DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014

EDITOR: BRANKO KATALINIC

VIENNA 2014

EDITOR'S NOTE

This publication was produced electronic, using the manuscripts supplied by their authors. The layout, the figures and tables of some papers did not conform exactly to the standard requirements. In some cases was the layout of the manuscripts rebuild. All mistakes in manuscripts there could not been changed, nor could the English be checked completely. The readers are therefore asked to excuse any deficiencies in this publication which may have arisen from the above causes. The editor and the DAAAM International Vienna are not responsible either for the statements made or for the opinion expressed in this publication.

Copyright © 2014 by the DAAAM International Editor

Abstracting and non-profit use of the material is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons. Instructors are permitted to photocopy isolated articles for non-commercial classroom use without fee. Author(s) agree that the DAAAM international editor 2014 (B[ranko] Katalinic) receives a full and exclusive, worldwide, perpetual, non-revocable and transferable license under copyright in the submitted work. The license especially covers, without limitation, all rights to make the article available in the internet or databases or to cite to reference, to cross-reference, to publish, reproduce and distribute the article. However the author(s) are entitled to make the following use of their work: a) to republish the article in any publication of which they are an author or editor after the work has been published by the DAAAM editor; b) to photocopy the article and distribute such photocopies and distribute the electronic versions of the article for personal or professional use, provided that any such copies are not offered for sale, and c) to make oral presentations of the work in any forum. Any of the above mentioned use of the work must explicitly identify prior publication in the DAAAM International Scientific Book 2014, ISBN 978-3-901509-98-8, ISSN 1726-9687, Editor B[ranko] Katalinic, Published by DAAAM International Vienna, Vienna 2014, including page numbers.

DAAAM International Scientific Book 2014, ISBN: 978-3-901509-98-8, ISSN: 1726-9687,

Editor: B[ranko] Katalinic

Published by DAAAM International Vienna, Vienna 2014

Publisher: DAAAM International Publishing DAAAM International Vienna

Layout & Design: B[ranko] Katalinic

Technical Editors: I[lya] Kukushkin; D[amir] Haskovic;

R[oberta] Cvetkovska; Y[ulia] Kosheleva; I[lija] Zec

Publishing Support: T[oma] Udiljak; B[ojan] Jerbic

Additional copies can be obtained from the publisher: DAAAM International Vienna,

TU Wien, Karlsplatz 13/311, A-1040 Vienna, Austria

E-mails: president@daaam.com branko.katalinic@tuwien.ac.at

DAAAM International homepage: http://www.daaam.info

s supplied by their conform exactly to uscripts rebuild. All uld the English be deficiencies in this he editor and the tements made or for

redit to the source. ns. Instructors are sroom use without B[ranko] Katalinic) le and transferable illy covers, without databases or to cite tribute the article. f their work: a) to r or editor after the ppy the article and 3 of the article for offered for sale, and e above mentioned AAM International 7, Editor B[ranko] 114, including page

Zec

rnational Vienna,

FOREWORD

DAAAM International Scientific Book is unique periodic publication for presentation of actual state of research and industrial projects. Since 2002 members of worldwide DAAAM international community have flexible publishing platform for the presentation of their research projects, recent results, and technical solutions. DAAAM International Scientific Book is very successful periodic publication. Since 2009 GALE Databases are indexing/abstracting Scientific Book. DAAAM International is a member of CrossRef. DOI Suffix of DAAAM International is: 10.2507 and since 2006 all Contributions in DAAAM International Scientific Book are cross-referenced and permanently available on Internet.

The main concept of this edition is: One contribution is one chapter in the Scientific Book. The size of the contribution can be extended in such way that the authors have enough space to present and explain project, ideas, results and future work. Manuscripts are subject of the following review procedures:

- (a) It is reviewed by editor for general suitability for this publication.
- (b) If it is judged suitable two reviewers are selected and a double blind review process takes place.
- (c) Based on the recommendations of the reviewers, the editor then decide whether the particular contribution should be accepted as it is, revised or rejected.

This is the open series for the publishing of the most recent research results and international projects from all technical fields and scientific disciplines which are in the field of interest of DAAAM International. Actuality, competence, team work, interdisciplinary and international cooperation are the main characteristics of this initiative. To all readers we wish joy during the reading and success during the studding of this book.

A book of this magnitude is the work of many people. On behalf of the world wide DAAAM International community, we thank all of the authors for their high-quality contributions and external referees for carefully reviewing the submissions. We hope that this book will encourage other colleagues to join us in this fascinating international academic project. You are welcome to present your research project and to publish your research results in the next DAAAM International Scientific Book 2015.

Vienna, 2014-11-27

DAAAM International President

Univ. Prof. Dipl.-Ing. Dr. techn. Dr. mult. h.c.
Branko Katalinic

EDITORIAL BOARD

BRANKO KATALINIC, EDITOR VIENNA UNIVERSITY OF TECHNOLOGY, VIENNA, AUSTRIA, EU

BORUT BUCHMEISTER University of Maribor, Slovenia, EU

> ANDREW KUSIAK UNIVERSITY OF IOWA, USA

YURIY PODURAEV

VALENTIN PRYANICHNIKOV RUSSIAN ACADEMY OF SCIENCE, RUSSIA

MARIO TABUCANON AIT, BANGKOK, THAILAND

ZELJKO TEKIC UNIVERSITY OF NOVI SAD, SERBIA

TOMA UDILJAK STANKIN UNIVERSITY MOSCOW, RUSSIA UNIVERSITY OF ZAGREB, CROATIA, EU

> KANJI UEDA UNIVERSITY OF TOKYO, JAPAN

THE REVIEWING PROCESS

Manuscripts submitted for the inclusion in the DAAAM International Scientific Book **2014** are subjected to the following review procedures:

It is reviewed by editor for general suitability for this publication. 1)

If it is judged suitable two reviewers are selected and a double blind review process 2) takes place.

Based on the recommendations of the reviewers, the editor then decide whether the 3) particular contribution should be accepted as it is, revised or rejected.

REVIEWING COMMITTEE

BEER R. J. (AUT)	EGOROV S. B. (RUS)	Monostori L. (Hun)	TIKKA H. (FIN)
BIELIC T. (HRV)	FILARETOV V. F. (RUS)	Nanasi J. (Deu)	TEKIC, Z. (SRB)
BLIEDTNER J. (DEU)	GERSAK J. (SLO)	OKINO N. (JPN)	TORIMS, TOMS (LVA)
BOHEZ E. L. J. (THA)	GRABENWEGER J. (BRA	A) OSMERA P. (CZE)	TORRES-LEZA F. (ESP)
BOUZAKIS K. D. (GRC)	GRONALT M. (AUT)	OTTO, T. (EST)	TORVINEN S. (FIN)
BOZINOVSKI S. (USA)	HESSELBACH J. (DEU)	PARK HS. (KOR)	UDILJAK T. (HRV)
BRIGHT G. (RSA)	Ho J. (HKG)	PEGDEN D. (USA)	UEDA K. (JPN)
BUCHMEISTER B. (SLO)	IWATA S. (JPN)	PRYANICHNIKOV .(RUS)	VAN BRUSSEL H. (BEL)
BUTALA P. (SLO)	KATALINIC B. (AUT)	RUIZ HERRERA G. (MEX)	VICAN D. (HRV)
CAR Z. (HRV)	KIMURA F. (JPN)	SATORI S. (ITA)	WEIGL K.H. (AUT)
CELAR S. (HRV)	KOSMOL J. (POL)	SCHAFRIK R. E. (USA)	WESSELY E. (SVK)
COSIC I. (SRB)	KUSIAK A. (USA)	SEDA M. (CZE)	WESTKÄMPER E. (DEU)
COTET E. (ROM)	KUKUSHKIN I. (AUT)	SHIBASAKA T. (JPN)	WINSTON P. H. (USA)
COVIC D. (BIH)	MAJSTOROVIC V. (BIH)	STOPPER M. (AUT)	YAMAZAKI K. (JAP)
DUFLOU J. (BEL	MERTINS K. (DEU)	TAKAKUWA S. (JPN)	ZALZALA A. M. S. (GBR)

FESTSCHRIFT IN HONOR OF

Professor Dr & Cosmonaut Alexey Eliseev's 80th Birthday
Rector Professor Dr Yevgen Pashkov's 70th Birthday
Rector Professor Dr Ante Uglesic's 50th Birthday

THIS FESTSCHRIFT IS RESULT OF LONG TERM COOPERATION AND PARTNERSHIP BETWEEN:

INTERNATIONAL SYNERGY
NETWORK

DAAAM INTERNATIONAL VIENNA UNIVERSITY OF TECHNOLOGY VIENNA - AUSTRIA

UNIVERSITY OF ZADAR ZADAR - CROATIA

onal Scientific Book

EU

JCANON THAILAND

VI SAD, SERBIA

EB, CROATIA, EU

EKIC

ILJAK

EDA

okyo, Japan

on. blind review process

n decide whether the jected.

EKIC, Z. (SRB)

DRIMS, TOMS (LVA)

DRRES-LEZA F. (ESP)

DRVINEN S. (FIN)

DILJAK T. (HRV)

EDA K. (JPN)

AN BRUSSEL H. (BEL)

CAN D. (HRV)

EIGL K.H. (AUT)

ESSELY E. (SVK)

ESTKÄMPER E. (DEU)

INSTON P. H. (USA)

MAZAKI K. (JAP)

LZALA A. M. S. (GBR)

KKA H. (FIN)

TABULA GRATULATORIA

ADAMCZAK, STANISLAW (POL)
BALIC, JOZE (SLO)
BEER, RUDOLF JULIUS (AUT)
BILBERG, ARNE (DEN)
BLIEDNER, JENS (DEU)
BOHEZ, ERIK (THA)
BRNIC, JOSIP (HRV)
BUCHMEISTER, BORUT (SLO)
BULLINGER, HANS-JÖRG (DEU)
CELAR, STIPE (HRV)
COSIC, ILIJA (SRB)
COTET, EMIL COSTEL (ROM)
COVIC, DRAGAN (BIH)
CUS, FRANCI (SLO)
EGOROV, SERGEY (RUS)

FILARETOV, VLADIMIR (RUS)
GRABENWEGER, JOHANN (BRA)
GRONALT, MANFRED (AUT)
GUSEV, BORIS (RUS)
JURAGA, IVAN (HRV)
IPATOV, OLEG (RUS)
KATALINIC, BRANKO (AUT)
KEINER, WOLFGANG (AUT)
KUSIAK, ANDREW (USA)
MAJSTOROVIC, VLADO (BIH)
MALISA, VIKTORIO (AUT)
MARCOS, MARIANO (ESP)
NANASI, JOZEF (DEU)
OTTO, TAUNO (EST)
PARK, HONG - SEOK (KOR)

Pegden, Denis (Usa)
Poduraev, Yuriy (Rus)
Pryanichnikov, V.(Rus)
Schmoellebeck, Fritz (Aut)
Spath, Dieter (Ger)
Stanic, Dragan (Aut)
Stoll, Wilfrid
Stazhkov, Sergej (Srb)
Takakuwa, Soemon (Jap)
Tekic, Zeljko (Srb)
Torims, Toms (Lva)
Udiljak, Toma (Hrv)
Vican, Dijana (Hrv)
Visekruna, Vojo (Bih)
Wessely, Emil (Svk)

e overturning I dimensions, fore, for the f the ratio of eSpin DS70ut torque.

nust meet the sts of several tion arise the ability. Their essential for a property of ation of their

o increase. It creasing their c systems.

arch modules Research &

, driving and ics systems, 033-04189-9, erthur.7
, In. Applied

, in approce

ervoprodukte/

gue 2012.pdf

solutions.html

small bearing agement and ania, 5/2011,

r robotic arm, SN 1660-9336 In. Advanced 580

DEFINITION OF A SET OF DIAGNOSTIC FEATURES AT A GIVEN DEPTH AND COMPLETENESS OF TESTING ELECTRONIC

UVAYSOV, S.; IVANOV, I.; TIKHONOV, A. & ABRAMESHIN, A.

Abstract: Paper is devoted to the development of an original method of identifying a set of diagnostic features of electronic means, which meets the requirements of the depth and completeness of testing. A criterion for assessing the significance of features for ranking and informed choice diagnosed elements. Results may be recommended for testability design electronic means. This work was supported by RFBR (grant № 14-07-00414). Modern electronic means, made in the form of a printed board assembly, can be composed of hundreds components. It can lead to such an increase of the diagnostic model complexity, that will require unreasonably high computational resources, and cumulative computational error will make the use of the results of computer modeling almost unnecessary and unjustifiable. Thus, for example, the Ebers-Moll or Hummel-Pune models for the bipolar transistor can have from a several to a few tens of parameters, each of them is a diagnostic feature in the evaluation of its technical condition.

Key words: diagnostic features, testing electronic, electronic, original method, electronic means

Authors' data: Uvaysov, S[aygid]; Ivanov, I[lya]; Tikhonov, A[lexandr]; Abrameshin, A[ndrey], National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia, s.uvaysov@hse.ru, ytn1234@yandex.ru, atikhonov@hse.ru

This Publication has to be referred as: Uvaysov, S[aygid]; Ivanov, I[lya]; Tikhonov, A[lexander] & Abrameshin, A[ndrey] (2014). Definition of a Set of Diagnostic Features at a Given Depth and Completeness of Testing Electronic, Chapter 51 in DAAAM International Scientific Book 2014, pp.625-632, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-901509-98-8, ISSN 1726-9687, Vienna, Austria

DOI: 10.2507/daaam.scibook.2014.51

1. Introduction

Providing testability of electronic means (ES) is an actual design problems that must be addressed at early stages of the life cycle. Otherwise, the product will be slightly adapted to the control and diagnosis, leading to significant cost to the control stages and the output stage of operation.

Due to current trends in the design and development (high density mounting, wide range of features and so on.), the model of electronic means is characterized by

lots of diagnostic features.

Based on the characteristics of production, availability of time and financial constraints of control procedures and diagnosis, as well as the requirements specification for the indicators of depth and completeness of testing. The developer needs to reduce the number of diagnostic features, forming a corresponding set of the most significant.

2. Method of determining significance of diagnostic electronic means features

The paper proposes a method of determining the set of significant diagnostic features corresponding to electronic components, at a given depth and completeness of testing electronic means. The block diagram of this method is shown at Figure 1.

To determine the significance of the diagnostic feature as well as the significance of it's corresponding. ERE serves to analyze the sensitivity function (S), reliability indicators (Q), the values of the tolerances on the parameters of ERE (D), as well as statistical data ES failure. Enter the weight factor - factor of significance R = f(S, Q, D).

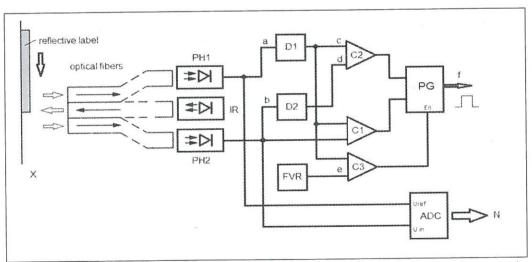


Fig. 1. Block diagram of the method for determining the significance of diagnostic features

DA

par ent

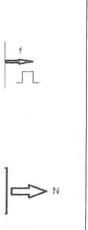
out

ma ele cha phy dir int

E E E

E Ir C

Ta


problems that oduct will be to the control

ity mounting, aracterized by

and financial requirements The developer ling set of the

s features

int diagnostic completeness at Figure 1. well as the function (S), of ERE (D), significance R

of diagnostic

In accordance with the theory of the sensitivity deviation of the internal parameter ERE from its nominal value which affects the output characteristics of the entire electronic means. This parametric sensitivity function has the form:

$$A_{q_j}^{y_i} = \left(\frac{\partial y_i}{\partial q_j}\right),\tag{1}$$

 $Y=[y_1,y_2...y_i]$ - set of of output characteristics;

 $Q=[q_1,q_2...q_i]$ - set of of input characteristics.

Most of the ERE is characterized by many internal parameters, that is why fixed output is function of the sensitivity of a row vector:

$$A_{q_j}^{y_1} = \left(A_{q_1}^{y_1}, A_{q_2}^{y_1}, ..., A_{q_m}^{y_1}\right),\tag{2}$$

j=1..m, m - number of parameters element.

To reduce the dimension of the solving problem is invited to choose the maximum value of the sensitivity function of the output characteristic to modify the elements. So conditionally accepted value of the sensitivity of the output characteristic to this ERE (). Availability in ES elements of various dimensions of physical quantities (resistors, capacitors, inductor, etc.) necessitates the use of dimensionless quantities. To this end, the absolute sensitivity function are translated into relative:

$$S_{q_i}^{y_1} = A_{q_j}^{y_1}(N_i) \cdot \frac{q_j}{y_1}, \tag{3}$$

$$S_{N_i}^{y_1} = \max_{j=1..m} [S_{q_j}^{y_1}(N_i)], \tag{4}$$

Electrical Model	The Thermal Model	Mechanical Model	
Electrical Conductivity	Thermal Conductivity	Equivalent Coefficient of	
		Resistance	
Electrical Resistance	Thermal Resistance	The Reciprocal of The	
		Equivalent Resistance	
		Factor	
Electrical Capacity	Heat Capacity	Weight	
Inductance	-	Compliance	
Current	Dissipated Power	Impulse Power, Strength,	
		or a Derivative of Force	
Voltage	Temperature	Displacement, Velocity or	
	2007 2007	Acceleration	

Tab. 1. The analogy between the parameters of heterogeneous physical processes

A similar calculation of the sensitivity function is performed for all the species of the physical processes, namely, electrical, thermal and mechanical. The task is greatly simplified if one considers the electro-thermal mechanical analogy (Table 1), which is widely used in electronics. This approach also allows the mathematical modeling of physical processes in a complex heterogeneous.

On important elements in terms of the tasks of monitoring and diagnosing affects the reliability of the elements. One of the main parameters characterizing the reliability of the element is the probability of failure-free operation during the time t:

$$P(t) = e^{-\lambda t}, \qquad (5)$$

 λ_e – operational failure rate ERE, which is calculated:

$$\lambda_e = \lambda_b \times \prod_{i=1}^n K_i$$
, (6)

 λ_b — basic failure rate of ERE calculated from the results of tests on the ERE, reliability, durability, service life;

K_i – coefficients that take into account changes in the operational failure rate, which depends on various factors, distinguish rate regime, service factor, the coefficients of the models of specific classes of ERE and others;

n - number of factors taken into account.

A high value P(t) indicates that the element is likely not refuse and, therefore, will not affect on output characteristics of the product. In this case of great importance to have the elements with a high probability of failure Q(t):

$$O(t) = 1 - P(t)$$
, (7)

The following parameters effect on significance of the diagnostic feature. ERE is the tolerance on the internal parameters. ERE parameters q_i can be represented as $q_j = q_j^b \pm \Delta q_j$ where Δq_j -tolerance on the nominal parameter q_j^b . With the standpoint of diagnosis is the most important parameter to a smaller value of tolerance. To convert the values of tolerance D in dimensionless use the expression

$$D = \frac{\Delta q_j}{q_j^b},$$
 (8)

Based on this, write down the expression for the coefficient of the significance of i-ERE:

Set of Dia...

Il the species
. The task is
ogy (Table 1),
mathematical

d diagnosing acterizing the 1g the time t:

s on the ERE,

al failure rate, ce factor, the

and, therefore, case of great

e standpoint of ce. To convert

(8)

ne significance

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2014

pp. 625-632

Chapter 51

$$R'_{i} = \left[\max_{j} S_{q_{j}}^{y_{1}}(N_{i})\right] \cdot Q(t) \cdot [1/D], \tag{9}$$

Significance factor R'_i is the weighting factor of the element N_i . Sum of weighting factors must be equal to one. Consequently, it is necessary to normalize the value R'_i of the unit:

$$\frac{R_i'}{\sum_i R_i'} = R_i : \sum_i R_i = 1, \ i = 1, 2...n,$$
 (10)

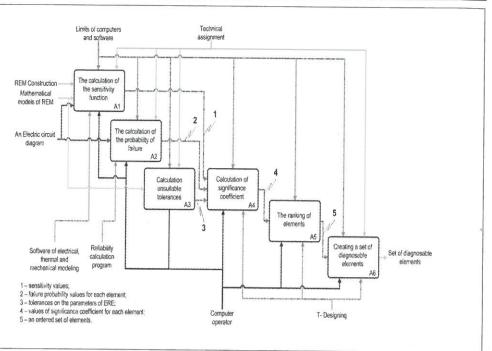
Spending ranking of electroradioelements are included in the scheme under consideration. Obtain a set N_r , which is composed of elements N_i^{Ri} , ordered by weighting values from largest R_i to smallest.

When specifying a set of elements, diagnosed coefficient of completeness is fundamental, because the total number of permits have ranked items to choose the required amount of respect that provide testability.

Among the entire set elements have ranked N_r excerpts, forming set of N_q^\prime so that:

$$N_q' = K_{IIII} \cdot N_r \,, \tag{11}$$

If the same types devices are in operation and received the complaint, the method provides possibility of replacing elements of the set with the lower coefficient values for the significance of the elements of the list N_S claims.


Similarly possible to account expert opinion, in which can be a designer himself, through the replacement of insignificant elements formed on a set of more meaningful N_E .

The final set of diagnosed elements represented by the set N_q .

3. Method of ranking and selection of relevant parameters in engineering design practice

For the practical use of the proposed method has been developed an engineering technique that is presented in the form of IDF0 diagram in Figure 2.

Uvaysov, S.; Ivanov, I.; Tikhonov, A. & Abrameshin, A.: Definition of a Set of Dia...

ig. 2. Scheme of the formation of diagnosed parameters set

- Calculation of the sensitivity function (A1). Calculation of the sensitivity of the
 output characteristics (e.g., voltage at the output of the temperature on the
 elements) is carried out by dint of the module of the T-Designing to change
 internal parameters. Wherein the maximum value is chosen and considered as
 the sensitivity of the output characteristic to modify the element.
- Using the reliability program ASONIKA-K provides us to calculate the probability of failure of each element (A2). The output file of the program containing the necessary data is converted to a module of the program to ensure testability, responsible for determining the significance of ERE.
- Using the reference data on the ERE (radio-electronic elements), as well as the data of operating conditions specified in the specifications, tolerances of element parameters (A3) are formed.
- The obtained probability values of failure-free operation are converted to probability values of failure. "Classic" tachometer. The timer counts the pulses generated by the passage of the reflective label.
- Fast measuring device of the "instantaneous" rotation speed. The timer counts the duration of time intervals between the edges of the pulses generated by passing the reflective label. In this case, the calculated value of the rotation speed is updated after each turnover of the actuator.
- By multiplying the sensitivity and failure probability values, the reciprocal of the tolerance, which is held in the automatic mode by dint of the program T-Designing, we get the boost factor of each element (A4).

DAAAM

- We c
- To en check
- In ac
- In the

Proposition of the component influence

design and indicators

Creat

The of reducin

4. Referei

Abramov optimalno problems (2008), pp Abramov otvetstven systems fo 48 Avakyan parameter №1 2013. Bushmele diagnostir of diagnos Bushmele distantsion device to 3, pp. 11 Dubrov V voltage s "Testing. Eremenko

acquisition

testing and

2013 pp.1

- We order ERE according to a significance factor (A5).
- To ensure testability of the T-Designing program we introduce the completeness check coefficient, which is taken from the specification.
- In accordance to the coefficient of fullness sampling inspection elements (A6) is carried out.
- In the manual mode the selected set of elements may be changed.

Proposed method and the technique allow the entire set of electronic components and their diagnostic features highlight the most significant and the most influence on the state of engineering in general.

Creating a set of diagnostic parameters should be started on the stages of circuit design and construction, while in the specifications for the mandatory introduction of indicators of depth and completeness of the diagnosis.

The effectiveness of this method and the technique can be assessed in the form of reducing the cost and time of the diagnostic operations.

4. References

Abramov O. V. "Effektivnyiy metod statisticheskogo modelirovaniya v zadachah optimalnogo parametricheskogo sinteza". [Effective method of statistical modeling in problems of optimal parametric synthesis] Informatika i sistemyi upravleniya, № 1 (2008), pp. 27-30

Abramov O.V., Monitoring i prognozirovanie tehnicheskogo sostoyaniya sistem otvetstvennogo naznacheniya. [Monitoring and prediction of a technical condition of systems for critical applications]. Informatika i sistemyi upravleniya, #2(2011), pp.44-48

Avakyan A.A. "Diagnosis interface-computing paths by comparing the filter parameters in the regression". Scientifis and technical journal "Testing. Diagnostics", №1 2013, pp. 34-36

Bushmeleva K. & Plyusnin I. & Uvaysov S. (2010) Analiz metodov i sredstv diagnostirovaniya magistralnykh gazoprovodov. [Analysis of the methods and means of diagnosing the main gas pipelines]. *Kontrol. Diagnostika*, no 7, pp. 29 – 37

Bushmeleva K. & Plyusnin I. & Uvaysov S.U. (2010) Model mobilnogo ustroystva distantsionnogo zondirovaniya magistralnogo gazoprovoda. [The model of the mobile device to remote sensing of the main gas pipeline]. *Informatsionnyye tekhnologii*, no 3, pp. 11 – 15

Dubrov V.I., Kirievsky V.E. "Application of wavelet-analysis for diagnostic of high-voltage switches using speed characteristics". Scientifis and technical journal "Testing. Diagnostics", №7 2012, pp.67-70

Eremenko V.T., Tutyakin A.V. "Methodological aspects of the selection of data acquisition and processing profiles in the systems of technical objects non-destructive testing and diagnostics", Scientifis and technical journal "Testing. Diagnostics", №1 2013 pp.101-104

diagnosable ements

- sitivity of the ature on the 1g to change considered as
- calculate the the program am to ensure
- s well as the
- converted to ts the pulses
- timer counts generated by the rotation
- reciprocal of program T-

D

A

d

SI

SI

ir

Si

b

Si

e.

e

n

n

iı

S

K

G. P. Aksenova "Szhatie testovoy reaktsii pri samotestirovanii v programmiruemyih logicheskih matritsah". [Compression test reaction in self-test of programmable logic arrays]. Zhurnal «Avtomatika i telemehanika», 2013 #2, pp. 124-139

Gromov V. & Shestimerov S. & Uvaysov S. (2010) Vysokotochnyy tranzistornyy datchik temperatury.[High-precision temperature sensor transistor]. *Datchiki i sistemy*

no 11, pp. 19 – 22

Ivanov I. & Uvaysov S. & Koshelev N. (2012) Metodika obespecheniya diagnostiruyemosti elektronnykh sredstv kosmicheskikh apparatov po rangovomu kriteriyu na rannikh etapakh proyektirovaniya. [Methods of providing electronic means diagnosability spacecraft on rank test at the early stages of design]. *Kachestvo. Innovatsii. Obrazovaniye.*, no 1, pp.60-62

Kostyukov V.N., Kostyukov A.V. "Real-time condition monitoring of equipment".

Scientifis and technical journal "Testing. Diagnostics", 2010 №3, pp.43-45
Parhomenko P.P. (red.) Osnovyi tehnicheskoy diagnostiki. Kniga 1. Modeli ob'ektov, metodyi i algoritmyi diagnoza. Basics of technical diagnostics. Book 1. Models of

objects, methods and algorithms for diagnosis, 464p

Uvaysov S. & Bushmeleva K. & Bushmelev P. & Plyusnin I. (2011) Modelirovaniye optimalnykh parametrov ustroystv distantsionnogo zondirovaniya. [Simulation of the optimal parameters of remote sensing devices]. *Izmeritelnaya tekhnika*.,no 3, pp. 39-42

Uvaysov S. & Kofanov Yu. & Sotnikova S. (2011) Kompleksirovaniye fizicheskogo i matematicheskogo modelirovaniya pri avtomatizatsii proyektirovaniya bortovykh elektronnykh sredstv. [Integration of physical and mathematical modeling at the design automation of airborne electronic aids]. Moscow: Energoatomizdat. 119p

Uvaysov S. & Gromov V. & Shestimerov S. (2010) Tranzistornyy termopreobrazovatel dlya povysheniya kachestva kontrolya temperatury. [Transistor Thermocouples for improving the quality of temperature control]. *Kachestvo. Innovatsii. Obrazovaniye.*, no 11(66), pp. 52 – 61

Uvaysov S. & Ivanov I. & Goldberg O. D. & Ivanov O. A. (2013) Obespecheniye kachestva kharakteristik istochnikov bespereboynogo pitaniya v usloviyakh pomekh, vyzvannykh nelineynoy nagruzkoy. [Ensuring the quality characteristics of uninterruptible power supplies in the conditions of interference caused by the nonlinear load.]. *Tekhnologii elektromagnitnoy sovmestimosti.*, no 3, pp. 55-64

Uvaysov S. & Tretyakova T. & Kulakova Yu. (2010) Povysheniye tochnosti izmereniy v usloviyakh predprodazhnogo servisa. [Increasing the accuracy of the measurements in terms of pre-sale service]. *Kachestvo. Innovatsii. Obrazovaniye.*, no 10(65), pp. 67 - 71

Uvaysov S. (2006) Obnaruzheniye slabogo signala na fone pomekhi v sluchaye raspredeleniya Releya. [The detection of a weak signal to background noise in the case of Rayleigh distribution]. *Izmeritelnaya tekhnika*, no 4, pp. 55-58

Volovikova Ye. & Uvaysov S. (2009) Diagnostika analogovykh skhem s uchetom teplovykh rezhimov elektro- i radio-elementov. [Diagnosing analog circuits considering electrical and thermal conditions of the radio elements]. *Kachestvo. Innovatsii. Obrazovaniye*, no 46, pp. 23 – 28

listeanu, A. M. & ch of Managerial
189
tem for Continuous
gic Alliance Value
e Members 207
of Bevel Gears by
osition Process for
239
keting Strategy for
rters257 nd Importance of
267
plex Projects . 279
295
in Reconfigurable
Public Libraries in
323
tion System Using339
ergy Efficiency in
oduct Recovery of
365
of Reconfigurable
373 Inu, L.: Optimal
383
to Optimize Load
401 ' Firm Survival in
echnologies Used
423
lue Usefulness in
ches and Risks in

..... 449

Konecki, M.: Problems in Programming Education and Means of Their
Improvement
Delic, M. & Knezevic, B.: Development of Shopping Centers in Central and
Southeastern Europe
Guban, A.; Mezei, Z. & Sandor, A.: Service Processes as Logistic Workflows 485
Rebrin, O. & Sholina, I.: Features of the Modern Educational Environment for
Fingingers 501
Engineers
Equipment and Camera Systems in Manufacturing
Cisar, P.; Maravic Cisar, S. & Bosnjak, S.: Cybercrime and Digital Forensics –
Technologies and Approaches
Niine, T. & Koppel, O.: Competence in Logistics – Designing a Meta-Model of
Logistics Knowledge Areas
Maheshwari, S. & Jain, P. K.: Supply Chain Management – Review on Risk
Management From Supplier'S Perspective557
Rathore, N. & Jain, P. K.: Reverse Engineering Applications in Manufacturing
Industries: an Overview
Azarov, V. & Chekmarev, A.: Conflict Analysis for Project and Maturity
Management577
Azarov, V.; Grachev, N. & Tikhonov, A.: The Role of the Electronic Journal in
Raising the Effectivenees and Quality of the Education and Scientific Research
Process
Gudkov, Y.: Fiber-Optic Sensor for Monitoring Synchronicity of Actuators 597
Korolev, D.: Object-Oriented Approach to Video Editing and Broadcasting to the
Internet
Semjon, J.; Varga, J. & Tuleja, P.: Comparing the Parameters of Positioning
Actuators Used for Robots
Uvaysov, S.; Ivanov, I.; Tikhonov, A. & Abrameshin, A.: Definition of a Set of
Diagnostic Features at a Given Depth and Completeness of Testing Electronic 625
Steigmann, R. & Savin, A.: Advanced Sensor for Enhancement of Electromagnetic
Imaging of Impacted Carbon Fibers-Pps Composites