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This presentation is devoted to well-known tools of stability theory: Lya-
punov functions and functionals. The development of delay equation theory
through time based on some results of Russian mathematicians is discussed. In
particular, there are two different approaches: one could measure the distance
between points in a finite dimension space or between short curve segments
(points in a functional space). Some definitions, theorems and examples are
presented

1 Stability

Let’s assume that the basic concepts and results of the second Lyapunov
method for systems of ordinary differential equations are well known. Delay
differential equations are not so famous. Any way there are a numerous good
books on this topic, for example Bellman R. and K.L. Cooke. - Differential-
Difference equations. New York, Academic Press, 1963; Hale, J.K. Theory of
Functional Differential Equations. Springer-Verlag, New York, 1977; Kuang,
Y. Delay Differential Equations with Applications in Population Dynamics.
Academic Press, 1993, Kharitonov V.L. Time-delay systems. Lyapunov func-
tionals and matrices. Birkhauser, Basel, 2013. The use of Lyapunovs functions
for studying the stability of solutions of systems with a lag of the general form

ẋi = Fi(t,X(·)); i = 1, n (1)

did not start with very successful results: L.E. Elzgoltz [Elzgoltz L.E. Stabil-
ity of solutions of Difference-Differential Equations Moscow, Uspekhi Matem-
aticheskih Nauk, 1954, v.9, issue 4, pp 95-112] stated in 1954 the Lyapunov
theorems for the system (1) without any changes. The method of Lyapunov
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functions was considered to be unpromising because no inverses of the theo-
rems had been proven at this time. One of Elzgoltzs theorems is:

Theorem 1. If there exists a definitely positive function, whose trajectory
derivative with respect to the system (1) is not positive, then the zero solution
of the system (1) is stable according to Lyapunov.

Example 1. For a given delay equation

dx(t)

dt
= −ax(t)x2(t− h), a, h > 0

we could use the Lyapunov function V (x) = x2, and the corresponding
trajectory derivative is always negative: dV

dt
= −ax2(t)x2(t − h) < 0. So, the

zero solution is stable in accordance with the theorem.
To proceed with the discussion of this method, we will assume that the

following conditions must be met: (i) the zero solution exists, (ii) the solution
of the Cauchy problem of the system (1) must exist and be unique, (iii) this
solution can be extended to positive infinity from some neighbourhood of zero.
Theorem 1 is not practically important, as the question of the existence of
such Lyapunov functions V (t,X) is still open. Furthermore, the trajectory
derivative of function V (t,X) with respect to the system (1) will be a functional
which is determined on the segments of the trajectory, thus complicating the
check of the property that the derivative has a fixed sign.

In 1956 N. N. Krasovskii offered a method of studying the stability of
solutions of the system (1) by using functionals. Instead of controlling the
deviation of the vector X(t) from zero, he suggested separating the segment of
the trajectory Xt(θ), θ ∈ [0, h] and considering some functionals V (t,X(·)) as
a generalised distance, i.e., to go from the space En to the space of piecewise-
continuous vector-functions. All of the definitions of the second method of
Lyapunov in this space can be transferred without any special changes. N.
N. Krasovskii proved a number of theorems about stability and asymptotic
stability of the zero solution of the system (1), and these theorems can be
inversed [Krasovskii N. N. Some problems of stability motion theory Moscow,
PhysMatGiz, 1959. See Krasovskii N. N. Stability of motion. Applications of
Lyapunov’s second method to differential systems and equations with delay.-
Stanford (Calif.): Stanford Univ. Press, 1963.- 188 p]. We will state one of
these theorems without proof.

Theorem 2. For the trivial solution of the system (1) to be uniformly and
asymptotically stable with respect to t0 and ϕt0(·) , it is necessary and sufficient
for the functional V (ψ(·), t), to exist and have the following properties:
1. V (ψ(·), t) is determined in the domain

||ψ(·)||(h) < H, t > t0 (2)

2. V (ψ(·), t), is continuous with respect to t and satisfies a Lipschitz condition
with respect to ψ(·) in the domain (2);
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3. V (ψ(·), t), is definitely positive and uniformly continuous at zero in the
domain (2); 4. the upper trajectory derivative from the right with respect to
system (1)

lim
∆t→+0

sup
∆V

∆t

∣∣∣∣
(1)

is a definitely negative functional in the domain (2).
B. S. Razumikhin in 1956 [Razumikhin B. S. On stability of delay systems

- Applied Math. and Mech., Moscow, 1956, v. 20, issue 4, pp 500-512.] contin-
ued the study of the use of Lyapunov functions to determine the stability of the
system (1) because the problem of the construction of such Krasovskii func-
tionals was still, apparently, far from a constructive solution of many technical
problems. However, the Lyapunov functions had been constructed in specific
areas of research. We will talk about Razumikhins results in detail. Lets im-
pose some restrictions on the functionals Fi(t,X(·)) that will guarantee the
existence, uniqueness and continuability of solutions of the Cauchy problem
for the system (1) in the domain (2), namely Fi(t, ϕ(·)) ≡ 0 at ϕ(·) ≡ 0, and

||Fi(t, ϕ(·))− Fi(t, ψ(·))|| ≤ L||ϕ(·)− ψ(·)||(h), L > 0

First we will consider the question of stability of the zero solution for the
system (1).

Theorem 3. The zero solution of the system (1) will be stable in the
Lyapunov sense, if there exists such a function V (t,X), that
1. V (t,X) is determined and continuously differentiable in the domain

||X|| < H, t ≥ t0; (3)

2. V (t,X) is positively determined in (3);
3. the trajectory derivative of V (t,X) with respect to the system (1)

dV

dt
= U(t,Xt(·)) =

∂V (t,X(t))

∂t
+

n∑
i=1

∂V (t,X(t))

∂xi
Fi(t,X(·))

is a functional, which is determined, generally speaking, on any continuous
curves Yt(·) of (2), and which has the property

U(t, Yt(·)) ≤ 0 (4)

along any continuous curves that satisfy the condition

Y (t) = X(t);V (s, Y (s)) ≤ V (t,X(t)) in s ∈ [t− h, t] (5)
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Theorem 4. If the conditions of Theorem 3 are satisfied and V (t,X) is
uniformly continuous, then the zero solution of the system (1) will be uniformly
stable with respect t0 according to Lyapunov.

Let’s state now a theorem about asymptotic stability.
Theorem 5. The zero solution of the system (1) will be asymptotically

stable, if there exists a function V (t,X) in (3) and having the properties: 1.
V (t,X) has bounded and continuous partial derivatives in (3); 2. V (t,X) is
definitely positive and uniformly continuous at zero; 3. the trajectory derivative
of V (t,X) with respect to the system (1)

dV

dt
= U(t,Xt(·))

is a functional which is determined, generally speaking, on any continuous
curves yt(·) of (2) and which has a property

U(t, yt(·) ≤ −W (||y(t)||)

along any continuous curves satisfying the condition (5). Here W (r) > 0 at
r 6= 0,W (0) = 0.

B. S. Razumihkin showed that the set of continuous curves y(t) satisfying
the inequality (5), on which the derivative V (t, x) is negative, can be reduced.
Namely, we will designate Si(t, x) as the largest value of |Fi(t, y(t+ ·))|, for all
continuous curves satisfying (5). Then it is possible to assert that Theorems
3, 4 and 5 will remain valid, if instead of set of the curves yt(·) we will consider
a set of continuously differentiatable curves zt(·) satisfying the inequalities:

V (s, z(s)) ≤ V (t, z(t)), s ∈ [t− h, t], z(t) = X(t)

and ∣∣∣∣dzids
∣∣∣∣ ≤ Si(t,X). (6)

This process of reduction of the set of the curves can be continued in a
similar way. Let Ki(t,X) = sup|Fi(t, zt(·))| at every zt(·) satisfying (5) and
(6). It is obvious that Ki(t,X) ≤ Si(t,X). The negativeness of U(t,Xt(·)) will
be checked now only on such continuously differentiatable curves ξt(·) such
that

ξ(t) = X(t), V (s, ξ(s)) ≤ V (t,X(t)), s ∈ [t− h.t],
∣∣∣∣dξi(t)dt

∣∣∣∣ ≤ Ki(t,X).

Simple examples show that this process makes the estimation of the area
of stability in the space of parameters of the system more precise, but whether
it gives the exact solution of the problem of stability hasnt been determined
as yet.
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Example 2. Let it be required to find an area in the space of parameters
a and b, for which the zero solution of the equation

ẋ = ax+ bx(t− h) (7)

will be asymptotically stable. Applying Theorem 5 with the function V (t,X) =
x2

2
, we have V̇ = ax2 + bxxh, where xh = x(t− h). From the inequality (5) we

will have for t > t0
|xh| ≤ |x|, (8)

and then V̇ ≤ (a+ |b|)x2, i.e., for a < −|b| the zero solution is asymptotically
stable (Fig. 1).

Figure 2 shows the exact boundary of the area of stability in the plane
(a, b). Figure 3 shows the area specified by the method described above. From
Equation (7) we can obtain an estimate with the help of (8):

|x(t)− x(t− h)| = |ẋ(ξ)|h ≤ h sup
ξ∈[t−h,t]

|ẋ(ξ)|

or
|x− xh| ≤ (|a|+ |b|)|x|,

that is
−2xxh ≤ h2(|a|+ |b|)2x2 − x2 − x2

h.

We use this inequality to estimate V̇ at negative values of b:

V̇ ≤ ax2 +

(
− b

2

)
[x2
(
h2(|a| − b)2 − 1

)
− x2

h].

It is obvious that the right part of the inequality will be negative for

2a− 2h2(a2 − 2|a|b+ b2) + b < 0.

Getting rid of the parameter h by introducing new variables ξ = bh and
η = ah , we obtain the area represented in Figure 3.

Together with Theorem 5, the following theorem of N. N. Krasovskii ap-
peared [Krasovskii N. N. On asymptotic stability of systems with after-effect
// Applied Math. and Mech., Moscow, 1956, v. 20, issue 4, pp 513-518]. In
this theorem the role of the condition (5) was given to the inequality

V (s, y(s)) ≤ f(V (t, y(t))), (9)

where f(r) > r and f is strongly monotonic. The theorems with the condi-
tions (5) and (9) were applied and generalised by various Russian and foreign
mathematicians but preference was given to the condition (9).
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2 Instability

Let’s consider the criteria of instability of solutions. Let’s say that the in-
stability of the zero solution of the system (1) takes place, if negation of the
definition of stability according to Lyapunov is satisfied. If the negation of the
definition of the uniform stability is satisfied, we will say, that the instability
takes place in a broad sense.

In 1960 S. N. Shimanov applied the method of functionals of Lyapunov-
Krasovski to studying the zero solution of the system (1) [Shimanov S. N. On
motion instability with time delay - Applied Math. and Mech., Moscow, 1960,
v. 24, issue 1, pp 55-63]. He proved analogues of the theorems of Lyapunov
and Chetaev in the following formulations.
Theorem 7. If the functional V (t,Xt(·)) exists and is determined and bounded
in the domain

||X(t+ ·)||(h) < H, V (t,X(t+ ·)) > 0, t ≥ t0,

being uniformly continuous at zero and such that its trajectory derivative with
respect to the system (1)

lim
∆t→0

sup

(
∆V

∆t

)
is a positively determined functional, then the zero solution is unstable.
Theorem 8. If there exists a functional V (t,X(t,X(t + ·)) bounded in (2)
satisfying the criteria:
1. for any t ≥ t0 there exists a curve X(·) with an arbitrarily small norm and
V (t,X(·)) > 0;
2. the trajectory derivative of V (t,X(t+ ·)) with respect to the system (1) can
be represented as λV (t,X(t+·))+W (t,X(t+·)), where λ = const > 0, W ≥ 0,
then the zero solution is unstable.

The analogue of the first theorem of Lyapunov about instability is similarly
formulated. For studying the instability in a broad sense we will present a
theorem Prasolov A. V. Reversibility of Shimanovs theorem on instability of
delay systems.- Vestnik LGU, 1981, 1, p. 116-117], which has an inverse.
Theorem 9. If the zero solution of the system (1) is unstable in a broad sense
then there is a functional V (t,X(t+ ·)) with the properties:
1. it is bounded in the domain (2);
2. for any ε > 0 there exists a time t∗ and a curve X∗(·), such that t∗ >
0, ||X∗(·)||(h) < εV (t∗, X∗(·)) > 0;
3. the trajectory derivative of V (t,X(t+ ·)) with respect to the system (1) can
be represented as:

V̇ = λV (t,Xt(·)) +W (t,Xt(·)), (10)

where λ = const > 0, W ≥ 0.
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The following theorems give the reasons for using Lyapunov functions for
studying the instability [Prasolov A. V. On Lyapunov function application for
checking of delay system instability.- Vestnik LGU, 1981, 19, p. 116-118].
Theorem 10. The zero solution of the system (1) will be unstable in a broad
sense, if there exists a uniformly continuous function V (t,X) in the domain
(3) which has the properties:
1. in an arbitrary small neighbourhood of zero there will be a such point X∗

and a time t∗ > h, such that V (t∗, X∗) > 0;
2. the right lower trajectory derived number V (t,X) with respect to the system
(1) is a functional U(t,X(t+ ·)), which is assigned, generally speaking, on any
piecewise-continuous curves y(t + ·) of the domain (2) and, furthermore, it is
positively determined on the curves satisfying the condition (5).

By the positive definiteness of the functional we mean the existence of a
positively defined function ω, such that

U(t,X(t+ ·)) ≥ ω (||X(t)||) . (11)

The following theorem for the system (1) is proved in the same way as
Theorem 10 with those natural modifications that distinguish the first theorem
of Lyapunov about instability from the second one.
Theorem 11. The zero solution of the system (1) will be unstable in a broad
sense, if there exists a function V (t,X) which is determined and uniformly
continuous in the domain (3) and has the properties:
1. for any ε > 0 there exists a point X∗ and a time t∗ > t0, such that and
||X∗|| < ε < H and V (t∗, X∗) > 0.
2. the right lower trajectory derived number V with respect to the system (1)
can be represented as

D+V = λV +W (t,X(t+ ·)),

where λ > 0, and the functional W , determined on any piecewise-continuous
curves y(t + ·) from the domain (2), satisfy the inequality W (t, y(t + ·)) ≥ 0
for all curves y(t+ ·) subject to the condition (5).

Example 3. We can obtain the following solution for the equation ẋ =
ax + bxh by applying Theorem 10. Let V = x2

2
. Then V̇ = ax2 + bxxh. The

condition (5) will give inequality |x(t−h)| ≤ |x(t)|. Let’s find a lower estimate
V̇ by using the last inequality: V̇ ≥ (a − |b|)x2; it means, that V̇ will be
positively determined, if a > |b|.

The determination of the property of instability of the zero solution of the
system (1) by using functions is more convenient than by using functionals.
The following theorem supports the existence of such functions [Prasolov A.
V. Instability properties of delay systems.- Vestnik LGU, 1984, 1, p. 37-42].
Theorem 12. For the zero solution of the system (1) to be unstable in a broad
sense, it is necessary and sufficient that there should be a function V (t,X) with
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the following properties:
1. V (t,X) is determined in the semi-cylinder (3);
2. it is bounded in (3) and at any fixed t > 0

lim
||X||→0

|V (t,X)| = 0;

3. for any ε > 0 there exists a pair {t∗, X∗}, such that

t∗ ≥ 0, ||X∗|| < ε, V (t∗, X∗) > 0;

4. the trajectory derivative with respect to the system (1) has the form:

d

dt
V (t,X) = λ(t,X(t+ ·))V (t,X(t)) +W (t,X(t+ ·)),

where the functionals λ and W are determined along different piecewise-continuous
curves y(t + ·) of the domain (2) and λ is definitely limited from below by a
positive number α,W ≥ 0, when the curves y(t+ ·) satisfy the inequality:

eα(t−s)V (s, y(s)) ≤ V (t, y(t)) for s ∈ [t− h, t]. (12)

3 Perturbed Systems

In the qualitative theory of differential and differential-difference equations
of great importance are theorems of stability by using a first approximation.
Below we will give, practically without any changes, the corresponding material
of N. N. Krasovskii [Krasovskii N. N. Some problems of stability motion theory
Moscow, PhysMatGiz, 1959]. In doing so we will repeat the introductory
assumptions to keep the original designations of N. N. Krasovskii.

Let’s consider the system of equations with a lag.

dxi
dt

= Fi(x1(t+ ϑ), ..., xn(t+ ϑ), t), (13)

where the functionals Fi satisfy the following conditions:
1. the functionals Fi are determined and piecewise-continuous in the domain
||x||(h) < H, t ≥ 0 (where H is a fixed constant) in the following sense:
there exists a sequence of numbers tk, k = 1, 2, 3 such that in each domain
||x(ϑ)||(h) < H, tk ≤ t < tk+1 the functionals Fi are continuous with respect
to t can be extended (with preservation of continuity) to the whole domain
||x||(h) < H, tk ≤ t < tk+1 in such way, that for every t∗ ∈ [tk, tk+1] and for each
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continuous function x∗i (ϑ), (i = 1, n), for any given number ε > 0 it would be
possible to indicate a δ > 0, such that

|Fi(x∗1(ϑ), ..., x∗n(ϑ), t∗)− Fi(x∗1(ϑ), ..., x∗n(ϑ), t)| < ε, i = 1, n,

if only |t∗ − t| < δ and t ∈ [tk, tk+1]; as the functionals Fi can have jumps at
some moments of time tk, and where for a number of other reasons, we will
consider everywhere in the equations only the right derivative of x with respect
time t as dxi

dt
.

2. The functionals Fi satisfy Lipschitz conditions in x, i.e.,

|Fi(x
′′

1(·), ..., x′′

n(·), t)− Fi(x
′

1(·), ..., x′

n(·), t)| <

< L||x′′
(·)− x′

(·)||(h), (L = const, i = 1, n).

We introduce the norm as follows:

||x||(h) = sup(|xi(ϑ)| for − h ≤ ϑ ≤ 0, i = 1, n)

As usual we assume, that Fi(x(ϑ), t) = 0 at xj(ϑ) ≡ 0, i = 1, n, j = 1, n, −h ≤
ϑ ≤ 0.

Lemma 1. If the solutions x(x0(ϑ0), t0, t) of the system (13) satisfy the
condition

||x(x0(ϑ0), t0, t)||(h) ≤ B||x0(ϑ0)||(h)e−α(t−t0) at t ≥ t0, (14)

||x0(ϑ0)||(h) < H0 =
H

B
, (15)

then, in the domain (15) a functional V (x(ϑ), t) satisfying the following con-
ditions can be constructed:

c1||(x(ϑ))||(h) ≤ V (x(ϑ), t) ≤ c2||(x(ϑ))||(h), (16)

lim
∆t→+0

sup

(
∆V

∆t

)
(48)

≤ −c3||(x(ϑ))||(h), (17)

|V (x
′′
(ϑ), t)− V (x′(ϑ), t)| ≤ c4||x

′′
(ϑ)− x′

(ϑ)||(h) (18)

(c1, ..., c4 - are positive constants).
The consequence of the lemma 1 is the following statement
Theorem 13. Let Fi(x1(ϑ), ..., xn(ϑ)) be linear functionals. If the roots of

the ”characteristic” equation∣∣∣∣∣∣
F11 − λ ... F1n

... ... ...
Fn1 ... Fnn − λ

∣∣∣∣∣∣ = 0 (19)
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(
Fij = Fi(0, ..., e

λϑ, ...0)
)

satisfy the inequality.

Reλ < −γ (γ > 0− const), (20)

then there exists a functional V (x(ϑ), t) satisfying the conditions (16), (17),
(18).

Theorem 13 allows the proof of theorems of stability by the first approxi-
mation for equations with a lag. Here we will give one such theorems.

Let’s consider the system of equations:

dxi
dt

= Fi(x1(ϑ), ..., xn(ϑ)) +Ri(x1(ϑ), ...xn(ϑ), t), (21)

where the Fi are linear functionals and the Ri are some continuous functionals.
Let’s assume, that the functionals Ri satisfy the inequality

|Ri(x1(ϑ)), ..., xn(ϑ), t)| ≤ β||x(ϑ)||(h). (22)

Theorem 14. If the roots λ of the equation (19) satisfy the inequality
(20), it is possible to specify a constant β > 0, such that the solution x = 0 of
the system (13) will be asymptotically stable for any choice of the continuous
functionals Ri satisfying the conditions (22).

In the specific case of equations with lags

dxi
dt

=
n∑
j=1

aijxj(t) + bijxj(t− hij)+

+Ri(x1, ..., xn, x1(t− h∗ij(t)), ...xn(t− h∗ij(t)), t)
(hij − const, 0 ≤ hij ≤ h, 0 ≤ h∗ij(t) ≤ h)

(23)

Theorem 14 can be stated as follows.
If the roots of the ”characteristic” equation∣∣∣∣∣∣

a11e
−λh11 − λ ... a1ne

−λh1n

... ... ...
an1e

−λhn1 ... anne
−λhnn − λ

∣∣∣∣∣∣ = 0

satisfy the inequality

Reλ < −γ (γ > 0− const),

it is possible to specify a constant β > 0, such that the solution x = 0 of
the system (23) will be asymptotically stable for any continuous functions
Ri(x1, ..., xn, y1, ..., yn, t) and delays h∗ij(t) satisfying the inequality
Ri(x1, ..., xn, y1, ..., yn, t) ≤ β(||x||+ ||y||).
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Example 4. Let us consider the problem of single-axle stabilization of a
solid body rotation with delayed control feedback moment. As it is known
corresponding equations have a form

Θω̇ + ω ×Θω = M, (24)

where Θ – an inertia tensor of the body, ω = {ω1, ω2, ω3} – angle velocity
vector, M – external forces moment. The moment of forces

M = −aω + br × s (25)

was introduced by V.I. Zubov (1974). Here a, b > 0, r = {r1, r2, r3} –unit
vector being constant regarding a coordinate system fixed in the body, s =
{s1, s2, s3} – an unit vector being constant in inertia space. To make the
mathematical model (24), (25) complete one it needs to add a kinematical
vector equation

ṡ = s× ω, (26)

The moment of forces (25) brings to the body motions satisfying the limit
relations: ω(t)→ 0, s(t)→ r, when t→∞, if the initial data belong to some
neighborhood of the relative equilibrium point

ω = 0, s = r. (27)

Note the joint system (24), (25), (26) has the first integral ||s|| = const, and
the problem sense gives us ||s|| ≡ 1. So further we shell talk about conditional
stability only.

Suppose the control moment of forces M is formed with time lag h > 0.
This is more adequate description from engineering point of view. Thus, we
have the system

Θω̇ + ω ×Θω = −aωh + bξh, ṡ = s× ω, (28)

where ωh = ω(t − h), ξh = r × s(t − h).Every integral curve of system (28)
is unique with continues initial functions {ω0(τ, s0(τ)} at τ ∈ [−h, 0]. Let us
research the relative equilibrium state ω ≡ 0, s(t) ≡ r with respect to stability
by Lypunov function and Razumikhin condition. Choose the Lypunov function
in form

V (ω, s, sh) =
1

2
ωTΘω + α(s− r)2 − βωTΘξ + γ(sh − r)2,

where upper index ”T” means transposition and α, β, γ are constants. It is
possible to show that if the following inequality is hold: 2αΘ1 − β2Θ2

2 > 0,
where Θ1 and Θ2 arethe least and the most Eigen values of the matrix Θ, then
is true inequality

µ1(ω2 + ξ2 + ξ2
h) ≤ V (ω, s, sh) ≤ µ2(ω2 + ξ2 + ξ2

h),
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where 0 < µ1 ≤ µ2. It means the function V (ω, s, sh) is a definitely positive
in some neighborhood of the relative equilibrium point ω ≡ 0, s(t) ≡ r. Let us
consider the derivative of the function V by virtue of the system (28):

V̇
∣∣∣
(28)

= ωT (−aωh + bξh)− 2αωT ξ − 2γωT ξh

−β{ωTΘ[r × (s× ω)]− ξT (ω ×Θω + aωh − bξh)}.
Estimating the terms of the third order with quadratic components we come
to

V̇
∣∣∣
(28)
≤ βθ2ω

2 − aωTωh + bωTξh − 2αωT ξ − 2γωTh ξh + βaξTωh − βbξT ξh.

Using the Razumikhin conditions (inequalities) we have got the estimation

V̇
∣∣∣
(28)
≤ −1

2
{ω2[a(1− h2L2

1)− 2βθ1 − βbh2L2
2 − 2bL2

2h− 2βaL2
2h]+

+ξ2[−ah2L2
1 + βb(1− h2L2

2)− 2L2
2(b+ βa)h]aω2

h

+ξ2[−ahL2
1 + βb(1− h2L2

2)− 2L2
2(b+ βa)h]}.

This estimation is definitely negative if the following relations are true:

h2p1 + 2p2h+ 2βθ2 − a < 0, h2p1 + 2p2h− bβ < 0,

where p1 = aL2
1 +βbL2

2, p2 = (b+αβ)L2
2, L1 = 2

θ1

√
2µ2

µ1(4−H)
(Hθ + a2 + b2),

L2 = 2
√

2µ2
µ1(4−H)

, θ =
√
θ2

2 − θ2
1. The constant H defines the neighborhood of

the relative equilibrium point ≡ 0, s(t) ≡ r:

ω2
0(τ) + [s0(τ)− r]2 ≤ H.

This example shows how effective the direct Lypunov method is: we considered
a non-linear system of six order (in more details one could see A.V. Prasolov
(2010)).

4 Conclusion

We talked briefly about one small part of the delay differential equations the-
ory, namely, the Lyapunov second method (or direct Lyapunovs method) of
stability and instability study. This description certainly is not full either from
theoretical or from practical points of view. A lot of names and interesting
ideas are not mentioned here. More than this, the theory consists of numerical
chapters, existence and uniqueness theorems, the problem of periodic solutions
and many other staying outside of our attention.
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