∞ as λ → ∞ and ψ−1 is the inverse function for ψ . In
particular, if ϕ(λ) = λp with p = const > 0, then we get: d◦w(x, y) =

(
d(x, y)

)1/(p+1)
.

(c), (d) Xw = X and d◦w(x, y) = d(x, y).

Theorem 2.8. Let w be a (pseudo)modular on a set X. Put

d1w(x, y) = inf
λ>0

(
λ+ wλ(x, y)

)
, x, y ∈ Xw.

Then d1w is a (pseudo)metric on Xw such that d
◦
w ≤ d

1
w ≤ 2d

◦
w on Xw × Xw .

Proof. Since, for x, y ∈ Xw , the valuewλ(x, y) is finite due to (2.2) for λ > 0 large enough, then the set {λ+wλ(x, y) : λ >
0} ⊂ R+ is nonempty and bounded from below, and so, d1w(x, y) ∈ R+.
If x ∈ Xw , then, by (i′), λ + wλ(x, x) = λ for all λ > 0, and so, d1w(x, x) = 0. Now let w satisfy (i), x, y ∈ Xw and

d1w(x, y) = 0. The equality x = y will follow from (i) if we show that wλ(x, y) = 0 for all λ > 0. On the contrary, suppose
that wλ0(x, y) > 0 for some λ0 > 0. Then for λ ≥ λ0 we find λ + wλ(x, y) ≥ λ0, and if 0 < λ < λ0, then it follows from
Section 2.3 that

0 < wλ0(x, y) ≤ wλ(x, y) ≤ λ+ wλ(x, y).

Thus, λ + wλ(x, y) ≥ λ1 = min{λ0, wλ0(x, y)} for all λ > 0, and so, by the definition of d
1
w , d

1
w(x, y) ≥ λ1 > 0, which

contradicts the assumption.
Axiom (ii) implies the symmetry property of d1w .
Let us establish the triangle inequality: d1w(x, y) ≤ d

1
w(x, z) + d

1
w(y, z). By the definition of d

1
w , for any ε > 0 we find

λ = λ(ε) > 0 and µ = µ(ε) > 0 such that

λ+ wλ(x, z) ≤ d1w(x, z)+ ε and µ+ wµ(y, z) ≤ d1w(y, z)+ ε,

whence, applying axiom (iii),

d1w(x, y) ≤ (λ+ µ)+ wλ+µ(x, y) ≤ λ+ µ+ wλ(x, z)+ wµ(y, z)

≤ d1w(x, z)+ ε + d
1
w(y, z)+ ε,

and it remains to take into account the arbitrariness of ε > 0.
Let us prove that metrics d◦w and d

1
w are equivalent on Xw . In order to obtain the left-hand side inequality, suppose that

λ > 0 is arbitrary. If wλ(x, y) ≤ λ, then the definition of d◦w implies d
◦
w(x, y) ≤ λ. Now if wλ(x, y) > λ, then d◦w(x, y) ≤

wλ(x, y): in fact, setting µ = wλ(x, y) we find µ > λ, and so, it follows from Section 2.3 that wµ(x, y) ≤ wλ(x, y) = µ,
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whence d◦w(x, y) ≤ µ = wλ(x, y). Therefore, for any λ > 0 we have d
◦
w(x, y) ≤ max{λ,wλ(x, y)} ≤ λ + wλ(x, y), and so,

taking the infimum over all λ > 0, we arrive at the inequality d◦w(x, y) ≤ d
1
w(x, y).

To obtain the right-hand side inequality, we note that, given λ > 0 such that d◦w(x, y) < λ, by the definition of d◦w , we get
wλ(x, y) ≤ λ, and so, d1w(x, y) ≤ λ+ wλ(x, y) ≤ 2λ. Passing to the limit as λ→ d◦w(x, y), we get d

1
w(x, y) ≤ 2d

◦
w(x, y). �

We remark that the metric d1w and Theorem 2.8 are more general variants of the F-norm and the result from [8] (see
also [19, Theorem 1.1(b)]).

Examples 2.9. (a) Let us consider the (pseudo)modular w = wb from Example 2.4(b) with ϕ(λ) = λp and p = const > 0.
In order to calculate d1w(x, y) = infλ>0 f (λ), where f (λ) = λ + (d(x, y)/λp), we note that the derivative f ′(λ) =
1 − (pd(x, y)/λp+1) vanishes only at the point λ0 = (pd(x, y))1/(p+1) and assumes negative values at the left of this point
and positive values at the right, and so, λ0 is the point where f attains the global minimum on (0,∞). It follows that

d1w(x, y) = f (λ0) = (p+ 1)p
−p/(p+1)(d(x, y))1/(p+1), x, y ∈ X .

Note that this expression is coherent with Theorem 2.8 if we take into account Example 2.7(b) and the inequalities
1 ≤ (p + 1)p−p/(p+1) ≤ 2 for all p > 0. For classical modulars an example of this type was elaborated in [19, p. 5]. In
particular, if p = 1, the expressions for d◦w(x, y) and d

1
w(x, y) are of the form, respectively:

d◦w(x, y) =
√
d(x, y) and d1w(x, y) = 2

√
d(x, y), x, y ∈ X .

(b) The results in Example 2.7(b) and 2.9(a) with ϕ(λ) = λp are valid in a somewhat more general case when the
(pseudo)modularw on the set X is p-homogeneouswith p > 0, i.e., satisfies the condition:

wλ(x, y) = w1(x, y)/λp, λ > 0, x, y ∈ X .

If this is the case, d(x, y) should be replaced byw1(x, y) in the expressions for d◦w(x, y) from Example 2.4(b) and for d
1
w(x, y)

from Example 2.9(a).
Another example of a p-homogeneous modular on a metric space (X, d) can be given as wλ(x, y) = (d(x, y)/λ)p =

w1(x, y)/λp.
(c) Given a (pseudo)metric space (X, d) and a convex function ϕ : R+ → R+ vanishing at zero only (it follows that ϕ is

strictly increasing, continuous and admits the continuous inverse function ϕ−1), we set:

wλ(x, y) = λϕ(d(x, y)/λ), λ > 0, x, y ∈ X .

Thenw is ametric (pseudo)modular on X (note thatmodulars of this type are not allowed in the classical theory ofmodulars
on linear spaces). In order to see this, it suffices to verify axiom (iii):

wλ+µ(x, y) ≤ (λ+ µ)ϕ
( λ

λ+ µ
·
d(x, z)
λ
+

µ

λ+ µ
·
d(y, z)
µ

)
≤ (λ+ µ)

[ λ

λ+ µ
ϕ
(d(x, z)

λ

)
+

µ

λ+ µ
ϕ
(d(y, z)

µ

)]
= wλ(x, z)+ wµ(y, z).

If, in addition, the function ϕ satisfies the condition ϕ(λ) = o(λ) as λ → +0, that is, ϕ′(0) = limλ→+0 ϕ(λ)/λ = 0, then,
given x ∈ X , we get:

lim
λ→∞

wλ(x, x0) = lim
λ→∞

λϕ
(d(x, x0)

λ

)
= lim

µ→+0

d(x, x0)
µ

ϕ(µ) = 0,

and so, Xw = X . Then d◦w(x, y) is of the form:

d◦w(x, y) = inf{λ > 0 : ϕ(d(x, y)/λ) ≤ 1} = d(x, y)/ϕ
−1(1).

Let ϕ(λ) = λp with p > 1. Then d◦w(x, y) = d(x, y). In order to calculate the value d
1
w(x, y), we turn to Example 2.9(b)

and note that

wλ(x, y) = λ(d(x, y)/λ)p = (d(x, y))p/λp−1 = w1(x, y)/λp−1.

It follows that d1w(x, y) = p(p− 1)
(1−p)/pd(x, y) for all x, y ∈ X .

(d) Setting ϕ(λ) = eλ, λ > 0, and w = wb in Example 2.4(b), we find that d1w(x, y) = d(x, y) if d(x, y) ≤ 1, and
d1w(x, y) = 1+ log(d(x, y)) if d(x, y) > 1.

Now, let us exhibit specific relations between λ > 0,wλ(x, y) and d◦w(x, y).

Theorem 2.10. Given a (pseudo)modular w on X, x, y ∈ Xw and λ > 0, we have:
(a) if d◦w(x, y) < λ, thenwλ(x, y) ≤ d◦w(x, y) < λ;
(b) if wλ(x, y) = λ, then d◦w(x, y) = λ;
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(c) if λ = d◦w(x, y) > 0, thenwλ+0(x, y) ≤ λ ≤ wλ−0(x, y).
If the function µ 7→ wµ(x, y) is continuous from the right on (0,∞), then along with (a)–(c) we have:

(d) d◦w(x, y) ≤ λ if and only if wλ(x, y) ≤ λ.
If the function µ 7→ wµ(x, y) is continuous from the left on (0,∞), then along with (a)–(c)we have:

(e) d◦w(x, y) < λ if and only if wλ(x, y) < λ.
If the function µ 7→ wµ(x, y) is continuous on (0,∞), then along with (a)–(e) we have:

(f) d◦w(x, y) = λ if and only if wλ(x, y) = λ.

Proof. (a) For any µ > 0 such that d◦w(x, y) < µ < λ, by the definition of d◦w and Section 2.3, we have wµ(x, y) ≤ µ and
wλ(x, y) ≤ wµ(x, y), whencewλ(x, y) ≤ µ, and it remains to pass to the limit as µ→ d◦w(x, y).
(b) By the definition, d◦w(x, y) ≤ λ, and item (a) implies d

◦
w(x, y) = λ.

(c) For any µ > λ = d◦w(x, y), the definition of d
◦
w implies wµ(x, y) ≤ µ, and so, wλ+0(x, y) = limµ→λ+0wµ(x, y) ≤

limµ→λ+0 µ = λ.
For any 0 < µ < λ we find wµ(x, y) > µ (otherwise, by the definition of d◦w , we have λ = d

◦
w(x, y) ≤ µ), and so,

wλ−0(x, y) = limµ→λ−0wµ(x, y) ≥ limµ→λ−0 µ = λ.
(d) The implication⇐ follows from the definition of d◦w . Let us prove the reverse implication. If d

◦
w(x, y) < λ, then, by

virtue of item (a), wλ(x, y) < λ, and if d◦w(x, y) = λ, then wλ(x, y) = wλ+0(x, y) ≤ λ, which is a consequence of the
continuity from the right of the function µ 7→ wµ(x, y) and item (c).
(e) By virtue of (a), it suffices to prove the implication⇐. The definition of d◦w gives d

◦
w(x, y) ≤ λ, but if, on the contrary,

λ = d◦w(x, y), then, by item (c), we would havewλ(x, y) = wλ−0(x, y) ≥ λ, which contradicts the assumption.
(f)⇐ follows from (b). For the reverse assertion, the two inequalitieswλ(x, y) ≤ λ ≤ wλ(x, y) follow from (c). �

Example 2.11. The limitwλ+0(x, y) in Theorem 2.10(c) cannot be replaced bywλ(x, y), in general. To see this, consider the
(pseudo)modular w = wc from Example 2.4(c) (see also 2.7(c)). It is clear that the function µ 7→ wµ(x, y) is continuous
from the left on (0,∞), but not from the right (at the point λ = d(x, y)). If x 6= y, then for λ = d◦w(x, y) = d(x, y) > 0 we
find

wλ+0(x, y) = 0 < λ = d(x, y) <∞ = wλ−0(x, y),

whereaswλ(x, y) = ∞ > λ. This example shows also that item (d) may fail without the assumption of the right continuity
of the function µ 7→ wµ(x, y).
A similar situation holds with respect to the left limit in Theorem 2.10(c), (e); an appropriate example is 2.4(d).

2.12

In addition to Theorem 2.10 let us recall two implications, which are always valid: if wλ(x, y) ≤ λ, then d◦w(x, y) ≤ λ,
and ifwλ(x, y) > λ, then d◦w(x, y) ≤ wλ(x, y); they are established in the proof of Theorem 2.8.
In the next theorem we show that the convergence in metric d◦w and modular convergence of sequences from Xw are

equivalent.

Theorem 2.13. Let w be a (pseudo)modular on a set X. Given a sequence {xn}∞n=1 ⊂ Xw and x ∈ Xw , we have: d
◦
w(xn, x)→ 0 as

n→∞ if and only if wλ(xn, x)→ 0 as n→∞ for all λ > 0. A similar assertion holds for Cauchy sequences.

Proof. Sufficiency. Given arbitrary ε > 0, the assumption implies that wε(xn, x)→ 0 as n→∞, and so, there is a number
n0(ε) such thatwε(xn, x) ≤ ε for all n ≥ n0(ε), whence d◦w(xn, x) ≤ ε for all n ≥ n0(ε).
Necessity. Let us fix λ > 0 arbitrarily. Then, for each ε > 0, we have: either (a) 0 < ε < λ, or (b) ε ≥ λ. In case (a),

by the assumption, there is a number n0(ε) such that d◦w(xn, x) < ε for all n ≥ n0(ε), and so, by Theorem 2.10(a), we get
wε(xn, x) < ε for all n ≥ n0(ε). Since ε < λ, then, in view of Section 2.3, we findwλ(xn, x) ≤ wε(xn, x) < ε for all n ≥ n0(ε).
In case (b) we set n1(ε) = n0(λ/2). From Section 2.3 and the just established fact (when ε = λ/2 < λ), we get:

wλ(xn, x) ≤ wλ/2(xn, x) < λ/2 ≤ ε/2 < ε for all n ≥ n1(ε).

Hence,wλ(xn, x)→ 0 as n→∞ for all λ > 0. �

In order to present the example in Section 2.15, we need the following notion.

2.14. Metric semigroup

([30, Section 4], [31, Section 3]). The triple (M, d,+) is said to be a metric semigroup if (M, d) is a metric space with
metric d, (M,+) is an Abelian semigroup with respect to the addition operation+ and the metric d is translation invariant:
d(x+ z, y+ z) = d(x, y) for all x, y, z ∈ M . The element 0 ∈ M such that x+ 0 = 0+ x = x for all x ∈ M is called the zero.
The metric semigroup (M, d,+) is said to be complete, if the metric space (M, d) is complete.
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Given a metric semigroup (M, d,+) and any x, y, x, y ∈ M , we have:

d(x, y) ≤ d(x+ x, y+ y)+ d(x, y), (2.3)

d(x+ x, y+ y) ≤ d(x, y)+ d(x, y). (2.4)

If sequences {xn}, {yn}, {xn} and {yn} of elements from M converge in M to elements x, y, x and y as n → ∞, respectively,
then, by virtue of (2.4),

d(xn + xn, yn + yn)→ d(x+ x, y+ y) as n→∞, (2.5)

and, in particular, the addition operation (x, y) 7→ x+ y inM is a continuousmapping fromM ×M intoM .

2.15. The modular generating functions of finite ϕ-variation

Let ϕ : R+ → R+ be a ϕ-function (cf. Introduction), (M, d,+) be a metric semigroup, I = [a, b] a closed interval in R
and X = M I the set of all functionsmapping I intoM . Given λ > 0 and x, y ∈ X , we define a functionw : (0,∞)×X×X →
[0,∞] by the rule:

wλ(x, y) = sup
m∑
i=1

ϕ

(
1
λ
d
(
x(ti)+ y(ti−1), y(ti)+ x(ti−1)

))
, (2.6)

where the supremum is taken over all partitions {ti}mi=0 of the interval I .
Let us show that w is a pseudomodular on X , having verified only axiom (iii). We make use of the following simple

observation: if α, β ≥ 0, α + β ≤ 1 and A, B ≥ 0, then

ϕ(αA+ βB) ≤ max{ϕ(A), ϕ(B)} ≤ ϕ(A)+ ϕ(B).

If λ, µ > 0, x, y, z ∈ X , m ∈ N, a = t0 < t1 < · · · < tm−1 < tm = b and i ∈ {1, . . . ,m}, then, by virtue of (2.3) and the
translation invariance of d, we have:

Ci ≡ d
(
x(ti)+ y(ti−1), y(ti)+ x(ti−1)

)
≤ d

(
x(ti)+ y(ti−1)+ y(ti)+ z(ti−1), y(ti)+ x(ti−1)+ z(ti)+ y(ti−1)

)
+ d

(
y(ti)+ z(ti−1), z(ti)+ y(ti−1)

)
= d

(
x(ti)+ z(ti−1), z(ti)+ x(ti−1)

)
+ d

(
y(ti)+ z(ti−1), z(ti)+ y(ti−1)

)
≡ Ai + Bi,

and so, the monotonicity of ϕ and the observation above imply

ϕ
( Ci
λ+ µ

)
≤ ϕ

( λ

λ+ µ
·
Ai
λ
+

µ

λ+ µ
·
Bi
µ

)
≤ ϕ

(Ai
λ

)
+ ϕ

(Bi
µ

)
.

Summing over i = 1, . . . ,m and taking the supremum over all partitions of the interval I , we obtain the inequality in
axiom (iii).
Let us establish that, given x, y ∈ X , the function λ 7→ wλ(x, y) is continuous from the right on (0,∞). Let λ > 0. By

virtue of (2.1), it suffices to show that wλ(x, y) ≤ wλ+0(x, y). For each partition {ti}mi=0 of the interval I and any µ > λ we
have:

m∑
i=1

ϕ
( 1
µ
d
(
x(ti)+ y(ti−1), y(ti)+ x(ti−1)

))
≤ wµ(x, y),

and so, as µ→ λ+ 0, the continuity of ϕ implies
m∑
i=1

ϕ
(1
λ
d
(
x(ti)+ y(ti−1), y(ti)+ x(ti−1)

))
≤ wλ+0(x, y).

It remains to take the supremum over all partitions {ti}mi=0 of the interval I .
For a constant function x0(t) = x0 for all t ∈ I , where x0 ∈ M , the definition (2.6) of the pseudomodular w gives (note

that the expression on the right does not depend on x0):

wλ(x, x0) = sup
m∑
i=1

ϕ
(1
λ
d(x(ti), x(ti−1))

)
, x ∈ M I .

If x ∈ Xw = X◦w(x0), then x is said to be a function of bounded generalized ϕ-variation in the sense of Wiener and Young (if ϕ is
convex, more details can be found in [31, Section 3]). To the best of the author’s knowledge, if the function ϕ is nonconvex,
the question concerning the complete description of the space Xw remains open even in the case whenM = R (cf. (1.1) and
(1.2)); in particular, it is not known whether the modular space Xw coincides with the larger set X∗w defined in Section 3.1
below. For a certain discussion and a partial solution of this problem whenM = R see [16,35].
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2.16. The right inverse (pseudo)modular

Let w be a (pseudo)modular on a set X . The right inverse for w is the function w+ : (0,∞)× X × X → [0,∞] defined,
for all µ > 0 and x, y ∈ X , by the rule:

w+µ (x, y) = inf{λ > 0 : wλ(x, y) ≤ µ} (inf∅ = ∞).

The properties ofw+ are gathered in the following theorem.

Theorem 2.17. Let w be a (pseudo)modular on X. Thenw+ is also a (pseudo)modular on X such that the following (in)equalities
in [0,∞] hold:
(a) w+µ+0(x, y) = w

+
µ (x, y) for all µ > 0 and x, y ∈ X;

(b) wλ+0(x, y) = w++λ (x, y) ≤ wλ(x, y) for all λ > 0 and x, y ∈ X, wherew++ = (w+)+.
Proof. Let us verify only axioms (i) and (iii) for w+. (i) Let x, y ∈ X and w+µ (x, y) = 0 for all µ > 0. Then λ > w+µ (x, y) for
all λ > 0, and so, the definition of w+ implies wλ(x, y) ≤ µ for all µ > 0, whence wλ(x, y) = 0 for all λ > 0, and so, by (i)
for w, we get x = y. (iii) Let us show that w+λ+µ(x, y) ≤ w

+

λ (x, z) + w
+
µ (y, z). If w

+

λ (x, z) = ∞ or w
+
µ (y, z) = ∞, then the

inequality is obvious. So, suppose that w+λ (x, z) <∞ and w
+
µ (y, z) <∞. Then, given ξ > w+λ (x, z) and η > w+µ (y, z), the

definition ofw+ implieswξ (x, z) ≤ λ andwη(y, z) ≤ µ, and so,

wξ+η(x, y) ≤ wξ (x, z)+ wη(y, z) ≤ λ+ µ.

It follows that ξ + η ∈ {γ > 0 : wγ (x, y) ≤ λ + µ}, and so, w+λ+µ(x, y) ≤ ξ + η, and it remains to pass to the limits as
ξ → w+λ (x, z) and η→ w+µ (y, z).
(a) By virtue of (2.1), we have w+µ+0(x, y) ≤ w

+
µ (x, y). If w

+

µ+0(x, y) = ∞, then, by the last inequality, w
+
µ (x, y) = ∞.

Now, let w+µ+0(x, y) < ∞ and λ > 0 be any number such that w+µ+0(x, y) < λ. Then there exists ε0 > 0 such that
w+µ+ε(x, y) < λ for all 0 < ε < ε0. From the definition of w+ we find wλ(x, y) ≤ µ + ε for all ε ∈ (0, ε0), whence we
get wλ(x, y) ≤ µ. It follows from Section 2.16 that w+µ (x, y) ≤ λ. Passing to the limit as λ→ w+µ+0(x, y) we conclude that
w+µ (x, y) ≤ w

+

µ+0(x, y).
(b) First, given λ > 0 and x, y ∈ X , we obtain the inequality in (b). If wλ(x, y) = ∞, the inequality is clear. Now if

wλ(x, y) < ∞, then, for each µ > wλ(x, y), the definition of w+ implies w+µ (x, y) ≤ λ. Applying the definition of w
++ we

getw++λ (x, y) ≤ µ for all µ > wλ(x, y), and so,w++λ (x, y) ≤ wλ(x, y).
Nowwe prove the equality in (b). In the last paragraph we have shown thatw++ξ (x, y) ≤ wξ (x, y) for all ξ > 0, whence,

as ξ → λ+ 0, we getw++λ+0(x, y) ≤ wλ+0(x, y). Since, by item (a),w
++

λ+0(x, y) = w
++

λ (x, y), thenw++λ (x, y) ≤ wλ+0(x, y).
If w++λ (x, y) = ∞, then the last inequality in the previous paragraph implies wλ+0(x, y) = ∞. So, assume that

w++λ (x, y) <∞. Then, for anyµ > w++λ (x, y), the definition ofw++ givesw+µ (x, y) ≤ λ. Ifw
+
µ (x, y) < λ, thenwλ(x, y) ≤ µ,

and so, wλ+0(x, y) ≤ wλ(x, y) ≤ µ. Now if w+µ (x, y) = λ, then, for each ξ > λ = w+µ (x, y), the definition of w
+

implies wξ (x, y) ≤ µ, whence wλ+0(x, y) = limξ→λ+0wξ (x, y) ≤ µ. Thus, we have shown that wλ+0(x, y) ≤ µ for all
µ > w++λ (x, y), and so,wλ+0(x, y) ≤ w++λ (x, y). �

Remark 2.18. Letw be a (pseudo)modular on a set X .
Note thatw+++ = w+; in fact, by Theorem 2.17(a), (b), we havew+µ (x, y) = w

+

µ+0(x, y) = w
+++
µ (x, y). Moreover, if the

function λ 7→ wλ(x, y) is continuous from the right on (0,∞) for all x, y ∈ X , thenw++ = w.
The term the ‘right inverse (pseudo)modular’ for w+ can be motivated as follows. For the sake of convenience we

temporarily employ also the notation w(ξ ; x, y) = wξ (x, y). If λ > 0 and wλ(x, y) ∈ (0,∞), then the inequalities
w+(wλ(x, y); x, y) ≤ λ andw++λ (x, y) ≤ wλ(x, y) are equivalent (cf. the inequality in Theorem 2.17(b)). On the other hand,
if µ > 0 andw+µ (x, y) ∈ (0,∞), then we have the inequalities:w(w

+
µ (x, y)+ 0; x, y) ≤ µ and µ ≤ w(w

+
µ (x, y)− 0; x, y).

Therefore, if the function λ 7→ wλ(x, y) is continuous on (0,∞), thenw(w+µ (x, y); x, y) = µ, µ > 0.

Examples 2.19. (a) If w is the (pseudo)modular wb from Example 2.4(b) with ϕ(λ) = λp and p > 0, then w+µ (x, y) =
(d(x, y)/µ)1/p. In particular, if p = 1, thenw+ = w.
(b) Applying the notation from Example 2.4(c), (d), we have: if x, y ∈ X , µ > 0 and λ > 0, then wc+µ (x, y) = d(x, y),

wc++λ (x, y) = wdλ(x, y), and so, the inequality in Theorem 2.17(b) is sharp. Note also that Xwc = X , whereas Xwc+ = {x0}.

3. Convex metric modulars

3.1. The set X∗w

Given a metric (pseudo)modularw on a set X , along with the modular set Xw from Section 2.5 we also put
X∗w ≡ X

∗

w(x0) = {x ∈ X : ∃ λ = λ(x) > 0 such thatwλ(x, x0) <∞} (x0 ∈ X).
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It is clear from (2.2) that Xw ⊂ X∗w , and this inclusion is, in general, strict: it is seen from Example 2.7(b) with bounded
function ϕ that Xw = {x0} and X∗w = X . Now let us expose a more subtle example of this type.

Example 3.2. Let (M, d) be a metric space and X = MN be the set of all sequences x : N → M . Define a function
w : (0,∞)× X × X → [0,∞] by

wλ(x, y) = sup
n∈N

(d(x(n), y(n))
λ

)1/n
, λ > 0, x, y ∈ X .

Thenw is ametricmodular on X , forwhich the functionλ 7→ wλ(x, y) is continuous from the right on (0,∞) for all x, y ∈ X .
Fixing some elements x0, x ∈ M , x 6= x0, let x0, x ∈ X be the corresponding constant functions: x0(n) = x0 and x(n) = x for
all n ∈ N. It follows that x ∈ X∗w(x0) \ X

◦
w(x0): in fact, if λ > d(x, x0), then

wλ(x, x0) = sup
n∈N

(
d(x, x0)/λ

)1/n
= lim
n→∞

(
d(x, x0)/λ

)1/n
= 1.

Definition 3.3. A functionw : (0,∞)× X × X → [0,∞] is said to be a convex (metric)modular on a set X if it satisfies the
axioms (i) and (ii) from Definition 2.1 as well as the following axiom

(iv) wλ+µ(x, y) ≤
λ

λ+ µ
wλ(x, z)+

µ

λ+ µ
wµ(y, z) ∀ λ,µ > 0, x, y, z ∈ X .

If, instead of (i), we have only condition (i′) from Definition 2.1, thenw is called a convex (metric) pseudomodular on X .

Clearly, (iv) implies (iii), and so, convex (pseudo)modulars have all the properties presented in Section 2.However, convex
(pseudo)modulars have some additional specific properties, which will be studied below. Rewriting the inequality in (iv) in
the form (λ+µ)wλ+µ(x, y) ≤ λwλ(x, z)+µwµ(y, z)we find that the functionw is a convex (pseudo)modular on X if and
only if the function ŵλ(x, y) = λwλ(x, y), λ > 0, x, y ∈ X , is simply a (pseudo)modular on X . The last somewhat unusual
property means that the term ‘convex modular’ needs certain justifications—this will be done at the end of this section in
Theorem 3.11.

Examples 3.4. (a) The (pseudo)modulars from Example 2.4 are convex, except item (b); this is true in item (b) as well only
if ϕ(λ) = λ (and not ϕ(λ) ≡ 1). In Section 2.15 the pseudomodularw is convex if the function ϕ is convex, and in Example
3.2 the modularw is not convex (cf. (3.2)).
(b) Given a (pseudo)metric space (X, d) and a convex ϕ-function ϕ : R+ → R+, we set wλ(x, y) = ϕ(d(x, y)/λ) for all

λ > 0 and x, y ∈ X . Since the function ŵ coincides with the (pseudo)modular from Example 2.9(c), the (pseudo)modular
w is convex.
(c) Let (M, d) be a metric space, ϕi : R+ → R+ be convex ϕ-functions for all i ∈ N and X = MN. Setting

wλ(x, y) =
∞∑
i=1

ϕi

(d(xi, yi)
λ

)
, λ > 0, x = {xi}∞i=1, y = {yi}

∞

i=1 ∈ M
N,

we find thatw is a convex modular on X .

3.5

Themain property of a convex (pseudo)modularw on a set X can be expressed as follows: given x, y ∈ X , the functions
λ 7→ wλ(x, y) and λ 7→ ŵλ(x, y) = λwλ(x, y) are nonincreasing on (0,∞):

if 0 < µ ≤ λ, then wλ(x, y) ≤
µ

λ
wµ(x, y) ≤ wµ(x, y). (3.1)

Moreover, condition (iv) is equivalent to the following condition:

(iv′) wν(x, y) ≤
λ

ν
wλ(x, z)+

µ

ν
wµ(y, z) ∀ λ,µ, ν > 0, λ+ µ ≤ ν, x, y, z ∈ X .

Ifw is a convex (pseudo)modular on a set X , then

Xw = X∗w; (3.2)
in fact (cf. Section 3.1), if x ∈ X∗w , thenwµ(x, x0) <∞ for some number µ > 0, and so, by virtue of (3.1), for any λ > µwe
find wλ(x, x0) ≤ (µ/λ)wµ(x, x0)→ 0 as λ→ ∞, implying x ∈ Xw . In this case the (pseudo)modular ŵ is well defined as
well, and the following relations hold:

X∗ŵ = X
∗

w = Xw ⊃ Xŵ. (3.3)
However, the last inclusion may be strict as Example 2.4(b) with ϕ(λ) = λ shows. In order to define a metric on the set X∗w ,
note that, by Theorem 2.6, we have the metric d◦ŵ on Xŵ given by the rule:

d◦ŵ(x, y) = inf{λ > 0 : ŵλ(x, y) ≤ λ} = inf{λ > 0 : wλ(x, y) ≤ 1}.
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The next theorem shows that a metric d∗w on X
∗
w can be introduced by the same rule independently of whether the last

inclusion in (3.3) is strict or not.

Theorem 3.6. Given a convex (pseudo)modular w on a set X, put:

d∗w(x, y) = inf{λ > 0 : wλ(x, y) ≤ 1}, x, y ∈ X∗w.

Then (X∗w, d
∗
w) is a (pseudo)metric space.

Proof. The value d∗w(x, y) ∈ R+ is well defined for all x, y ∈ X∗w . In fact, there are numbers λ = λ(x) > 0 and
µ = µ(y) > 0 such that wλ(x, x0) < ∞ and wµ(y, x0) < ∞, and so, applying the inequality (iv′) with z = x0 we get
limν→∞wν(x, y) = 0. It follows that there exists ν0 > 0 such that wν(x, y) ≤ 1 for all ν ≥ ν0, whence the definition of d∗w
implies d∗w(x, y) ≤ ν0 <∞.
The remaining part of the proof coincides essentially with the proof of Theorem 2.6, and so, we verify only two axioms

of metric d∗w . If x, y ∈ X
∗
w and d

∗
w(x, y) = 0, then wµ(x, y) ≤ 1 for all µ > 0. It follows from (3.1) that, given λ > 0 and

0 < µ < λ, wλ(x, y) ≤ (µ/λ)wµ(x, y) ≤ µ/λ→ 0 as µ→ 0, and so, wλ(x, y) = 0 for all λ > 0, whence x = y. Now, let
x, y, z ∈ X∗w . If λ > d

∗
w(x, z) and µ > d

∗
w(y, z), the definition of d

∗
w gives wλ(x, z) ≤ 1 and wµ(y, z) ≤ 1, and so, by axiom

(iv),

wλ+µ(x, y) ≤
λ

λ+ µ
wλ(x, z)+

µ

λ+ µ
wµ(y, z) ≤

λ

λ+ µ
+

µ

λ+ µ
= 1.

Thus, d∗w(x, y) ≤ λ+ µ, and the arbitrariness of λ and µ as above implies d
∗
w(x, y) ≤ d

∗
w(x, z)+ d

∗
w(y, z). �

The metric d∗w is a counterpart of the norm (1.4), and Theorem 3.6 is a generalization of the results from [10,4,6,3] (see
also [19, Theorem 1.2] and [21, Theorem 1.5]).
In the next theorem we present a generalization of the norm, which is known in the classical theory of modulars as the

Amemiya norm (cf. [17], [19, Theorem 1.2 and Remark 2], [21, p. 165], [7, p. 218]).

Theorem 3.7. Let w be a convex (pseudo)modular on X. Set

dAw(x, y) = inf
λ>0

(
λ+ λwλ(x, y)

)
, x, y ∈ X∗w.

Then dAw is a (pseudo)metric on X
∗
w and d

∗
w(x, y) ≤ d

A
w(x, y) ≤ 2d

∗
w(x, y) for all x, y ∈ X

∗
w .

Proof. Since 0 < λ + λwλ(x, y) < ∞ for λ large enough (see the beginning of the proof of Theorem 3.6), the set
{λ + λwλ(x, y) : λ > 0} is nonempty and bounded from below, and so, dAw is well defined: 0 ≤ d

A
w(x, y) < ∞ for all

x, y ∈ X∗w .
Let us verify only the nondegeneracy of dAw and the triangle inequality for d

A
w . Suppose thatw satisfies (i), x, y ∈ X

∗
w and

dAw(x, y) = 0, and show that wλ(x, y) = 0 for all λ > 0. If this is not so, then wλ0(x, y) > 0 for some λ0 > 0. We have: if
λ ≥ λ0, then λ + λwλ(x, y) ≥ λ0, and if 0 < λ < λ0, then, by virtue of (3.1), we find wλ0(x, y) ≤ (λ/λ0)wλ(x, y), and so,
λ0wλ0(x, y) ≤ λwλ(x, y) ≤ λ + λwλ(x, y). It follows that, for all λ > 0, we have λ + λwλ(x, y) ≥ min{λ0, λ0wλ0(x, y)} ≡
λ1 > 0 implying dAw(x, y) ≥ λ1 > 0, which contradicts the assumption.
Now we show that dAw(x, y) ≤ d

A
w(x, z) + d

A
w(y, z), x, y, z ∈ X

∗
w . By the definition of d

A
w , given ε > 0, there exist

λ = λ(ε) > 0 and µ = µ(ε) > 0 such that

λ+ λwλ(x, z) ≤ dAw(x, z)+ ε and µ+ µwµ(y, z) ≤ dAw(y, z)+ ε,

and so, the convexity ofw implies

dAw(x, y) ≤ (λ+ µ)+ (λ+ µ)wλ+µ(x, y)

≤ λ+ µ+ (λ+ µ)
[ λ

λ+ µ
wλ(x, z)+

µ

λ+ µ
wµ(y, z)

]
= λ+ λwλ(x, z)+ µ+ µwµ(y, z)

≤ dAw(x, z)+ ε + d
A
w(y, z)+ ε,

and it remains to pass to the limit as ε→+0.
Let us prove the equivalence of metrics dAw and d

∗
w . Given λ > 0, we have: if wλ(x, y) ≤ 1, then, by the definition of

d∗w , d
∗
w(x, y) ≤ λ, and if wλ(x, y) > 1, then d∗w(x, y) ≤ λwλ(x, y); in fact, setting µ = λwλ(x, y), we find µ > λ, and

so, (3.1) implies wµ(x, y) ≤ (λ/µ)wλ(x, y) = λwλ(x, y)/µ = 1, whence d∗w(x, y) ≤ µ = λwλ(x, y). It follows that
d∗w(x, y) ≤ max{λ, λwλ(x, y)} ≤ λ + λwλ(x, y) for all λ > 0, and the inequality at the left-hand side follows. In order to
establish the right-hand side inequality, note that the definition of d∗w implies wλ(x, y) ≤ 1 for all λ > d

∗
w(x, y), and so,

dAw(x, y) ≤ λ+ λwλ(x, y) ≤ 2λ, and it remains to pass to the limit as λ→ d∗w(x, y). �
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For the sake of applications in part II we reformulate Theorem 2.10 somehow: in the next theorem we establish certain
relations between a number λ > 0, convex modularwλ(x, y) and metric d∗w(x, y).

Theorem 3.8. Let w be a convex metric (pseudo)modular on a set X, λ > 0 and x, y ∈ X∗w . We have:

(a) if d∗w(x, y) < λ, thenwλ(x, y) ≤ d∗w(x, y)/λ < 1;
(b) if wλ(x, y) = 1, then d∗w(x, y) = λ;
(c) if λ = d∗w(x, y) > 0, thenwλ+0(x, y) ≤ 1 ≤ wλ−0(x, y).

If the function µ 7→ wµ(x, y) is continuous from the right on (0,∞), then along with (a)–(c) we have:

(d) d∗w(x, y) ≤ λ if and only if wλ(x, y) ≤ 1.

If the function µ 7→ wµ(x, y) is continuous from the left on (0,∞), then along with (a)–(c) we have:

(e) d∗w(x, y) < λ if and only if wλ(x, y) < 1.

If the function µ 7→ wµ(x, y) is continuous on (0,∞), then along with (a)–(e) we have:

(f) d∗w(x, y) = λ if and only if wλ(x, y) = 1.

Proof. (a) If µ is arbitrary such that d∗w(x, y) < µ < λ, then the definition of d∗w and (3.1) imply wµ(x, y) ≤ 1 and
wλ(x, y) ≤ (µ/λ)wµ(x, y) ≤ µ/λ.
(b) The definition d∗w and item (a) imply, respectively, d

∗
w(x, y) ≤ λ and d

∗
w(x, y) = λ.

(c) Since wµ(x, y) ≤ 1 for all µ > λ = d∗w(x, y), we have wλ+0(x, y) ≤ 1, and since wµ(x, y) > 1 for all
0 < µ < λ = d∗w(x, y) (otherwise,wµ(x, y) ≤ 1 implies λ = d

∗
w(x, y) ≤ µ), we havewλ−0(x, y) ≥ 1.

Items (d)–(f) are established in the same manner as the corresponding items in the proof of Theorem 2.10 taking into
account the convexity of the (pseudo)modular. �

Now we establish a specific equivalence of metrics d◦w and d
∗
w for a convex modular w, which is similar to the one

encountered in the Introduction. In particular, it will imply an analogue of Theorem 2.13 for metric d∗w on the modular
set X∗w = Xw .

Theorem 3.9. Let w be a convex (pseudo)modular on a set X. Then, given x, y ∈ X∗w , for the (pseudo)metrics d
∗
w and d

◦
w we have:

(a) conditions d◦w(x, y) < 1 and d
∗
w(x, y) < 1 are equivalent, and if at least one of them holds, then d

∗
w(x, y) ≤ d

◦
w(x, y) ≤√

d∗w(x, y);
(b) conditions d◦w(x, y) ≥ 1 and d

∗
w(x, y) ≥ 1 are equivalent, and if at least one of them holds, then

√
d∗w(x, y) ≤ d

◦
w(x, y) ≤

d∗w(x, y).

Proof. 1. First, we show that d◦w(x, y) < 1 implies d
∗
w(x, y) ≤ d

◦
w(x, y). In fact, for any λ such that d

◦
w(x, y) < λ < 1 the

definition of d◦w gives wλ(x, y) ≤ λ < 1, whence, by virtue of the definition of d
∗
w , d
∗
w(x, y) ≤ λ, and it remains to pass to

the limit as λ→ d◦w(x, y).
2. Now we show that if d∗w(x, y) < 1, then d

◦
w(x, y) ≤

√
d∗w(x, y). In fact, in this case d

∗
w(x, y) ≤

√
d∗w(x, y) < 1, and so,

by Theorem 3.8(a), for any λ such that
√
d∗w(x, y) < λ < 1 we findwλ(x, y) ≤ d∗w(x, y)/λ < λ, whence the definition of d◦w

implies d◦w(x, y) ≤ λ, and it suffices to let λ go to
√
d∗w(x, y).

Thus, in steps 1 and 2 we have established the desired inequalities and showed that the inequalities d◦w(x, y) < 1 and
d∗w(x, y) < 1 are equivalent, and so, as a consequence, the inequalities d

◦
w(x, y) ≥ 1 and d

∗
w(x, y) ≥ 1 are equivalent as well.

3. The inequality d∗w(x, y) ≥ 1 implies d
◦
w(x, y) ≤ d

∗
w(x, y): by the definition of d

∗
w ,wλ(x, y) ≤ 1 for all λ > d

∗
w(x, y), but

λ > 1, and so,wλ(x, y) < λ. It follows from the definition of d◦w that d
◦
w(x, y) ≤ λ.

4. Finally, we show that if d◦w(x, y) ≥ 1, then
√
d∗w(x, y) ≤ d

◦
w(x, y). In fact, given λ > d

◦
w(x, y), we findwλ(x, y) ≤ λ, but

λ > 1, and so, λ2 > λ > 1. By the convexity ofw and (3.1), we get

wλ2(x, y) ≤ (λ/λ
2)wλ(x, y) ≤ (λ/λ2) · λ = 1,

whence d∗w(x, y) ≤ λ
2, and it remains to let λ→ d◦w(x, y). �

Examples 3.10. (a) If themodularw is not convex, Theorem 3.9may be false. The idea of the following example is borrowed
from the classical theory of modulars (cf. [19, p. 8]). Let (X, d) be a metric space. We set

wλ(x, y) =
d(x, y)

λ+ d(x, y)
, λ > 0, x, y ∈ X .

Thenw is a nonconvex metric modular on X and d∗w(x, y) ≡ 0, whereas

d◦w(x, y) =
1
2

(√
(d(x, y))2 + 4d(x, y)− d(x, y)

)
, x, y ∈ X .
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Note that in the proof of Theorem 3.9 the implications in steps 1 and 3 do not rely on the convexity ofw:

d◦w(x, y) < 1⇒ d
∗

w(x, y) ≤ d
◦

w(x, y), and d∗w(x, y) ≥ 1⇒ d
◦

w(x, y) ≤ d
∗

w(x, y).

The example above corresponds to the former implication.
(b) Consider the p-homogeneous convex (pseudo)modular wλ(x, y) = (d(x, y)/λ)p from Example 3.4(b), where λ > 0,

x, y ∈ X and p = const ≥ 1. Then X∗w = Xw = X and, by virtue of Example 2.9(b), (c), we have:

d◦w(x, y) = (d(x, y))
p/(p+1), d1w(x, y) = (p+ 1)p

−p/(p+1)(d(x, y))p/(p+1),

d∗w(x, y) = d(x, y), dAw(x, y) =
{
d(x, y) if p = 1,
p(p− 1)(1−p)/pd(x, y) if p > 1.

The last two formulas hold for 0 < p < 1 as well.
(c) The inequalities in Theorem 3.9 are the best possible: in fact, ifw is the (pseudo)modular from the previous example,

then for p = 1 we have d◦w(x, y) =
√
d∗w(x, y), and if p > 1, then

d◦w(x, y) =
(
d∗w(x, y)

)p/(p+1)
→ d∗w(x, y) as p→∞.

Now we expose the coherence between our theory and the classical theory of modulars and modular linear spaces
(cf. [34, Theorem 3]). The following theorem is a straightforward consequence of the corresponding definitions and axioms.

Theorem 3.11. Let X be a real linear space.

(a) Given a functional ρ : X → [0,∞], we set

wλ(x, y) = ρ
(x− y

λ

)
, λ > 0, x, y ∈ X . (3.4)

Then we have: ρ is a modular (convex modular) on X in the sense of classical axioms (A.1)–(A.4) from the Introduction if and
only if w is a metric modular (convex metric modular, respectively) on X.

(b) On the other hand, let the functionw : (0,∞)× X × X → [0,∞] satisfy the following two conditions:
(I) wλ(µx, 0) = wλ/µ(x, 0) for all λ, µ > 0 and x ∈ X;
(II) wλ(x+ z, y+ z) = wλ(x, y) for all λ > 0 and x, y, z ∈ X.

Given x ∈ X, we set ρ(x) = w1(x, 0). Then we have: w is a metric modular (convex metric modular) on X if and only if ρ is a
classical modular (convex modular, respectively) on X. Moreover, the equality (3.4) holds, the set Xρ = X◦w(0) is a linear subspace
of X and the functional |x|ρ = d◦w(x, 0), x ∈ Xρ , is an F-norm on Xρ (and if w is convex, then X

∗
ρ ≡ X

∗
w(0) = Xρ is a linear

subspace of X and the functional ‖x‖ρ = d∗w(x, 0), x ∈ X
∗
ρ , is a norm on X

∗
ρ , respectively). Similar assertions hold if we replace

the word ‘modular’ by ‘pseudomodular’. �

In the second part of the paper we will need a certain observation (cf. Theorem 3.14), whose construction is encountered
several times. It is based on the notions from Section 2.14 and the following Section 3.12.

3.12. Abstract convex cone

([30, Section 4], [31, Section 3], [36, Section 2], [37]). The quadruple (M, d,+, ·) is said to be an abstract convex cone if the
triple (M, d,+) is a metric semigroup with zero 0 ∈ M and the operation · : R+ × M → M of multiplication of elements
from M by nonnegative numbers, given by (α, x) 7→ αx, for all α, β ∈ R+ and x, y ∈ M has the following properties:
d(αx, αy) = αd(x, y) and

α(x+ y) = αx+ αy, (α + β)x = αx+ βx, α(βx) = (αβ)x, 1 · x = x (3.5)

(cf. examples in Example 3.13). If the metric space (M, d) is complete, then the corresponding abstract convex cone is called
complete.
The following equality holds in an abstract convex cone (M, d,+, ·):

d(αx+ βy, αy+ βx) = |α − β|d(x, y), α, β ∈ R+, x, y ∈ M. (3.6)

It follows that d(αx, βy) ≤ αd(x, y)+|α−β|d(y, 0), and so, the operation ofmultiplication of numbers fromR+ by elements
fromM is a continuous mapping from R+ ×M intoM .

Examples 3.13. A simple example of an abstract convex cone is a normed linear space (Z, | · |) with the induced metric
d(y, z) = |y− z|, y, z ∈ Z , and operations of addition+ and multiplication · of elements from Z by nonnegative numbers.
If K ⊂ Z is a convex cone (i.e., y+ z, αy ∈ K for all y, z ∈ K and α ≥ 0), then (K , d,+, ·) is an abstract convex cone, which
is complete if Z is a Banach space and K is closed in Z .
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Let (Z, | · |) be a real normed linear space. Denote by cbc(Z) the family of all nonempty closed bounded convex subsets
of Z and, given P, Q ∈ cbc(Z), set: P + Q = {p+ q : p ∈ P, q ∈ Q } (Minkowski’s sum), αP = {αp : p ∈ P} for α ∈ R+ and

P
∗

+ Q = cl(P + Q ), where cl(R) designates the closure in Z of the set R ⊂ Z . The operations in cbc(Z) have the following

properties [38,39]: P
∗

+ Q = cl(cl(P)+ cl(Q )), α(P
∗

+ Q ) = αP
∗

+ αQ , (α+β)P = αP
∗

+ βP , α(βP) = (αβ)P and 1 ·P = P
for all α, β ∈ [0,∞). The Abelian semigroup cbc(Z) is endowed with the Hausdorff metric dH , generated by the norm | · |
in Z: if P, Q ∈ cbc(Z), then we set

dH(P,Q ) = max
{
sup
p∈P
inf
q∈Q
|p− q|, sup

q∈Q
inf
p∈P
|p− q|

}
= inf

{
α > 0 : P ⊂ Q + αS and Q ⊂ P + αS

}
,

where S = {z ∈ Z : |z| ≤ 1}. The properties of dH are as follows ([40, Lemma 2.2], [32, Lemma 3]): if P, Q , R ∈ cbc(Z) and
α ≥ 0, then dH(αP, αQ ) = αdH(P,Q ) and

dH
(
P
∗

+ R,Q
∗

+ R
)
= dH(P + R,Q + R) = dH(P,Q ).

Consequently, (cbc(Z), dH ,
∗

+, ·) is an abstract convex cone, which is complete if Z is a Banach space (this follows from the
properties of the Hausdorff metric dH , cf. [41, Theorems II-9 and II-14]). Note that, by the above (Sections 2.14 and 3.12),

the operations of
∗

+-addition in cbc(Z) and multiplication by numbers from R+ are continuous. More examples of metric
semigroups and abstract convex cones, necessary for our purposes, will be presented in the second part of the paper.

Theorem 3.14. (a) Let (X,+) be an Abelian semigroupwith zero 0 andw be ametric (pseudo)modular on X, which is translation
invariant:

wλ(x+ z, y+ z) = wλ(x, y) for all λ > 0 and x, y, z ∈ X . (3.7)

Set Xw = X◦w(0). Then the triple (Xw, d
◦
w,+) is a (pseudo)metric semigroup. A similar assertion holds for a convex

(pseudo)modular w on X if we replace Xw by X∗w = X
∗
w(0) and the function d

◦
w—by d

∗
w .

(b) In addition to conditions in (a) suppose that an operation of multiplication by numbers from R+ is defined in X satisfying
(3.5) andw is a convex (pseudo)modular on X, which is homogeneous in the sense:

wλ(µx, µy) = wλ/µ(x, y) for all λ, µ > 0 and x, y ∈ X . (3.8)

Set X∗w = X
∗
w(0). Then the quadruple (X

∗
w, d

∗
w,+, ·) is an abstract convex (pseudo)cone.

Proof. (a) If x, y ∈ Xw , then, by virtue of Definition 2.1(iii) and (3.7), we have, as λ→∞:

wλ(x+ y, 0) ≤ wλ/2(x+ y, y)+ wλ/2(0, y) = wλ/2(x, 0)+ wλ/2(y, 0)→ 0,

whence x+y ∈ Xw , and so, (Xw,+) is a semigroup. The translation invariance of d◦w follows from the corresponding property
of the (pseudo)modularw. Ifw is amodular onX , then, aswas shown in Theorem2.6, d◦w is ametric onXw , and so, (Xw, d

◦
w,+)

is a metric semigroup in the sense of Section 2.14.
Now if we suppose thatw is convex, then x, y ∈ X∗w implies x+ y ∈ X

∗
w; in fact,wλ(x, 0) andwµ(y, 0) are finite for some

positive numbers λ = λ(x) and µ = µ(y), and so,

wλ+µ(x+ y, 0) ≤
λ

λ+ µ
wλ(x+ y, y)+

µ

λ+ µ
wµ(0, y)

=
λ

λ+ µ
wλ(x, 0)+

µ

λ+ µ
wµ(y, 0) <∞.

(b) By item (a), the triple (X∗w, d
∗
w,+) is a (pseudo)metric semigroup. Let us show that αx ∈ X

∗
w for all α ∈ R+ and x ∈ X∗w .

From (3.7) and properties (3.5), given λ > 0, we find

wλ(0 · x, 0) = wλ(0 · x+ x, 0+ x) = wλ((0+ 1)x, x) = wλ(x, x) = 0, (3.9)

and so, 0 · x ∈ X∗w (moreover, ifw is a convex modular on X , then (3.9) implies 0 · x = 0). Let α > 0. Applying (3.7) and (3.8),
we get:

wλ(α · 0, 0) = wλ(α · 0+ α · 0, 0+ α · 0) = wλ(α(1+ 1) · 0, α · 0)
= wλ/α(1 · 0+ 1 · 0, 1 · 0) = wλ/α(0, 0) = 0, λ > 0, (3.10)

and so, α · 0 ∈ X∗w (moreover, if w is a convex modular on X , then (3.10) implies α · 0 = 0). Now, if α > 0 and x ∈ X
∗
w , so

thatwµ(x, 0) <∞ for some µ > 0, then the definition of a convex (pseudo)modular implies

w2µα(αx, 0) ≤
1
2
wµα(αx, α · 0)+

1
2
wµα(α · 0, 0) =

1
2
w(µα)/α(x, 0) ≤ wµ(x, 0) <∞,
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and so, αx ∈ X∗w (ifw is a convex modular, then α · 0 = 0 and

wµα(αx, 0) = wµα(αx, α · 0) = w(µα)/α(x, 0) = wµ(x, 0) <∞).

In addition to the translation invariance, the (pseudo)metric d∗w on X
∗
w is homogeneous, i.e., if α > 0 and x, y ∈ X

∗
w , then

d∗w(αx, αy) = inf{λ > 0 : wλ(αx, αy) ≤ 1} = inf{λ > 0 : wλ/α(x, y) ≤ 1}
= inf{αµ : µ > 0 and wµ(x, y) ≤ 1} = αd∗w(x, y).

And in the case when α = 0, for all λ > 0 we have:

wλ(0 · x, 0 · y) ≤
1
2
wλ/2(0 · x, 0)+

1
2
wλ/2(0 · y, 0) = 0,

and so, d∗w(0 · x, 0 · y) = 0 = 0 · d
∗
w(x, y).

Finally, note that if w is a convex pseudomodular on X , then the quadruple (X∗w, d
∗
w,+, ·) satisfies all the conditions

of Section 3.12, but d∗w is only a pseudometric, and so, this quadruple was called an abstract convex pseudocone in the
formulation of Theorem 3.14. Now, if w is a convex modular on X , then d∗w is a metric on X

∗
w and the above quadruple is an

abstract convex cone in the sense of Section 3.12. �

Remark 3.15. The inclusionαx ∈ Xw for allα ∈ R+ and x ∈ Xw in item (b) of Theorem3.14 holds also if the (pseudo)modular
w is not necessarily convex. However, for the (pseudo)metric d◦w the equality d

◦
w(αx, αy) = αd◦w(x, y) for all α ≥ 0 and

x, y ∈ Xw may fail even if w is convex. To see this, let (X, d,+, ·) be an abstract convex cone (e.g., X = R) and a convex
modularw on X is of the formwλ(x, y) = d(x, y)/λ. Then, given α ≥ 0 and x, y ∈ X∗w = X , we have:

d◦w(αx, αy) =
√
α d(x, y) =

√
α ·
√
d(x, y) =

√
α d◦w(x, y).

Thus, Theorem 3.14 fails for the pair (Xw, d◦w).
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