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Tropical varieties with polynomial weights
and corner loci of piecewise polynomials.

A. Esterov1

To S. M. Gusein-Zade on
the occasion of his 60th birthday

1 Introduction.

Counting Euler characteristics of the discriminant of the quadratic equation in terms of
Newton polytopes in two different ways, G. Gusev ([Gus]) found an unexpected relation for
mixed volumes of two polytopes S1 and S2 ⊂ Rn and the convex hull S of their union. For
instance, assuming n = 2 and denoting the mixed area of polygons P and Q by Vol(P,Q) =
Vol(P +Q)−Vol(P )−Vol(Q), this relation specializes to

Vol(S, S)− Vol(S, S1)− Vol(S, S2) + Vol(S1, S2) = 0.

We call it unexpected because it is not a priori invariant under parallel translations of S1.
We give an elementary proof and a multidimensional generalization of this equality as

requested in [Gus] (see Corollary 1.5 below), deducing it from the following fact (Theorem
1.2): the mixed volume of polytopes depends only on the product of their support functions,
rather than on individual support functions. We give a new elementary formula for this
dependence (Proposition 1.3) and represent it as a specialization of the isomorphism between
two well known combinatorial models of the cohomology of toric varieties.

Although this construction makes sense for arbitrary polytopes, it so far has been estab-
lished only for polytopes with rational vertices (partially due to the lack of combinatorial
tools capable of substituting for toric geometry, when vertices are not rational), see e. g.
[KP]. To fill this gap, we introduce tropical varieties with polynomial weights, i.e. fans with
somehow balanced polynomial functions on their cones (see Definition 2.4).

This notion interpolates between the notions of conventional tropical varieties and con-
tinuous piecewise polynomial functions. It allows us to establish the aforementioned results
for non-rational polytopes.

We also discuss possible applications of polynomially weighted tropical varieties to trop-
ical intersection theory. Namely, we notice that the intersection theory on a smooth tropical
fan, recently constructed in [Al], [FR], [Sh], can be seen as the restriction of the intersec-
tion theory on the ambient vector space (see Theorem 4.1). Polynomially weighted tropical
varieties allow to conjecture a generalization of this fact to non-smooth tropical varieties.

The four preceding paragraphs describe the contents of the four sections of the paper.
Gusev’s equality. To simplify notation, we denote the mixed volume of polytopes

A1, . . . , Ak in Rk by the monomial A1·. . .·Ak (this mixed volume is by definition the coefficient
of the monomial x1 . . . xk in the polynomial Vol(x1A1 + . . .+ xkAk) of variables x1, . . . , xk).
In the same way, for a homogeneous polynomial P (x1, . . . , xm) =

∑
ca1,...,amx

a1
1 . . . xam

m of
degree k, we define P (A1, . . . , Am) as

∑
ca1,...,amA

a1
1 . . . Aam

m .

Theorem 1.1 ([Gus]). For any two polytopes S1 and S2 ⊂ Rn and the convex hull S
of their union, we have (2n − 2)Sn =

∑n−1
i=1 2i

(
Sn−i
1 Si + Sn−iSi

2 − Sn−i
1 Si

2

)
.
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We deduce this from the following fact. Denote the support function of a polytope
A ⊂ Rn by A(·) : (Rn)∗ → R, so that A(v) = maxa∈A v · a.

Theorem 1.2. There exists a linear function D on the space of conewise-polynomial
functions on (Rn)∗, such that

D
(
A1(·) . . .An(·)

)
= A1 . . . An

for every collection of polytopes A1, . . . , An in Rn.

Recall that a function f on Rm is said to be conewise-polynomial, if it is polynomial on
every piece of a finite subdivision of Rm into polyhedral cones with vertices at 0.

Note that the existence of a function D (aside from its linearity) is not obvious a priori,
because the collection of polytopes is not uniquely determined by the product of their support
functions: the two different pairs of polygons on the following picture have the same product
of support functions (and, thus, the same mixed volume, which is equal to 4).

(0,0)

(-1,1) (1,1)

(-1,0) (0,0)

(0,1) (1,1)

Picture 1.

Also note that the function D is not monotonous: if A, B and C are the segments in the
plane from the origin to the points (1, 0), (0, 1) and (1, 1) respectively, then A(·)B(·) < C(·)2,
although A · B = 1 > C · C = 0.

For rational polytopes, Theorem 1.2 is a special case of the isomorphism between two well
known models of cohomology of toric varieties, as explained at the end of this section. It also
follows from a stronger fact about the product of support functions of rational polytopes:
Theorem 5.1 in [KP]. This cannot be extended to non-rational cones and polytopes by
continuity arguments, and we deduce Theorem 1.2 in full generality from Proposition 1.3
below, suggesting an explicit formula for D.

Note that results of [KP] remain valid for non-rational polytopes as well; to prove them in
the non-rational setting, one should replace the reference to Brion’s formula in [KP] with the
reference to the combinatorial Riemann-Roch formula of [KhP] (i.e. to replace summation
over lattice points of a polyhedron with integration over a polyhedron). However, this is
beyond the scope of our paper.

For an (ordered) basis v1, . . . , vn in Rn, denote the cone generated by v1, . . . , vn by
〈v1, . . . , vn〉, and denote the Gram-Schmidt orthogonalization of v1, . . . , vn by v⊥1 , . . . , v

⊥
n

(so that v⊥1 , . . . , v
⊥
n is orthonormal, v⊥1 , . . . , v

⊥
i generate the same subspace as v1, . . . , vi do

for i = 1, . . . , n, and vi ·v⊥i > 0). For a continuous conewise polynomial function f : Rn → R,
consider a simple complete fan Γ, on whose cones C ∈ Γ the function f coincide with poly-
nomials fC . Then Theorem 1.2 can be formulated as follows.

Proposition 1.3. Define D(f) as

1

n!

∑

〈v1,...,vn〉∈Γ

∂nf〈v1,...,vn〉

∂v⊥1 . . . ∂v⊥n
, (∗)
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where the sum is taken over all ordered bases of unit vectors v1, . . . , vn, generating cones
from Γ. Then D(f) does not depend on the choice of the fan Γ, linearly depends on f , and

D
(
A1(·) . . .An(·)

)
equals the mixed volume of polytopes A1, . . . , An.

It is an elementary rephrasing of Theorem 3.2, whose formulation and proof make use
of more general machinery, developed in subsequent sections. For the convenience of the
reader, we also outline an elementary proof of Proposition 1.3 here. Also note that another
explicit formula for D is given in [Maz].

Sketch of the proof. Independence of subdivisions of Γ and linearity follow by

definition, so we only need to check that D
(
A1(·) . . .An(·)

)
= A1 · . . . ·An. Moreover, since

D
(
A1(·) . . .An(·)

)
is a multilinear function of A1, . . . , An, it is enough to check the equality

for A1 = . . . = An, i.e. to prove that D
(
An(·)

)
equals the volume of the polytope A.

As a simplicial chain, the polytope A can be represented as a linear combination of
simplices with coefficients ±1, whose volumes coincide with the terms of the sum (∗) up to
the signs of their coefficients in the linear combination. This fact implies the desired equality,
so it is enough to construct requested simplices. We illustrate this construction, assuming
for simplicity that the orthogonal complement to the affine span of every (relatively open)
face B ⊂ A intersects B.

Let Γ1 ⊂ Rn be the set of all external normal vectors to the faces of A of positive
dimension, and let Γ2 be the union of all rays from the origin, passing through the points
of faces of A of codimension greater than 1. Then Γ1 ∪ Γ2 subdivides A into n-dimensional
simplices that are in one to one correspondence with the terms of the sum (∗), and these
terms are equal to the volumes of the corresponding simplices by the subsequent Lemma 1.4.
2

Lemma 1.4. If a simplex in Rn has n mutually perpendicular edges, then its volume
equals the product of their lengths times 1/n!.

Corollary 1.5. For any polytopes B1, . . . , Bn in Rn and the convex hull B of their
union, we have (B − B1) . . . (B − Bn) = 0.

Proof. Since B(v) = maxi Bi(v) for every v ∈ (Rn)∗, we have
(
B(v) − B1(v)

)
. . .

(
B(v)− Bn(v)

)
= 0, and the desired equality follows by Theorem 1.2. 2

Proof of Theorem 1.1. Sum up the equality 2i(Sn−i − Sn−i
1 )(Si − Si

2) = 0 (which is
a special case of Corollary 1.5) over i = 1, . . . , n− 1. 2

We now show that Theorem 1.2 is a special case of the isomorphism between two well
known models for cohomology of toric varieties.

Cohomology ring of toric varieties and its Brion-Stanley description.

The set of all complete rational fans in Rn admits the following partial order relation:
Γ1 6 Γ2 if every cone of the fan Γ2 is contained in a cone of the fan Γ1. Denoting the
toric variety of a fan Γ by TΓ, the natural mapping TΓ2 → TΓ1 induces a homomorphism
of cohomology rings hΓ1,Γ2 : H ·(TΓ1) → H ·(TΓ2). The direct system of these rings and
homomorphisms gives rise to the direct limit

H = lim
→

H ·(TΓ).

3



Note that we get the same ring H, independently of which version of cohomology theory we
consider (e.g. singular cohomology, Chow cohomology or intersection cohomology; see e.g.
[Pa] for a good overview of this kind of results). There are two well known ways to describe
this ring combinatorially.

Brion’s description of Chow rings [Br1] and Stanley’s description [St] of intersection
cohomology of toric varieties lead to the following one. Let PQ be the ring of continuous
piecewise-polynomial functions on Rn, whose domains of polynomiality are rational convex
polyhedral cones with the vertex 0. Denote its ideal, generated by linear functions, by LQ.
Then H = PQ/LQ.

Fulton-Kazarnovskii-McMullen-Sturmfels description.

One more combinatorial model for the cohomology ringH is given independently by many
authors, and is known as McMullen’s polytope weights [McM], Fulton–Sturmfels Minkowski
weights [FS], and Kazarnovskii’s c-fans [Kaz]. A k-dimensional weighted piecewise-linear
set is a pair (P, p), where the support set P ⊂ Rn is a union of finitely many rational k-
dimensional polyhedra (closed and not necessary bounded), and the weight p : P → R is a
locally constant function on the set of smooth points of P . It is said to be homogeneous,
if P is a union of polyhedral cones with the vertex 0. For a smooth point x of P , let
NxP ⊂ Rn be the codimension k subspace, orthogonal to the tangent space of P at x. The
tropical intersection number ◦i(Pi, pi) of transversal weighted piecewise-linear sets (Pi, pi)

with
∑

i codimPi = n is the sum of the products
∣∣∣Zn/

⊕
i(Z

n∩NxPi)
∣∣∣·
∏

i pi(x) over all points

x ∈ ∩iPi (transversality means that all Pi are smooth at every point of their intersection,
and the tangent planes are transversal).

A weighted piecewise-linear set (P, p) is called a tropical variety, if, for every rational
subspace L ∈ Rn of the complementary dimension, the tropical intersection number (P, p) ◦
(L + x, 1) does not depend on the point x ∈ Rn (note that the intersection number makes
sense for almost all x). Arbitrary tropical varieties (Pi, pi) with

∑
i codimPi = n in Rn

intersect transversally when shifted by generic vectors xi ∈ Rn, and this intersection number

◦i
(
Pi+xi, pi(·−xi)

)
does not depend on the choice of xi. This allows to call it the intersection

number of the varieties (Pi, pi) and to denote it by ◦i(Pi, pi). See, for example, the two ways
to count the intersection number of a pair of tropical curves on the right of the following
picture; both ways lead to the same answer 4.

Picture 2.

The product (R, r) of tropical varieties (P, p) and (Q, q) is uniquely characterized by the
equality of the intersection numbers (R, r) ◦ (S, s) = (P, p) ◦ (Q, q) ◦ (S, s) for every tropical
variety (S, s) of the complementary dimension (the existence of such (R, r) is not clear, see a
more constructive definition in Section 2). In particular, if (P, p) and (Q, q) are homogeneous
tropical varieties of complementary dimension, then their product is the 0-dimensional trop-
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ical variety
(
{0}, (P, p) ◦ (Q, q)

)
. With respect to this multiplication, the natural addition

(P, p) + (Q, q) = (P ∪Q, p+ q), and the equivalence relation (P, 0) = (∅, 0) for every set P ,
homogeneous tropical varieties form a ring CQ, and we have CQ = H.

The isomorphism.

The isomorphisms PQ/LQ = H = CQ induce the isomorphism IQ : PQ/LQ → CQ of the
two combinatorial models for cohomology of toric varieties. There is one more well known
combinatorial model for H by Khovanskii and Pukhlikov, whose isomorphism with CQ is
combinatorially described in [KKh], but we do not need this construction here.

Explicit combinatorial constructions for the isomorphism IQ are given in [KP] and [Maz].
Its degree 1 component, sending conewise linear functions to homogeneous tropical hyper-
surfaces, is much simpler and admits the following well known description.

Definition 1.6. Assume that a continuous conewise linear function L : Rn → R

equals linear functions L+ and L− on complementary half-spaces H+ and H−, separated by
a rational hyperplane P (such a function is called a book). Choose a vector v ∈ H+ that
generates the 1-dimensional lattice Zn/P , and define the (constant) function

p(x) = ∂vL+(x)− ∂vL−(x) for every x ∈ P.

The corner locus of L is defined as the pair (P, p) for p 6= 0 and (∅, 0) otherwise (i.e. for
linear L). It does not depend on the choice of v and is denoted by δL. For an arbitrary
continuous piecewise linear function L, whose domains of linearity are rational polyhedra,
its corner locus is the weighted piecewise-linear set δL, such that whenever L equals a book
B near some point, we have δL = δB near that point.

Corner loci are connected with tropical and toric geometry by the following well known
facts:

Proposition 1.7. 1) Corner loci, and only they, are tropical hypersurfaces.
2) The isomorphism IQ sends every conewise linear function to its corner locus.

For instance, the corner locus (P, p) of the support function of an integer polytope A
admits the following simple description: the set P contains all external normal covectors
to the edges of A, and the value of p at such a covector equals the integer length of the
corresponding edge. In this case, A is called the Newton polytope of the tropical hypersurface
(P, p), and the following tropical version of the Kouchnirenko-Bernstein theorem is well
known (note the absence of assumptions of general position):

Theorem 1.8 (Tropical Bernstein theorem). The intersection number of n tropical
hypersurfaces in Rn equals the mixed volume of their Newton polytopes, i.e. we have

δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . ·An).

Example. The support function of a triangle and its corner locus are shown on the left
of Picture 2. Thus, the pair of triangles on Picture 1 are the Newton polygons of the tropical
curves on the right of Picture 2, so the mixed area of the triangles equals the intersection
number of the curves.

5



Proof of Theorem 1.2 for rational polytopes.

The isomorphism IQ maps a conewise polynomial F of degree n to a 0-dimensional
tropical variety ({0}, cF ), where 0 ∈ Rn is the origin and cF is a real number, depending on
F . We prove that the map, sending every conewise polynomial F to the constant cF , is the
desired function D, i.e.

IQ

(
A1(·) · . . . · An(·)

)
= ({0}, A1 · . . . ·An). (∗ )

For this, we firstly note that

IQ

(
A1(·) · . . . · An(·)

)
= IQ

(
A1(·)

)
· . . . · IQ

(
An(·)

)
,

for every collection of integer polytopes A1, . . . , An, because IQ is a ring isomorphism. Sec-
ondly, by Proposition 1.7(2) we have

IQ

(
Ai(·)

)
= δAi(·).

The two latter equalities together with Theorem 1.8 imply the desired equality (∗ ).

2 Tropical varieties with polynomial weights.

It turns out that IQ acts on a conewise polynomial of arbitrary degree d as the d-th degree of
a certain corner locus operator, generalizing Definition 1.6 (see Definition 2.6 below), in the
same way as it is shown above for d = 1. To make this precise and applicable to non-rational
polytopes and cones, we need the notion of a tropical variety with polynomial weights, which
may be of independent interest. We introduce this notion here, and apply it to the study of
the isomorphism IQ in the next section.

Weighted fans.

A convex polyhedral cone in an m-dimensional vector space M is an intersection of its
subspace and finitely many open half-spaces. A union C of finitely many convex polyhedral
cones in M is called a smooth cone of codimension k, if every its point x has a neighborhood,
where C coincides with an (m− k)-dimensional plane. This plane is denoted by TxC ⊂ M ,
and its orthogonal complement is denoted by NxC ⊂ M∗.

Definition 2.1. A weighted pre-fan of codimension k in M is a pair (P, p), such that
the support set P is a smooth cone of codimension k, and the weight p is a function that
sends every point x ∈ P , endowed with a coorientation α ∈ {orientations of NxP}, to a
k-form p(x, α) ∈ ∧kM∗, such that
1) for every linear function l : M → R, vanishing on TxP , we have p(x, α) ∧ dl = 0,
2) p(y, α) is odd as a function of α, i.e. p(x, α) + p(x,−α) = 0, and
3) p(y, α) is a polynomial as a function of y in a neighborhood of x.

Remark. By convention, the set of orientations of the 0-dimensional space is {−1,+1}.
Example. Let x1, . . . , xm be the standard coordinates in Rm, let P be the set

{x1 = . . . = xk = 0, xk+1 > 0}, and choose the standard coorientation α = dx1 ∧ . . . ∧ dxk

on P . If (P, p) is a weighted pre-fan, then its weight can be written as p(x,±α) =
±f(xk+1, . . . , xm)dx1 ∧ . . . ∧ dxk, where f is a polynomial.

6



Definition 2.2. For weighted pre-fans (P, p) and (Q, q) of codimension k in M , we
define the sum (P, p) + (Q, q) as the pre-fan (R1 ⊔R2 ⊔ R, r), where

R1 = P \Q, and r = p on R1;

R2 = Q \ P , and r = q on R2;

R = {x ∈ P ∩Q | NxP = NxQ}, and r = p+ q on R.

Definition 2.3. A weighted fan of codimension k in M is an equivalence class of
weighted pre-fans of codimension k with respect to the following equivalence relation:

(P, p) ∼ (Q, q) ⇔ (P, p) + (R, 0) = (Q, q) + (R, 0) for some R ⊂ M.

Example. A 0-dimensional weighted fan in M is a pair ({0}, p), where p is a pseudo-
volume form on M .

Example. A weighted fan of codimension 0 in M is represented by a pair (P, p), where
P ⊂ M is a union of open polyhedral cones, and p : P → R is locally polynomial.

Tropical varieties.

For a weighted fan (P, p) of codimension k in M , it is convenient to define the restriction
of the weight p to the boundary of a subset of P as follows. Consider a convex codimension k
cone Q with a facet R (which is a face of maximal dimension), and pick any point y ∈ R, in
whose small neighborhood P contains Q. Every coorientation α on Q induces the boundary
coorientation β on R, and the limit of p(x, α) as x ∈ Q tends to y is denoted by ∂Q

Rp(y, β).
A point x ∈ M outside a smooth cone P of codimension k is said to be in its stable

boundary, if, in a small neighborhood of x, the set P coincides with a disjoint union of
finitely many codimension k half-subspaces with the common boundary subspace, containing
x. We denote the boundary subspace by ∂Px, the set of the half-subspaces by Px (so that
P coincides with ∪Q∈Px

Q in a small neighborhood of x), and the stable boundary of P by
∂P . The stable boundary is a smooth cone of codimension k + 1.

Example. In the setting of the example, preceding Definition 2.2, we have ∂P =
{x1 = . . . = xk+1 = 0}, the boundary coorientation of ∂P , corresponding to α, is β =
dxk+1 ∧ dx1 ∧ . . . ∧ dxk, and ∂P

∂Pp(x,±β) = ±f(0, xk+2, . . . , xm)dx1 ∧ . . . ∧ dxk.

Definition 2.4. A weighted codimension k fan (P, p) in M is called a polynomially
weighted tropical variety of codimension k, if, for every point x ∈ ∂P and coorientation
β ∈ {orientations of Nx∂P}, we have

∑

Q∈Px

∂Q
∂Px

p(x, β) = 0.

The space of codimension k tropical varieties in M , whose weights are locally homoge-
neous polynomials of degree d, is denoted by Kd

k(M). It is a vector space with respect to
summation of Definition 2.2 and multiplication c · (P, p) = (P, c · p).

Example. Let P be a union of finitely many rays li in R2, pick a linear function
ui : R

2 → R, vanishing on li and defining its counterclockwise coorientation, and let (P, p)
be a weighted fan. Then we have p(x, dui) = fi(x)dui for x ∈ li, where fi is a polynomial
function on li. In this case, (P, p) is a tropical variety if

∑
i fi(0)ui = 0.

7



Corner loci.

Lemma 2.5. 1) For a weighted fan (P, p) of codimension k and its point x ∈ P with a
coorientation α, there exists a unique (k + 1)-form δp(x, α), satisfying the equality

δp(x, α) (v0 ∧ . . . ∧ vk) = ∂v0p(x, α) (v1 ∧ . . . ∧ vk)

for every collection of vectors v0 ∈ TxP and v1, . . . , vk in M (here ∂v0p is the derivative of
the function p(·, α) along the vector v0).
2) Consider a convex polyhedral cone Q of codimension k, its facet R, and a linear function
l : M → R, vanishing on R. Then we have

δ∂Q
R (dl ∧ p) = −∂Q

R (dl ∧ δp).

Each of these statements follows from Condition 1 of Definition 2.1. We omit the proof,
because both implications become linear algebraic tautologies when written in coordinates.

Example. In the setting of the example, preceding Definition 2.4, let l be equal to
xk+1, and let (P, p) be a weighted fan. Then we have

δp(x, α) = df(xk+1, . . . , xm) ∧ dx1 ∧ . . . ∧ dxk,

∂P
∂P (dl ∧ δp)(x, β) = dxk+1 ∧ df(0, xk+2, . . . , xm) ∧ dx1 ∧ . . . ∧ dxk, and

δ∂P
∂P (dl ∧ p)(x, β) = df(0, xk+2, . . . , xm) ∧ dxk+1 ∧ dx1 ∧ . . . ∧ dxk.

Essentially, Lemma 2.5(1) states that the first of these expressions makes sense as a (k+1)-
form, and Lemma 2.5(2) states that the two latter expressions are equal up to the sign.

Definition 2.6. For a polynomially weighted tropical variety (P, p), define the form
r(x, α) for every point x ∈ ∂P with a coorientation β ∈ {orientations of Nx∂P} as

r(x, β) =
∑

Q∈Px

∂Q
∂Px

δp(x, β).

The weighted fan (∂P, r) is called the corner locus of (P, p) and is denoted by δ(P, p).

Example. In the setting of the example after Definition 2.4, the corner locus δ(P, p)
is the point {0} endowed with the weight

∑
i dfi(0)∧dui. Note that dfi(0)∧dui makes sense,

if dfi is defined on the ray li, and ui vanishes on this ray.

Theorem 2.7. The corner locus of a tropical variety is a tropical variety.

Proof. Let (P, p) be a polynomially weighted tropical variety. In order to prove
Condition 1 of Definition 2.1 for δ(P, p) at a point x ∈ ∂P , we should prove that dl ∧∑

Q∈Px
∂Q
∂Px

δp(x, α) = 0 for every linear function l, vanishing on Tx∂P . By Lemma 2.5(2),

we can rewrite this equality as δ(dl ∧
∑

Q∈Px
∂Q
∂Px

p) = 0. The latter equality follows from∑
Q∈Px

∂Q
∂Px

p = 0, which is the assumption of Definition 2.4 for the tropical variety (P, p).
In order to prove the assumption of Definition 2.4 for δ(P, p) at a point x ∈ ∂∂P , it is

convenient to choose a representative weighted pre-fan (P, p) of the given tropical variety,
such that P is the preimage of a two-dimensional fan under a surjection M → N . In more

8



detail, the following takes place in a small neighborhood of x:
1) The set ∂∂P coincides with a subspace R ⊂ M of codimension k + 2,
2) The set ∂P coincides with a disjoint union of finitely many half-subspaces Qi, whose
common boundary is R,
3) The set P coincides with a disjoint union of finitely many convex polyhedral cones Pj ,
such that every Pj has two facets, and these facets equal Qj′ and Qj′′ for some j′ and j′′.

In this notation, we should prove the equality
∑

∂Qi

R ∂
Pj

Qi
δp = 0, where the sum is taken

over all pairs (i, j) such thatQi is a facet of Pj. To prove this equality, sum up the tautological
equalities

∂
Qj′

R ∂
Pj

Qj′
+ ∂

Qj′′

R ∂
Pj

Qj′′
= 0

over all j. 2

Remarks.

Remark. If M is endowed with a metric or with a lattice, then, identifying vectors
with covectors and pseudovolumes with scalars, weights of weighted fans can be considered
number-valued, rather than form-valued. When writing weights as number-valued functions
in subsequent examples, we always imply that such identification is done.

Remark. Although we only admit piecewise polynomial weights for weighted fans,
everything will work fine with piecewise smooth weights as well. One example of where
piecewise smooth weights are relevant is kindly provided by D. Siersma. If F (x) is the
distance from a point x ∈ Rn to a finite set A ⊂ Rn, then the function F : Rn → R is
piecewise smooth, and its k-th corner locus δkF is a well defined tropical variety (P, p). One
can easily verify that P is the codimension k skeleton of the Voronoi diagram of A, and
critical points of p coincide with those of the distance function F contained in P .

Many assertions in what follows are straightforward generalizations to the case of poly-
nomial weights of what is known about conventional tropical varieties with constant weights.
Since the proof of such assertions repeats the case of constant weights word by word, we
omit it and refer the reader to canonical papers like [FS], [Kaz] or [Mi] for details. The only
sources of new information are the assertions about the corner locus differential δ.

Lemma 2.8. 1) A weighted fan (P, p) of codimension 0 is a tropical variety with poly-
nomial weights in M , if and only if P is a union of open (codimension 0) polyhedral cones,
and the function p : P → R is the restriction of a continuous conewise-polynomial function
M → R, vanishing outside the closure of P .

2) The map δ : K1
0(M) → K0

1(M) is surjective with kernel {(M, l) | l is a linear function
on M}.

Part 2 is a new formulation of Proposition 1.7.
Proof of Part 1. Continuity of p at points of ∂P is equivalent to the assumption of

Definition 2.4 for (P, p). Continuity at other points follows from a toy version of the Riemann
removable singularity theorem: if a real piecewise-polynomial function is continuous outside
of a set of codimension 2, then it is continuous everywhere. 2

Products.
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Definition 2.9. Let (P, p) and (Q, q) be two weighted fans, such that the planes TxP
and TxQ are transversal at some point x ∈ P ∩Q. Then orientations α and β on the spaces
NxP and NxQ induce the orientation α∧ β on Nx(P ∩Q) = NxP ⊕NxQ, and we define the
exterior product p ∧ q of the weights p and q at the point x by the equality

(p ∧ q)(x, α ∧ β) = p(x, α) ∧ q(x, β).

The Cartesian product of weighted fans (P, p) in M and (Q, q) in N is the weighted fan
(P ×Q, p ∧ q) ∈ M ⊕N . It is denoted by (P, p)× (Q, q).

Lemma 2.10.

1) If F and G are polynomially weighted tropical varieties, then so is F ×G.
2) In this case, we have the Leibnitz rule δ(F ×G) = (δF )×G+ F × (δG).

We omit the proof, because both statements follow by definition.
A pair of smooth cones in M is said to be bookwise, if they are preimages of smooth

cones of complementary dimension in a vector space N under a projection M → N , and
their union is not contained in a hypersurface. A point x ∈ P ∩Q is said to be in the stable
intersection P ∩s Q of smooth cones P and Q in M , if, in a small neighborhood of x, the
pair (P,Q) coincides with a bookwise pair of cones. P ∩sQ is a smooth cone of codimension
codimP + codimQ.

In a neighborhood of x ∈ P ∩s Q, the smooth cones P and Q split into the union of
their connected components ⊔iPi and ⊔jQj respectively. Pick a small (relatively to the
radius of the neighborhood) vector ε ∈ M in general position with respect to P and Q, and

define εi,j =

{
1 if Pi + ε intersects Qj

0 otherwise
(the assumption of general position is that the

intersections (Pi + ε) ∩Qj are transversal, and P ∩ ∂Q = ∂P ∩Q = ∅ in the neighborhood
of x).

If P and Q are the support sets of weighted fans (P, p) and (Q, q), then denote the limits
of p(y) and q(z), as y ∈ Pi and z ∈ Qj tend to x, by pi and qj respectively. Denote the sum∑

i,j εi,j · pi ∧ qj by s(x) for every x ∈ P ∩s Q.

Definition 2.11. The weighted fan (P ∩s Q, s) is called the intersection product of
the weighted fans (P, p) and (Q, q), and is denoted by (P, p) · (Q, q).

Lemma 2.12. 1) If F and G are polynomially weighted tropical varieties, then so is
F ·G, and its definition does not depend on the choice of ε.

2) Intersection product is associative.

We omit the proof as it repeats the one for tropical varieties with constant weights.
Restrictions.

We are particularly interested in the following special case of the intersection product.

Definition 2.13. Let F be a polynomially weighted tropical variety inM , and L ⊂ M
be a vector subspace of codimension d. Choose an arbitrary constant non-zero weight w such
that (L,w) is a tropical variety, and denote the intersection product of F and (L,w) by (P, p).
Then the pair (P, p/w) can be regarded as a polynomially weighted tropical variety in L,
does not depend on the choice of w, is said to be the restriction of F to the plane L, and is
denoted by F |L.
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Lemma 2.12(2) specializes to this case as follows:

Lemma 2.14. For any vector subspaces K ⊂ L ⊂ M , we have (F |L)|K = F |K.

Theorem 2.15. We have δ(F |L) = (δF )|L.

Proof. If the statement is proved for L being a hyperplane, then, in general case, we
can choose a complete flag L = Ld ⊂ Ld−1 ⊂ . . . ⊂ L0 = M and observe that

δ(F |L) =
(
δ(F |Ld

)
)∣∣

Ld
=

(
δ(F |Ld−1

)
)∣∣

Ld
= . . . =

(
δ(F |L0)

)∣∣
Ld

= (δF )|L

by Lemma 2.14. Thus, without loss in generality, we assume in what follows that L is a
hyperplane, given by a linear equation l = 0.

In order to prove the equality δ
(
(P, p)|L

)
=

(
δ(P, p)

)
|L near a point x ∈ L ∩s ∂P , it is

convenient to choose a representative of the given tropical variety to be a weighted pre-fan
(P, p), such that P ∩ {l > 0} is the preimage of a two-dimensional fan under a surjection
M → N . In more detail, the following takes place in a small neighborhood of x:
1) The set L ∩s ∂(P ∩ {l > 0}) coincides with a subspace R ⊂ L,
2) The set ∂(P ∩ {l > 0}) coincides with a disjoin union of finitely many half-subspaces
Qi ⊂ M , whose common boundary is R,
3) The set P ∩ {l > 0} coincides with a disjoint union of finitely many convex polyhedral
cones Pj, such that every Pj has two facets, which equal Qj′ and Qj′′ for some j′ and j′′.

In this notation, we should prove the equality

∑

(i,j) such that
Qi⊂L is a facet of Pj

∂Qi

R δ∂
Pj

Qi
(dl ∧ p) =

∑

(i,j) such that
Qi 6⊂L is a facet of Pj

∂Qi

R ∂
Pj

Qi
(dl ∧ δp).

By Lemma 2.5(2), it can be rewritten as
∑

∂Qi

R ∂
Pj

Qi
(dl∧ δp) = 0, where the sum is taken over

all pairs (i, j) such that Qi is a facet of Pj. To prove this equality, sum up the tautological
equalities

∂
Qj′

R ∂
Pj

Qj′
+ ∂

Qj′′

R ∂
Pj

Qj′′
= 0

over all j. 2

Differential ring of polynomially weighted tropical varieties.

The operation of intersection product can be expressed in terms of Cartesian product
and restriction as usual:

Lemma 2.16. Identifying the diagonal D of the sum M ⊕M with the space M itself,
we have (F ×G)|D = F ·G for every pair of polynomially weighted tropical varieties F and
G in M .

We omit the proof, because it follows by definition.

Theorem 2.17. If F and G are polynomially weighted tropical varieties in M , then
δ(F ·G) = δF ·G+ F · δG.
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Proof. By Lemma 2.16, the general case can be reduced to the case of G = (L, c), where
L ⊂ M is a vector subspace and the weight c is a constant. This special case constitutes the
assertion of Theorem 2.15. 2

Let Kd
k be the space of all polynomially weighted tropical varieties (P, p) in the vector

space M , such that codimP = k, and p is locally a homogeneous polynomial of degree d.
The direct sum of the spaces Kd

k over all d > 0 and k = 0, . . . , m is denoted by K and is
called the ring of tropical varieties with polynomial weights. We summarize the results of
this section as follows.

Corollary 2.18. K =
⊕Kd

k is a bigraded differential ring with the multiplication

· : Kc
k ⊕Kd

l → Kc+d
k+l

of Definition 2.11 and the corner locus derivation

δ : Kd
k → Kd−1

k+1

of Definition 2.6.

3 The isomorphisms.

Denote the subring
⊕

dKd
0 of K by P, and the subring

⊕
k K0

k by C. Recall that all elements
of P have the form (M \ Σ, f), where M is the ambient vector space of dimension m, the
function f : M → R is continuous and conewise-polynomial, and Σ is the set of points where
f is not smooth. Thus, we will always identify P with the ring of continuous conewise-
polynomial functions on M . In P, consider the ideal L, generated by all linear functions on
M . If the vector space M is endowed with an m-dimensional integer lattice, then, restricting
our consideration to weighted cones, whose support sets are unions of rational polyhedral
cones, we obtain subrings KQ,PQ, CQ,LQ of the rings K,P, C,L. Since, in the presence of
the lattice, pseudovolumes are identified with scalars, this definition of the rings CQ,PQ and
LQ agrees with the one given in Section 1.

We give a combinatorial (i.e. not involving geometry and topology of toric varieties)
description of the isomorphism I : P/L → C and its specialization IQ : PQ/LQ → CQ, which
in particular gives a new explicit formula for the mixed volume of polytopes in terms of
the product of their support functions. For the sake of completeness, we also recall the
construction of the isomorphisms H → PQ/LQ and H → CQ (where H is the direct limit
of the cohomology rings of m-dimensional toric varieties, as explained in Section 1). In the
next section, we discuss what happens to the isomorphism I : P/L → C, if we replace the
ambient vector space M with a tropical variety.

Isomorphism P/L → C.
Define the map I : P → C on Kd

0 as δd/d!.

Theorem 3.1. We have I(L) = 0, and I : P/L → C is a ring isomorphism.

Remark. If we pick a simple fan ∆, and restrict our consideration to polynomially
weighted tropical varieties, whose support sets are unions of cones from ∆, then the statement
remains valid, and the proof is the same.
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Remark. Although the linear map δd : Kk
0 → Kk−d

d is surjective for d = k, and the
kernel of δd : Kd

k−d → K0
k is generated by linear functions for d = k, none of this remains

true for other values of d. For instance, introducing the standard metric dx2 + dy2 in
the coordinate plane, and thus representing weights of plane tropical curves as real-valued
functions, the restriction of the function |x| − |y| to the set {xy = 0} can be regarded as
a tropical curve F ∈ K1

1, and we have δF = 0. However, F cannot be represented as the
corner locus of a conewise-quadratic function, and cannot be represented as

∑
i liFi for linear

functions li : R
2 → R and tropical curves Fi with constant weights. (The first statement can

be verified by definition, and the second one is true because otherwise F = δ(
∑

i liδ
(−1)Fi),

contradicting the first statement.) It would be interesting to explicitly describe the kernel
of δd : Kd

k−d → K0
k and the image of δd : Kk

0 → Kk−d
d .

Proof. Since δd+1(Kd
0) = 0, we have

δk+l(F ·G) =
∑

j

Cj
k+l · δjF · δk+l−jG = Ck

k+l · δkF · δlG

for every pair of tropical varieties F ∈ Kk
0 and G ∈ Kl

0, hence I is indeed a ring homomor-
phism. Since δ(M, l) = 0 for every linear function l, then I(L) = 0. Since the restriction of
I to the degree 1 is an isomorphism K1

0 → K0
1 by Lemma 2.8.2, and the ring C is generated

by K0
1 (see e.g. [Kaz]), then the homomorphism I is surjective.

The pairing F,G 7→ F · G on P/L is perfect (see e.g. [Br2]), i.e. the image of the
component Km

0 in the quotient P/L is generated by one element L, and every non-zero
element F ∈ P/L admits an element G ∈ P/L of complementary dimension, such that
F · G = L mod L. Since I(L) is non-zero in C by surjectivity of I, then I(F ) · I(G) =
I(L) 6= 0, which implies that I(F ) is non-zero. Thus I is injective. 2

Proof of Proposition 1.3.

Introducing a metric in Rn and writing δn explicitly by definition, we note that the weight
of the zero-dimensional tropical variety δn(f) for a continuous conewise-polynomial function
f : Rn → R is exactly the sum in the statement of Proposition 1.3 (note that δn(f) is
even easier to compute, because some similar terms are collected). We can thus formulate
Proposition 1.3 as follows.

Theorem 3.2. We have

δn

n!

(
A1(·) · . . . · An(·)

)
= ({0}, A1 · . . . ·An)

for every collection of polytopes A1, . . . , An in Rn.

Proof. We have

δn

n!

(
A1(·) · . . . ·An(·)

)
= I

(
A1(·) · . . . · An(·)

)
= I

(
A1(·)

)
· . . . · I

(
An(·)

)
,

for any collection of polytopes A1, . . . , An, because I is a ring isomorphism (see Theorem
3.1), and is defined as δn/n! for a homogeneous conewise polynomial of degree n. For
conewise-linear functions it is defined as δ, so we have

I
(
Ai(·)

)
= δAi(·).
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The tropical Bernstein formula is valid for arbitrary tropical varieties with constant weights,
not only for rational ones (see e.g. [Kaz]):

δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . ·An).

These three equalities imply the desired one. 2

For instance, the mixed area of the pair of triangles on Picture 1 can be counted as
follows (their support functions are denoted by F and G):

Picture 3.

The count of the mixed area of the right pair of polygons on Picture 1 proceeds in the same
way, because the product of their support functions is the same as for the left pair.

Remark. The notion of corner loci of polynomially weighted tropical varieties simpli-
fies the proof of many known useful formulas for mixed volumes. To give an example, denote
the maximal face of a polytope A ⊂ Rn, on which a non-zero covector γ ∈ (Rn)∗ attains its
maximal value A(γ), by Aγ, note that the (n − 1)-dimensional mixed volume Aγ

2 · . . . · Aγ
n

makes sense for any polytopes A2, . . . , An in the euclidean space Rn, and let 〈γ〉 be the ray
generated by γ. Applying the tropical Kouchnirenko-Bernstein formula to both parts of the
equality

δA1(·) · . . . · δAn(·) = δ
(
A1(·)δA2(·) · . . . · δAn(·)

)
, (∗)

we have δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . · An) and δA2(·) · . . . · δAn(·) is the union of all
external normal rays to the facets of A2 + . . . + An, with the constant weight Aγ

2 · . . . · Aγ
n

associated to every ray 〈γ〉. As a result, the equality (∗) turns into the well known

A1 · . . . · An =
∑

|γ|=1

A1(γ)
(
Aγ

2 · . . . · Aγ
n

)
.

Isomorphisms H → PQ/LQ and H → CQ.
The models PQ/LQ and CQ for the cohomology ring H are Poincare dual to each other in

the following sense. Pick a simple fan Γ in M , and consider a k-dimensional cohomological
cycle γ in the corresponding toric variety TΓ as an element of H. We have the following two
ways to describe γ explicitly. Let TC be the closure of the orbit of TΓ, corresponding to the
cone C ∈ Γ. The fundamental cycles of the subvarieties TC over all cones C generate the
homology group of TΓ, and their Poincare duals generate the cohomology. Represent γ as∑

C γC · TC , γC ∈ R, and denote the intersection number γ · TC ∈ R by γC for every cone
C ∈ Γ of codimension k. Denote the collection of all such cones by Γk. Then the cycle γ is
uniquely determined by each of these two Poincare dual collections of numbers

(γC , C ∈ Γm−k) and (γC , C ∈ Γk).
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The image of γ under the isomorphisms

IP : H → PQ/LQ and IC : H → CQ

can be described in terms of these two collections as follows.
For a rational subspace L ⊂ Rm, pick a basis v1, . . . , vl of the integer lattice L ∩ Zm and

the corresponding orientation α on L, and denote v1 ∧ . . . ∧ vl by e(L, α); note that e(L, α)
is an odd function of α and does not depend on the choice of vi. Defining P = ∪C∈ΓkC, and
p(x, α) = γC · e(NxP, α) for x ∈ C, we have

IC(γ) = (P, p).

For a simple cone C ⊂ Rm, generated by primitive linearly independent vectors v1, . . . , vl,
denote the polynomial function v1 ·. . .·vl : C → R by e(C), where linear functions vi : C → R

are dual to the vectors vj in the sense that vi · vj = δij . Define q(x) = γC · e(C) for
s ∈ C, C ∈ Γm−k, then the function q on the union ∪C∈Γm−kC admits a unique polynomial
extension of degree at most k onto every cone of the fan Γ. Gluing these extensions into
a continuous conewise-polynomial function q : M → R of degree at most k, and denoting
∪C∈Γ0C by Q, we have

IP (γ) = (Q, q).

4 Intersection theory on tropical varieties.

We first show that the intersection theory on a smooth tropical variety is locally induced from
the ambient vector space, and then discuss the general case. We use notation, introduced in
Section 2.

Intersection theory on smooth tropical varieties.

A tropical variety with conewise-constant weights is considered smooth, if its support set
locally looks like a matroid fan (see e.g. [FR] for the definition). The first motivation for
this terminology is to see that the tropicalization of V ∩ (C \ {0})n for an affine subspace
V ⊂ Cn is a matroid fan.

Theorem 4.1. Let the tropical variety (P, p) be a matroid fan P with a non-zero
conewise-constant weight p, and suppose that P ⊃ Q for a tropical variety (Q, q). Then
(Q, q) can be represented as (P, p) · V for some tropical variety V with conewise-polynomial
weights of the same degree as q.

Remark. In this text, we restrict our attention to tropical varieties, whose support
sets consist of cones with vertices at the origin. One could also consider “affine” tropical
varieties, whose support sets are unions of arbitrary polyhedra of the same dimension. If
we assume that Q is “affine”, then both the statement and the proof of the theorem remain
valid. However, we cannot expect similar statement for “affine” P : if P is the union of two
parallel lines, and Q is a point on one of them, then (Q, q) = (P, p)·V is impossible. Theorem
4.1 is also not valid for a simplest non-smooth tropical variety (see the last example in this
section).

The intersection theory on smooth tropical varieties, developed in [FR], [Al], [Sh], etc.,
is locally induced from the ambient space in the following sense:

15



The product of tropical varieties G1 and G2 in (P, p), as defined in [FR], [Al],

[Sh], equals G̃1 · G̃2 · (P, p) for tropical varieties G̃i such that Gi = G̃i · (P, p).
Such G̃i always locally exist by Theorem 4.1.

In particular, the isomorphism of Theorem 3.1 implies the following:

Corollary 4.2. The ring of tropical varieties in a matroid fan P (as constructed in
[FR], [Al] and [Sh]) is generated by the divisors of rational functions on P (in the terminology
of these works).

We recall that, for every linear map l : M → N of vector spaces, and for tropical varieties
F in M and G in N , such that codimF > dimker l, one defines the image and the inverse
image l∗F and l∗G, such that l∗(F · l∗G) = l∗(F ) · G, and l∗ is a ring homomorphism (see
e.g. [Mi] or [Kaz]). Let i : M → M × M be the diagonal inclusion of the ambient vector
space M ⊃ P in the setting of Theorem 4.1.

Lemma 4.3. There exists a tropical variety Σ in M ⊕ M , such that, whenever G is
the product of tropical varieties G1 and G2 in (P, p) in the sense of [FR], [Al], [Sh], we have
i∗G = (G1 ×G2) · Σ.

Proof. Let (G1 × G2) be a tropical variety (R, r). In [FR], continuous conewise-linear
functions h1, . . . , hk on the closure of P × P were constructed, such that δk(R, h1 . . . hkr) =
i∗G (see Theorem 4.5 of the aforementioned work for this property). Extending the product
h1 . . . hk to a continuous conewise-polynomial function on M × M , we can consider this
function as a codimension 0 tropical variety H with weights of degree k and take Σ = δkH .
2

Proof of Theorem 4.1. Denote the tropical variety (P, p) by F , (Q, q) by G, and
(M, 1) by H . By Lemma 4.3, we have

(F ×G) · Σ = i∗G.

Let us now consider the diagonal inclusion j : M⊕M → (M⊕M)⊕(M⊕M), the projection
π : ⊕3M → ⊕2M that sends (b, c, d) to (c, d−b), and π′ : ⊕4M → ⊕3M that sends (a, b, c, d)
to (a, c, d − b), so that π′ = (id, π). In the same way, let i′ = (i, id) : M → ⊕3M send a to
(a, a, 0). In this notation, the aforementioned equality becomes

(F ×G× Σ) · j∗(H ×H) = j∗i∗G

by definition of the product. Note that j∗(H ×H) = π′∗i′∗H , thus we have

(F ×G× Σ) · π′∗i′∗H = j∗i∗G.

Applying π′
∗ to both sides, we have

(
F × π∗(G× Σ)

)
· i′∗H = i′∗G.

Denoting the restriction of π∗(G × Σ) to M ⊕ {0} ⊂ M ⊕ M by ΣG, Lemma 2.14 implies
that (F × ΣG) · i∗H = i∗G, which means the desired F · ΣG = G. 2

We now axiomatize the property of (P, p) that we use in the proof of Theorem 4.1.
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Definition 4.4. A tropical variety (P, p) in M is said to be diagonalizable, if it admits

a tropical variety Σ in M ⊕M , such that
(
(P, p)× (Q, q)

)
· Σ = i∗(Q, q) for every tropical

variety (Q, q) with Q ⊂ P .

Proposition 4.5. Let the tropical variety (P, p) be diagonalizable, and suppose that
P ⊃ Q for a tropical variety (Q, q). Then (Q, q) can be represented as (P, p) · V for some
tropical variety V with conewise-polynomial weights of the same degree as q.

Cohomology of tropical varieties.

Intersection theory on tropical varieties (see e.g. [Mi], [AR], [Katz]) can be formulated in
our terms as follows. Let F = (P, p) be a tropical variety with constant weights in a vector
space M , and consider the map m : K → K of multiplication by F , so that m(G) = F · G
(recall that K is the ring of polynomially weighted tropical varieties, introduced at the end
of Section 2).

Definition 4.6. The images m(K0
k) and m(Kd

0) are called the homology and the
equivariant cohomology of F , and are denoted by Hk(F ) and HHd(F ) respectively. The
map m brings the ring structure of the ring K to the direct sums H•(F ) =

⊕
k Hk(F ) and

HH•(F ) =
⊕

dHHd(F ), so that the product of m(G1) and m(G2) equals m(G1 · G2). We
always consider H•(F ) and HH•(F ) as rings with respect to this ring structure, not with
respect to the one induced by the inclusions H•(F ) ⊂ K and HH•(F ) ⊂ K. The Poincare
duality DF : HHd(F ) → Hd(F ) is defined as DF (G) = 1

d!
δd(G). The cohomology ring H•(F )

of the tropical variety F is the quotient of the equivariant cohomology HH•(F ) by the ideal
kerDF .

This definition makes sense because of the following facts.

Lemma 4.7. 1) kerDF is an ideal.
2) The induced map DF : H•(F ) → H•(F ) is a ring isomorphism.

Proof. We should prove that if DF (g) = 0 then DF (g · h) = 0 for every h ∈ HHc(F ).
This follows from the equality δd+c(gh) ·F = δd(g) · δc(h) ·F , which follows from the Leibnitz
rule for δ and from δd+1g = δc+1h = 0.

Surjectivity and multiplicativity of DF follow from surjectivity and multiplicativity in
Theorem 3.1. 2

Example. If F = (M, 1) is the vector space of dimension m, then H•(F ) and HH•(F )
are the direct limits of cohomology and equivariant cohomology of m-dimensional toric va-
rieties (see Section 1 for details).

Example. In general, the group HH1(F ) is well known as the group of rational func-
tions on F ([AR]) or the group of mixed Minkowski weights ([Katz]), the degree 1 component
of DF is the intersection map, and H1(F ) is the group of Weil divisors. Note that H1(F )
is a non-trivial (in general) quotient of the group of Cartier divisors, see the second remark
after Theorem 3.1 for an example.

Example. In our notation, the self-intersection number of the classical line L = {x =
y, z = 0} on the tropical plane F = δmax(0, x, y, z) in R3 can be computed as follows.
Recall that the support set P of F is the regular part of the singular locus of max(0, x, y, z),
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and that the standard metric x2 + y2 + z2 on R3 allows us to consider weights of tropical
varieties as scalars. In [AR], the line (L, 1) is represented as DF (g · F ), where a continuous
conewise-linear function g on R3 is uniquely defined on P by the following two properties:
its restriction to every connected component of P \ L is linear, and, on the boundary of
these connected components, we have g(1, 1, 1) = g(0,−1, 0) = g(0, 0,−1) = g(−1,−1, 0) =
0, g(1, 1, 0) = −1, g(−1, 0, 0) = 1. One checks by definition that δ(g2 · F ) is the ray
generated by (1, 1, 0) with the linear weight −

√
2x on it (this is the weight in the standard

metric; the weight in the “integer metric” would be −2x). Thus the desired self-intersection

number L ◦ L = DF (g
2 · F ) = 1

2
δ2(g2 · F ) = 1

2
∂(−

√
2x)

∂(x/
√
2)

equals −1, which agrees with [AR].

Besides Hd(F ) and Hd(F ), one can consider larger groups for the tropical variety F =
(P, p) (they depend only on the support set P ): the group Hd(F ) ⊃ Hd(F ) consists of all
tropical varieties with constant weights that are contained in P and have codimension d in it

(it is usually called the group of codimension d cycles on F ), the group HH
d
(F ) ⊃ HHd(F )

consists of all polynomially weighted tropical varieties of the form (P, q) for a homogeneous
(not necessarily continuous) conewise polynomial q of degree d on P , the Poincare dual

DF : HH
d
(F ) → Hd(F ) is defined by DF (G) = 1

d!
δd(G), and the group H

d
(F ) ⊃ Hd(F ) is

the quotient of HH
d
(F ) by kerDF .

These larger groups have no natural ring structure, except for the following special case.

Definition 4.8. A 1-dimensional smooth cone is said to be regular or regularizable,
if its rays are the external normals to the facets of a simplex or of a product of simplices
respectively. A regular or regularizable book is the preimage of a regular or regularizable
1-dimensional smooth cone under a surjection of vector spaces. A smooth cone P is said to
be regular or regularizable in codimension 1, if it coincides with a regular or regularizable
book near every point of ∂P .

For instance, locally regularizable tropical curves are those participating in the Mikhalkin
correspondence theorem.

Lemma 4.9. 1) If (P, p), (P, q) and (P, r) are three tropical varieties with the same
support set P , regularizable in codimension 1, and p is conewise-constant and non-zero, then
(P, qr

p
) is also a tropical variety.

2) If, moreover, P is regular in codimension 1, then q/p is the restriction of a continuous
conewise-polynomial function on the ambient space to P (in particular, if q is conewise-
constant, then q/p is constant).

Proof. It is enough to prove the statement for an 1-dimensional P . Denoting generators
of its rays by vi, we rewrite the statement as follows. If the vectors v0, . . . , vm in Rm are
the external normals to the facets of an m-dimensional simplex, and

∑
i aivi =

∑
i bivi, then

bi/ai does not depend on i. If the vectors v0, . . . , vr, r > m, in Rm are the external normals
to the facets of an m-dimensional product of simplices, and

∑
i aivi =

∑
i bivi =

∑
i civi = 0,

then
∑

i
bici
ai
vi = 0. Both statements are obvious. 2

Part 2 of this lemma shows that the following construction makes sense.

Definition 4.10. Let F = (P, p) be a tropical variety with conewise-constant non-
zero weight p on a smooth cone P , regularizable in codimension 1. Then the large cohomology

18



HH
•
(F ) is the sum

⊕
dHH

d
(F ) with the product of its elements (P, q) and (P, r) defined

as (P, qr
p
).

Part 1 of the same lemma implies the equality of rings HH
•
(F ) = HH•(F ) whenever P

is regular in codimension 1, but not in general. Similarly, Theorem 4.1 implies the equality
of groups H•(F ) = H•(F ) whenever F is smooth, but not in general. Therefore it would
be interesting to know whether, for some tropical varieties F , the Poincare duality map DF

brings the ring structure from the large cohomology HH
•
(F ) to H•(F ), while conventional

cohomology DF

(
HH•(F )

)
= H•(F ) ( H•(F ) is not enough for this purpose. For this,

DF : HH
•
(F ) → H•(F ) should be surjective, and its kernel should be an ideal.

The study of kerDF is beyond the scope here; we only discuss pairwise difference between
the groups DF (HH

•
), H• and H•, because they are all different in general:

Example. Let A be the union of two planes xz = 0 in R3, and let L be the x-coordinate
line. Then L ⊂ A cannot be represented as the product of the tropical surface (A, 1) and
another tropical surface with constant weights. However, this line (L, 1) ∈ H1(A) is Poincare

dual to (A, p) ∈ HH
1
(A), where p : A → R equals |y|/2 for z = 0 and equals z for z 6= 0.

This example implies that H1(A) 6= H1(A), although the Poincare duality DF : H
•
(A) →

H•(A) is still an isomorphism (by Theorem 3.1, applied to the planes x = 0 and z = 0).
The many definitions and examples of this section were given to formulate and justify the
following package of conjectures (see also the second remark after Theorem 3.1):

Conjecture. The Poincare duality DF : HH
•
(F ) → H•(F ) is surjective for every

tropical variety F . Its kernel is an ideal, if F is regularizable in codimension 1 and irreducible
(in particular, the ring structure on HH

•
(F ) induces a ring structure A on H•(F )). The

variety F is also diagonalizable, if it is regularizable in codimension 1 and irreducible (in
particular, the ring structure on the ambient space induces a ring structure B on H•(F ) by
Proposition 4.5). The ring structures A and B coincide.
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